红外吸收光谱分析 - 红外吸收光谱分析
合集下载
第六章 红外吸收光谱分析

active) ;反之则为红外非活性(infrared inactive)。
9
二、 分子振动方程式
10
双原子分子可以看成是谐振子,根据经典力 学(胡克定律),可导出如下公式:
1 v 2 k
k
m1 m2 m1 m2
1303 k
v
1 2 c
-1) ; k为力常 ν 为振动频率(Hz), 用波数表示 (cm v 数,表示每单位位移的弹簧恢复力 (dyncm-1) ; μ 为折合质量(g)。
实验中观察到的C=O伸缩振动频率都在1700cm-1附近。 值得注意的是:在弹簧和小球的体系中,其能量变化是 连续的,而真实分子的振动能量变化是量子化的。
13
三、 分子振动的形式
(一)分子的振动自由度
每个原子在空间的位置必须有三个坐标来确定,则由 N个原子组成的分子就有了3N个坐标,或称为有3N个运
动自由度。分子本身作为一个整体,有三个平动自由度
和三个转动自由度。
14
直线型分子的振动形式:3N - 5 非直线型分子的振动形式:3N -6
15
(二)分子的振动形式
a.直线型分子:3N-5
如CO2
16
b. 非线形分子: 3N – 6
如H2O
17
分子的振动形式:
•化学键两端的原子沿键轴方向作来回周期运动 对称伸缩振动
11
可见,影响基本振动频率 (即基频峰位置 )的直接原因是原 子质量和化学键力常数。
表15-1 某些化学键的力常数
化 学 键 键 长(A) k(N· cm-1)
C-C C=C 1.54 4.5 1.34 9.6
C≡C C-H O-H N-H C=O 1.20 15.6 1.09 5.1 0.96 7.7 1.00 6.4 1.22 12.1
红外吸收光谱分析

基团频率区旳划分
分区根据:因为有机物数目庞大,而构成有
机物旳基团有限;基团旳振动频率取决于K 和
m,同种基团旳频率相近。
划分措施
氢键区 ❖基团特征频率区 叁键区和累积双键区
双键区
❖指纹区
单键区
区域名称 频率范围
基团及振动形式
氢键区 4000~2500cm-1 O-H、C-H、N-H
等旳伸缩振动
叁键和
溶剂效应,极性基团旳伸缩振动频率随溶剂旳极性增 大而降低,但其吸收峰强度往往增强,一般是因为极 性基团和极性溶剂之间形成氢键旳缘故,形成氢键旳 能力越强吸收带旳频率就越低。如丙酮在环己烷中νC=O 为1727cm-1 ,在四氯化碳中为1720cm-1 ,在氯仿中为 1705cm-1 。
分子振动旳自由度
• 电子效应
①诱导效应 ②共轭效应
• 空间效应
①空间位阻 ②环张力
• 氢键
• 二.外部原因
• ①物态效应 • ②溶剂效应
❖电子效应
(1)诱导效应 经过静电诱导作用使分子中 电子云分布发生变化引起K旳变化,从而影 响振动频率。 如 C=O
吸电子诱导效应使羰基双键性增长,振动频 率增大。
(2)共轭效应 共轭效应使共轭体系中
Varian 680-IR
• 日本岛津: • 傅立叶变换红外光谱仪 IRAffinity-1 • 高信噪比:30,000:1 以上;配置自动除湿装
置,易于维护;外形小巧,占地面积小;标配 杂质分析程序;多种附件能够选择。 • 傅立叶变换红外光谱仪 IRPrestige-21 • 研究级傅立叶红外光谱仪。 • 岛津红外显微镜系统 AIM-8800 • 具有AIM VIEW先进控制系统;具有高敏捷度 旳不需维护旳MCT检测器;多种附件使应用范 围进一步扩展。
红外吸收光谱分析技术—实用分析技术

光谱与基团不能一一对应,其价值在于表示整个分子的特征,犹 如人的指纹。通过在该区查找相关吸收峰,进一步确定官能团的存在。
(2)光谱解析一般程序
1)试样的分离和精制 试样不纯会给光谱解析带来困难,因此对混合试样要进
行分离,以得到单一纯物质。 2)了解试样来源及性质
了解试样来源、元素分析值、相对分子量、熔点、沸 点、溶解度等有关性质。
官能团定性是根据化合物的红外光谱的特征基团频率来 检定物质含有哪些基团,从而确定有关化合物的类别。
标准对照则需要由化合物的红外光谱并结合其它实验资 料来判断有关化合物。
2.定量分析
