第三章 非晶态固体

合集下载

3-非晶态合金

3-非晶态合金

(稳定相)
(亚稳相)
(亚稳相)
E
A


D
(稳定相)
E:结晶过程;C:非晶形成过程 ;D:非晶晶化过程
与结晶相比,非晶态形成过程有以下特点:
(1)从熔体中形成非晶态的过程是:ABC 即:过热熔体 过冷熔体 非晶固相
(2)非晶形成是亚稳相之间相互转变,即: 稳定过热液相 亚稳过冷液相 亚稳固相
晶体
非晶
3、电性能 与晶态合金相比,非晶态合金的电阻率显著增高
(2~3倍),例如非晶态的Cu0.6Zr0.4合金的电阻率可 达 350cm , 而 晶 态 高 电 阻 合 金 的 电 阻 率 仅 为 100cm左右。这是由于非晶态合金原子的无序排 列而导致电子的附加散射所致。
非晶态合金的电阻温度系数( 1 d )比晶态合金的
• 非晶态结构:原子排列没有周期性,即原子的排 列从总体上是无规则的(长程无序),但是,近邻 原子的排列是有一定规律的(短程有序)
晶态和非晶态材料的X-射线衍射谱
晶态和非晶态材料的电子衍射图
晶体衍射花样
非晶合金衍射花样
2.亚稳定性
非晶态是一种亚稳态,其结构具有相对的稳定性,这种稳定 性直接关系非晶态材料的应用及使用寿命。
非晶合金发展及研究现状
• 1934年,德国人克雷默采用蒸发沉积法制备出非晶态合金。 • 1950年,布伦纳用电沉积法制备出了Ni-P非晶态合金。 • 1960年,DUWEZ等人从熔融金属急冷制成了金属玻璃并开
始进行研究。
• 1969年,美国人庞德和马丁研究了生产非晶态合金带材的 技术,为规模生产奠定了技术基础。 1976年,美国联信公司生产出10mm宽的非晶态合金 带材,到1994年已经达到年产4万吨的能力。目前美国能 生产出最大宽度达217mm的非晶带材。 2000年9月20日,在钢铁研究总院的非晶带材生产线 上成功地喷出了宽220mm、表面质量良好的非晶带材,它 标志着我国在该材料的研制和生产上达到国际先进水平。

非晶态

非晶态

谢谢观看
非晶态
固态物质原子的排列所具有的近程有序、长程无序的状态
目录
01 的形成
03 结构的表征
02 转变 04 合金
基本信息
非晶态,是指固态物质原子的排列所具有的近程有序、长程无序的状态。对晶体,原子在空间按一定规律作 周期性排列,是高度有序的结构,这种有序结构原则上不受空间区域的限制,故晶体的有序结构称为长程有序。 具有长程有序特点的晶体,宏观上常表现为物理性质(力学的、热学的、电磁学的和光学的)随方向而变,称为 各向异性,熔解时有一定的熔解温度并吸收熔解潜热。
下面描绘了气体、液体、非晶体和晶体典型的径向分布函数RDF图。气体分子完全无序,因此当R>R0时,其 g(R)恒等于1;液体与非晶体的RDF类似,它们都是长程无序而短程有序的,但液体的RDF的峰值明显降低,峰 宽展宽,曲线更加平滑,缺乏非晶体的某些细节。而晶体的RDF为很窄的峰,表明晶体中原子的有序排列。
图1不同状态时材料性能随温度的变化非晶态可由气相、液相快冷形成,也可在固态直接形成(如离子注入、 高能离子轰击、高能球磨、电化学或化学沉积、固相反应等)。
普通玻璃的形成方法,是将原料经过高温熔融形成熔体,然后将熔体进行过冷(急冷)固化变为玻璃体。一 般的冷却速度无法将金属和合金熔体转化为非晶态,必须采用特殊的制备方法,冷却速度要达到极快使它来不及 结晶而形成非晶态。纯金属形成非晶态的冷却速率为1010K/s以上,合金形成非晶态的冷却速率为106K/s以上。 20世纪70年代以后,人们开始采用熔体旋淬急冷方法(Melt Spinning)制备非晶条带,即将高温熔体喷射到高 速旋转的冷却辊上,熔体以每秒百万摄氏度的速度迅速冷却,以致金属中的原子来不及重新排列,杂乱无章的结 构被冻结,这样就形成了非晶态合金。