红外光谱的谱带较多,选择余地大,所以能方便地 对单一组份或多组份进行定量分析。 红外光谱法的灵敏 度较低,不适于微量组份测定。红外光谱法定量分析的 依据与紫外-可见光谱法一样,也是基于朗伯-比尔定律 ,通过对特征吸收谱带强度的测量来求出组份含量。但 与紫外-可见光谱法相比,红外光谱法在定量方面较弱。
3.结构分析 (1)特征区与指纹区
物质的红外光谱是其分子结构的反映,谱图中的吸收峰与 分子中各基团的振动形式相对应。
特征区:4000 - 1250cm-1 高频区 区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常
用于鉴定官能团。光谱与基团的对应关系强 。 指纹区:1250 - 600 cm-1 低频区
3)根据分子式计算不饱和度
U 2 2n4 n3 n1 2 Nhomakorabea不饱和度意义:
U 0 分子中无双键或环状结构 U 1 分子中可能含一个双键或一个环 U 2 分子中可能含两个双键,或一个双键 环,或一个叁键 U 4 分子中可能含苯环 U 5 分子中可能含苯环 一个双键
4)解析方法(四先四后) • 先特征、后指纹; • 先强峰,后次强峰; • 先粗查,后细找; • 先否定,后肯定; • 寻找有关一组相关峰→佐证 • 先识别特征区的第一强峰,找出其相关峰,并进行峰归属 • 再识别特征区的第二强峰,找出其相关峰,并进行峰归属
(2)光谱解析一般程序
1)试样的分离和精制 试样不纯会给光谱解析带来困难,因此对混合试样要进
行分离,以得到单一纯物质。 2)了解试样来源及性质
了解试样来源、元素分析值、相对分子量、熔点、沸 点、溶解度等有关性质。
官能团定性是根据化合物的红外光谱的特征基团频率来 检定物质含有哪些基团,从而确定有关化合物的类别。
标准对照则需要由化合物的红外光谱并结合其它实验资 料来判断有关化合物。
2.定量分析
红外光谱的谱带较多,选择余地大,所以能方便地 对单一组份或多组份进行定量分析。 红外光谱法的灵敏 度较低,不适于微量组份测定。红外光谱法定量分析的 依据与紫外-可见光谱法一样,也是基于朗伯-比尔定律 ,通过对特征吸收谱带强度的测量来求出组份含量。但 与紫外-可见光谱法相比,红外光谱法在定量方面较弱。
3.结构分析 (1)特征区与指纹区
物质的红外光谱是其分子结构的反映,谱图中的吸收峰与 分子中各基团的振动形式相对应。
特征区:4000 - 1250cm-1 高频区 区内的峰是由伸缩振动产生的吸收带,比较稀疏,容易辨认,常
用于鉴定官能团。光谱与基团的对应关系强 。 指纹区:1250 - 600 cm-1 低频区
3)根据分子式计算不饱和度
U 2 2n4 n3 n1 2 Nhomakorabea不饱和度意义:
U 0 分子中无双键或环状结构 U 1 分子中可能含一个双键或一个环 U 2 分子中可能含两个双键,或一个双键 环,或一个叁键 U 4 分子中可能含苯环 U 5 分子中可能含苯环 一个双键
4)解析方法(四先四后) • 先特征、后指纹; • 先强峰,后次强峰; • 先粗查,后细找; • 先否定,后肯定; • 寻找有关一组相关峰→佐证 • 先识别特征区的第一强峰,找出其相关峰,并进行峰归属 • 再识别特征区的第二强峰,找出其相关峰,并进行峰归属
红外吸收光谱分析法FTIR

光谱解析难度大
红外光谱的复杂性较高,需要专业的 知识和技能进行解析,对分析人员的 要求较高。
仪器成本高
FTIR仪器的制造成本较高,使得其普 及和应用受到一定限制。
测试时间较长
与一些其他分析方法相比,FTIR的测 试时间可能较长,需要更多的时间来 完成分析。
未来发展前景
提高检测灵敏度和分辨率 通过改进仪器性能和技术,提高 FTIR的检测灵敏度和分辨率,使 其能够更好地应用于微量样品和 高精度分析。
环境监测
FT-IR可以用于环境监测领域, 如气体分析、水质分析、土壤
分析等。
02 ftir仪器组成
光源
光源是红外傅里叶变换红外光 谱仪(ftir)中的重要组成部分, 负责提供足够能量和合适波长 的红外辐射。
常见光源有硅碳棒、陶瓷气体 放电灯、远红外激光等。
光源的选择直接影响ftir的灵敏 度和分辨率,因此需要根据实 验需求选择合适的光源。