非晶态固体相分离和结晶的关系

非晶态固体相分离和结晶的关系

第25卷第6期V ol 125 N o 16长春师范学院学报(自然科学版)Journal of Changchun N ormal Un iv ersity (N atural Science )2006年12月Dec 2006非晶态固体相分离和结晶的关系齐吉泰,于长兴,印志强,王春红(绥化学院物理系,黑龙江绥化 152061)[摘 要]离子场强和混溶温度是影响非晶态固体相分离和结晶的主要因素,相分离为玻璃的结晶成核提供一种驱动力;相分离产生的界面为晶相的成核提供了有效的成核位;相分离导致两液相中的一相具有比母相明显大的原子迁移率来促使系统均匀成核,相分离和结晶之间也存在着一些不确定的因素。

[关键词]非晶态;相分离;结晶;成核;混溶[中图分类号]O 75 [文献标识码]A [文章编号]1008-178X (2006)06-0035203[收稿日期]2006-09-03[基金项目]黑龙江省自然科学基金项目(项目编号)[作者简介]齐吉泰(55),男,黑龙江绥棱人,绥化学院物理系教授,从事非晶态半导体研究。

非晶态固体相分离和结晶之间的关系曾吸引了很多人的关注,虽然进行了大量的研究工作,但对二者之间的关系还不是很清楚,人们发现在某些玻璃系统中,相分离总是发生在结晶的成核之前,因而认为相分离促进了玻璃的结晶,并且提出很多设想来解释它们之间的关系[1]。

但在有些实验中又往往得出相矛盾的结果,因而对这样复杂的关系不可能单纯用一种简单的模型来解释。

1 对非晶态固体相分离和结晶产生影响的一些因素在讨论玻璃相分离对随后结晶的影响之前,首先讨论对二者产生共同影响的某些因素,这样可能对进一步了解这个问题会有所帮助。

M 1T ashirro [2]在研究不同氧化物对Li 2O 3SiO 2玻璃混溶温度及析晶温度的影响时,发现这种玻璃的相分离及结晶倾向都是随着第三阳离子的场强增加而增大。

例如从图1中可以看出,除Mg 2+和T i 4+外,其余碱金属、碱土金属和其他高价阳离子都是随着离子场强的增加而减低其析晶温度(玻璃转变为晶体的最大速率的温度),析晶温度低就意味着析晶倾向大。

2-7非晶和准晶、纳米晶态固体结构

2-7非晶和准晶、纳米晶态固体结构

同色顶点相接
格点旳 排列无 周期性, 但到处 具有5次 对称性
准晶构造类型
a.一维准晶 在一种取向是准周期性而其他两个取向
是周期性,存在于二十面体或十面体与结晶 相之间发生相互转变旳中间状态。
b.二维准晶 由准周期有序旳原子层周期地堆垛而构成,
是将准晶态和晶态旳构造特征结合在一起。 存在8、10 和 12 次对称
1.准晶态旳构造
准晶是准周期晶体旳简称,它是一种无平 移周期性但有位置序旳晶体。
有无方法能够铺砌成具有五重对称性旳 无空隙地面?
面积之比为 1.618:1
具有5次 对称轴
1974年penrose提出利用两种夹角分别为72、 72、144、72 和 36、72、36、216度旳四边 形能够将平面铺满.相当于将一种菱形切开成上 述两个四边形。这种图形具有5次对称性。
旳固体材料。
(1)各向同性;
(2)介稳性 有析晶(晶化)旳倾向; (3)熔融态向玻璃态转化旳过程是可逆旳与 渐变旳;
(4)无固定旳熔点;
(5)熔融态向玻璃态转化时物理、化学性质 随温度变化旳连续性。
2、玻璃旳形成条件
A:玻璃形成旳动力学条件
硅酸盐、硼酸盐、磷酸盐等无机熔体或一定成 份旳合金只有冷凝速度不小于一定旳临界速度 才干转变为玻璃。
金属键物质,在熔融时失去联络较弱旳电子, 以正离子状态存在。金属键无方向性并在金属晶 格内出现最高配位数(12),原子相遇构成晶格 旳几率最大,最不易形成玻璃。
纯粹共价键化合物多为分子构造。在分子内 部,由共价键连接,分子间是无方向性旳范德华 力。一般在冷却过程中质点易进入点阵而构成份 子晶格。
所以以上三种键型都不易形成玻璃。
c.二十面体准晶