小型化和便携化 为了方便现场快速检测和实时监 测,FTIR仪器的小型化和便携化 成为一个重要的发展方向。
拓展应用领域 随着FTIR技术的不断成熟和普及, 其应用领域将会进一步拓展,包 括生物医学、环境监测、食品安 全等领域。
智能化和自动化 通过引入人工智能和自动化技术, 实现FTIR分析的智能化和自动化, 提高分析效率和准确性。
基频峰
分子振动能级跃迁产生的谱线,是红外光谱中最 强的峰。
特征峰
与分子中特定化学键或振动模式对应的峰,可用 于鉴定化合物结构。
谱图解析方法
峰位置分析
通过分析峰的位置,确定特定化学键或基团的存在。
峰强度分析
通过分析峰的强度,了解分子中特定化学键或基团的相对含量。
峰形分析
第10章 红外吸收光谱分析

醛在2820和2720 cm-1附近的特征峰,后者尖锐易辨别。
醛:
特征1:醛羰基ν(C=O):~1725 cm-1。 特征2:2820 cm-1 和 2720 cm-1 弱的双峰。
酮:
酮羰基ν(C=O):1710~1715 cm-1。
脂类:C=O吸收峰:1725 ~ 1750 cm-1 ,强。
红外光谱信息区
常见的化学基团在4000 670 cm-1范围内有特征频率, 为便于记忆,常依据基团的振动形式,分为四个区: (1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S) (2)2500 2000 cm-1 三键,累积双键伸缩振动区 (3)2000 1500 cm-1 双键伸缩振动区
上述用经典力学的方法来处理分子的振动是为了得 到宏观的图像,便于理解并有一定性概念。但一个
真实的微观粒子需要用量子理论方法加以理解,如
能量量子化。
实际上,在一个分子中,基团与基团间,基团中的 化学键之间都相互有影响,因此基本振动频率除了
决定于化学键两端的原子质量、化学键的力常数外, 有关。
还与内部因素(结构因素)及外部因素(化学环境)
倍频、合频和差频统称为泛频。
二、红外光谱的特征性
红外光谱的最大特点是具有特征性。
大多有机物的红外光谱基本上是C、H、O、N等元素
所形成化学键的振动贡献的。
基团特征频率
与一定结构单元相联系的、固定在一定范围内出现的 化学键振动频率——基团频率(特征峰)。
例: 2800 3000 cm-1 —CH3 特征峰;
在该区域出现的峰较少。
(1)RC CH
(2100 2140 cm-1 )
RC CR' (2190 2260 cm-1 ) R=R' 时,无红外活性 (2)RC N (2100 2140 cm-1 ) 非共轭 2240 2260 cm-1 共轭 2220 2230 cm-1 仅含C、H、N时:峰较强、尖锐; 有O原子存在时,O越靠近C N,峰越弱。
醛:
特征1:醛羰基ν(C=O):~1725 cm-1。 特征2:2820 cm-1 和 2720 cm-1 弱的双峰。
酮:
酮羰基ν(C=O):1710~1715 cm-1。
脂类:C=O吸收峰:1725 ~ 1750 cm-1 ,强。
红外光谱信息区
常见的化学基团在4000 670 cm-1范围内有特征频率, 为便于记忆,常依据基团的振动形式,分为四个区: (1)4000 2500 cm-1 X—H伸缩振动区(X=O,N,C,S) (2)2500 2000 cm-1 三键,累积双键伸缩振动区 (3)2000 1500 cm-1 双键伸缩振动区
上述用经典力学的方法来处理分子的振动是为了得 到宏观的图像,便于理解并有一定性概念。但一个
真实的微观粒子需要用量子理论方法加以理解,如
能量量子化。
实际上,在一个分子中,基团与基团间,基团中的 化学键之间都相互有影响,因此基本振动频率除了
决定于化学键两端的原子质量、化学键的力常数外, 有关。
还与内部因素(结构因素)及外部因素(化学环境)
倍频、合频和差频统称为泛频。
二、红外光谱的特征性
红外光谱的最大特点是具有特征性。
大多有机物的红外光谱基本上是C、H、O、N等元素
所形成化学键的振动贡献的。
基团特征频率
与一定结构单元相联系的、固定在一定范围内出现的 化学键振动频率——基团频率(特征峰)。
例: 2800 3000 cm-1 —CH3 特征峰;
在该区域出现的峰较少。
(1)RC CH
(2100 2140 cm-1 )
RC CR' (2190 2260 cm-1 ) R=R' 时,无红外活性 (2)RC N (2100 2140 cm-1 ) 非共轭 2240 2260 cm-1 共轭 2220 2230 cm-1 仅含C、H、N时:峰较强、尖锐; 有O原子存在时,O越靠近C N,峰越弱。
红外吸收光谱分析法

红外吸收光谱分析法
一、红外吸收光谱分析法概述
红外吸收光谱分析法是一种利用物质的红外光吸收能力来探测它们的物质组成的技术。
它特别适用于有机化合物和无机化合物的光谱分析。
通过分析红外吸收光谱,可以检测物质中的有机键、C-H键、C-O键或N-H 键的存在和位置,从而鉴定出物质的化学结构和性质。
红外光吸收法的原理是,物质中的分子、晶体或其他结构会在不同的波长处吸收光,产生光谱,这些吸收光谱是物质的独特特征,反映出物质的特性。
根据这种特性,分析用不同波长的光照射样品,并从所得到的光谱中提取出电子激发、分子振动等信息,从而得到物质的结构和性质。
二、红外吸收光谱分析法基本原理
红外吸收光谱分析法的原理是,当物质受到红外幅射的照射时,它的分子会产生振动和旋转,这些振动和旋转的能量会转化为更高能量的电子跃迁。
这些电子跃迁会引起物质材料吸收一些具有特定波长的红外光,从而产生在不同波长的吸收光谱,通过分析这些吸收光谱,就可以求取物质分子的结构和性质。
第十章 红外光谱分析

例如: 例如:H2O
△µ≠0 偶极矩变化 吸收红外辐射,产生红外吸收光谱, 红外活性的分子。 吸收红外辐射,产生红外吸收光谱,是红外活性的分子。 红外辐射
第三节
分子振动方程式
一、双原子分子的振动——简谐振动 双原子分子的振动——简谐振动 ——
根据原子质量和相对原子质量之间的关系,上式可写成: 根据原子质量和相对原子质量之间的关系,上式可写成: 原子质量 之间的关系 NA ⌠= 2πC
1 2
k Μ
NA:阿伏加得罗常数, NA=6.022 ×1023 阿伏加得罗常数, M: 两个原子的折合相对原子质量; 两个原子的折合相对原子质量; M= M1·M2 M1+ M2 k Μ
⌠= 1303
二、影响基本振动频率因素
● ●
⌠= 1303
相对原子质量 化学键的力常数。 化学键的力常数
k Μ
⌠= 2062 cm-1 ⌠= 1683 cm-1 ⌠= 1190 cm-1
对于具有相似质量的原子基团, ⌠Κ 对于具有相似质量的原子基团,
键的力常数相近, 例: C-C、C-O、C-N键的力常数相近, 相对折合质量不同, 相对折合质量不同,MC-C < MC-N < MC-O C-C C-O C-N K K K M C-C M C-N M C-O σ= 1430 cm-1 σ= 1330 cm-1 σ= 1280 cm-1
原子的折合质量为: 解:C 原子和 H 原子的折合质量为: M= M1·M2 M 1+ M 2 5
0.923
=
12×1 × 12+ 1 =3030cm-1
= 0.923
⌠= 1303
例:
C C C
≡ = −
红外吸收光谱分析

指纹区(1350 650 cm-1 ) ,较复杂。 C-H,N-H的变形振动; C-O,C-X的伸缩振动; C-C骨架振动等。精细结构的区分。 顺、反结构区分;
基团吸收带数据
O-H
3630
基团吸收
活 泼 氢
N-H P-H
3350 2400
伸 缩
带数据
能级跃迁类型
近红外 0.76~2.5
1358~400 0
OH、NH、CH及SH倍频 吸收区
中红外
2.5~25
4000~400
分子振动-转动 (基本振动区)
远红外 25~1000 400~10 纯转动
第二节 红外吸收基本理 论
一、红外光谱产生的条件
(1) 辐射能应具有能满足物质产生振动跃迁所 需的能量;
3、炔烃
炔烃的特征吸收主要是C≡C伸缩振 动(2250~2100cm-1) 和炔烃 C-H伸缩振动(3300cm-1附近)
4、芳烃
芳烃的特征吸收分散在3个小频区:
(1600~1450cm-1)为C=C骨架振动, (2000~1667cm-1) 区域出现C-H 面外弯曲振动的泛频峰,虽然强度很弱, 但吸收峰形状和数目与芳环的取代类型 有关。利用该区的吸收峰与900~ 650cm-1区域苯环的C-H面外弯曲振动, 可确定苯环的取代类型。
(3)1900 1200 cm-1 双键伸缩振动区
(4)1200 670 cm-1 X—Y伸缩, X—H变形振动区
1. X—H伸缩振动区(4000 2500 cm-1 )
(1)—O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强
吸收;当浓度较大时,发生缔合作用,峰形较宽。
基团吸收带数据
O-H
3630
基团吸收
活 泼 氢
N-H P-H
3350 2400
伸 缩
带数据
能级跃迁类型
近红外 0.76~2.5
1358~400 0
OH、NH、CH及SH倍频 吸收区
中红外
2.5~25
4000~400
分子振动-转动 (基本振动区)
远红外 25~1000 400~10 纯转动
第二节 红外吸收基本理 论
一、红外光谱产生的条件
(1) 辐射能应具有能满足物质产生振动跃迁所 需的能量;
3、炔烃
炔烃的特征吸收主要是C≡C伸缩振 动(2250~2100cm-1) 和炔烃 C-H伸缩振动(3300cm-1附近)
4、芳烃
芳烃的特征吸收分散在3个小频区:
(1600~1450cm-1)为C=C骨架振动, (2000~1667cm-1) 区域出现C-H 面外弯曲振动的泛频峰,虽然强度很弱, 但吸收峰形状和数目与芳环的取代类型 有关。利用该区的吸收峰与900~ 650cm-1区域苯环的C-H面外弯曲振动, 可确定苯环的取代类型。
(3)1900 1200 cm-1 双键伸缩振动区
(4)1200 670 cm-1 X—Y伸缩, X—H变形振动区
1. X—H伸缩振动区(4000 2500 cm-1 )
(1)—O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强
吸收;当浓度较大时,发生缔合作用,峰形较宽。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
归属
CH 3 | CH3 — C — | CH 3
吸收峰 3360 1195
振动形式
OH
COHale Waihona Puke 归属 —OH可能结构为
CH 3 | CH 3 — C — OH |
CH 3
例2 C10H10O4
U 2 210 10 6 (可能有苯环) 2
峰位 1727cm-1 1288 1126
第四节 红外吸收光谱分 析
一、试样的制备(样品纯度>98%)
1.固体试样:KBr压片法
2.液体试样:夹片法(液体试样滴在一片KBr
窗片上,用另一片KBr窗片夹住后测定)
知识点12:红外光谱解析方法
二、IR光谱解析方法
1.计算不饱和度
U 2 2n4 n3 n1 2
意义:
U 0 无双键或环状结构 U 1 可能含一个双键或一个环 U 2 含两个双键,或一个双键 环,或一个叁键 U 4 苯环 U 5 苯环 一个双键
• 3.某未知物的沸点202℃,分子式为 C8H8O,试判断其结构。
4.某化合物的分子式为C8H10O2, 试推断其结构式。
• 5.已知未知物的分子式为C7H9N, 推出其结构。
6.已知某化合物的分子式为 C9H10O2,试推断结构式。
O
CH2OCCH3
CH3 NH2
O C CH3
答案!
OH OH CH CH2
2.确定官能团或结构碎片
3.推出可能的结构 4.核对分子式和不饱和度 5.和Saltler标准光谱对照
例1 C4H10O
U 2 8 10 (0饱和脂肪族化合物) 2
吸收峰 2970cm-1 2874 1476 1395 1363
振动形式
CH
CH CH 3 CH 3 CH 3
振动形式
CO
CO CO
归属
—O—C O |
峰位 1596 1489 1581 3070 748
2954 2846 1434
振动形式
CC CC CC
CH CH
CH
CH
CH 3
归属
可能结构为
O || C — OCH 3 O || C — OCH 3