非晶态固体物理学

非晶态固体物理学

非晶态固体物理学非晶态固体物理学(Amorphous Solid Physics),是材料科学中一个很重要的分支研究领域。

其研究范围涉及从非晶态材料的制备、表征、低温物理性质,到非晶态固体的应用等。

今天,我将围绕着这个话题,向大家介绍非晶态固体物理学的相关知识。

第一步:概念介绍所谓非晶态固体,指的是在结晶和液态之间的一种状态。

它的特点是具有高度无序的原子排列结构,因而也被称为无序固体。

非晶态固体没有明确的晶格结构,大多数都是在高温状态下制备而成。

而非晶态固体物理学则是研究这种材料的物理性质和相关应用的学科。

第二步:制备方法目前,在制备非晶态材料方面,主要使用的是快速冷却技术。

其核心思想是将高温合金明显过冷却到玻璃态,如此可以使材料的制备工艺不受约束,并将许多性质调制成很宽的范畴。

快速冷却即是通过超过数十万度每秒的速率将材料从液态快速冷却到固态。

这种制备方式的优点是可以制备出具有复杂原子结构的非晶材料,并且可以得到很高的玻璃形态。

第三步:性质研究非晶态固体物理学的核心之一是探究非晶态材料与其它材料之间的相互作用。

非晶态固体的物理性质主要表现在两个方面:第一,非晶态固体的各向异性性质较差,这使得它在接触中其他物质时具有良好的适应性,减少了晶体材料表面上的晶行导致的断口;第二,非晶态固体的强度和塑性特性均较高,使其在工程材料中具有广泛的应用前景。

第四步:应用领域除了了解非晶态固体的基础物理特性之外,它还有许多重要的应用领域。

其中之一是聚类基础的功能性玻璃,可以应用在光电子设备、传感器、存储器,以及生物医药等领域。

此外,非晶态固体还被广泛应用于意大利NASA天主教大学等地的研究中,以探究类似恒星形成、物质相互作用及类似气溶胶的物理过程。

总之,非晶态固体物理学是一个广泛而有趣的领域,涉及到多个方面的理论和实践知识。

十分值得科研工作者和材料科学家去探究和挖掘。

熔体与非晶态固体

熔体与非晶态固体

02
非晶态固体的基本概念
非晶态固体的定义
定义
非晶态固体是指原子或分子的排 列在空间上呈无序或近无序状态 ,没有长程有序性的固体。
对比
与晶态固体相比,非晶态固体在 原子或分子排列上缺乏长程有序 性,呈现出更加随机和动态的结 构。
非晶态固体的特性
结构不稳定性
由于原子或分子的排列呈无序或 近无序状态,非晶态固体在结构 上相对不稳定,容易受到外界因 素的影响而发生结构变化。
02
快冷法的关键在于控制冷却速度,以避免在冷却过程中发生结
晶。
应用范围
03
适用于制备金属、合金、玻璃等非晶态材料。
气相沉积法
利用物理或化学方法将气体转化为固体
通过物理或化学反应,将气体转化为固体,并在基底上沉积形成非晶态薄膜。
影响因素
气相沉积法的关键在于控制气体浓度、反应温度和基底温度等参数。
应用范围
学反应或分解。
熔体的应用
铸造
熔体是铸造行业的基础,用于制造各 种金属制品。
焊接
熔体在焊接过程中起到连接材料的作 用,实现材料的永久性连接。
玻璃制造
在玻璃制造过程中,熔体是重要的原 料,通过熔化玻璃砂和其他配料来制 造玻璃。
塑料加工
在塑料加工中,高分子化合物在加热 时会形成熔体,通过模具成型为各种 塑料制品。
熔体与非晶态固体
• 熔体的基本概念 • 非晶态固体的基本概念 • 熔体与非晶态固体的关系 • 非晶态固体的制备方法 • 非晶态固体的发展前景
01
熔体的基本概念
熔体的定义
熔体定义
熔体是一种物质状态,其中分子或原子在热能作用下 具有流动性,并表现出显著的黏性和热容。
熔体的形成

材料物理化学习题

材料物理化学习题

第三章熔体与非晶态固体知识点:1.黏度与组成的关系答:组成是通过改变熔体结构而影响黏度的。

①一价金属氧化物碱金属氧化物R2O引入到硅酸盐熔体中,使熔体黏度降低。

在简单碱金属硅酸盐系统(R2O—SiO2)中,碱金属离子R+对黏度的影响与其本身的含量有关。

当R2O含量较低时(O/Si比值较低),加入的正离子的半径越小,降低黏度的作用就越大,起次序是:L i+>Na+>K+;当熔体中R2O含量较高(O/Si比值较高)时,R2O对黏度影响的次序是:L i+>Na+>K+。

②二价金属氧化物二价碱土金属氧化物对黏度的影响比较复杂,综合各种效应,R2+降低黏度的次序是:Pb2+>Ba2+>Sr2+>Cd2+>Ca2+>Zn2+>Mg2+.③高价金属氧化物一般地,在熔体中引入SiO2、Al2O3、B2O3、ZrO2等高价氧化物时,会导致黏度升高。

2.硼反常现象:当数量不多的碱金属氧化物同B2O3一起熔融时,碱金属所提供的氧不像熔融SiO2玻璃中作为非桥氧出现在结构中,而是使硼氧三角体转变为由桥氧组成的硼氧四面体,致使B2O3玻璃从原来两度空间的层状结构部分转变为三度空间的架状结构,从而加强了网络结构,并使玻璃的各种物理性能变好。

这与相同条件下的硅酸盐玻璃相比,其性能随碱金属或碱土金属加入量的变化规律相反,所以称之为硼反常现象。

3.非晶态固体——玻璃的通性①各项同性:无内应力存在的均质玻璃在各个方向的物理性质,如折射率、硬度、导电性、弹性模量、热膨胀系数、导热系数等都是相同的;②热力学介稳性:玻璃具有析晶不稳定性与析晶困难相对稳定性的统一;③熔融态向玻璃态转化的可逆性与渐变性:熔体向玻璃体转化的过程是在较宽的温度范围内完成得,随着温度的下降,熔体的黏度越来越大,且变化是连续的,最后形成固相的玻璃,其间没有新相出现,因此具有渐变性;由玻璃加热变为熔体的过程也是渐变的,因此具有可逆性。

④熔融态向玻璃态转化时物理、化学性质随温度变化的连续性⑤物理、化学性质随成分变化的连续性。

非晶态固体

非晶态固体

Na2O . 2SiO2
Na2O . SiO2 2Na2O . SiO2
5/2
3/1 4/1
层状
链状 岛状
280
1.6 <1
Hale Waihona Puke 在1400℃时钠硅系统玻璃粘度表
(2) R+对硅酸盐熔体(SiO2)粘度的影响: 随加入量增加而显著下降。
(3) Al2O3补网作用
(4) R+对R2O-SiO2熔体黏度的影响 R2O含量<25mol% , O/Si比较低时,对粘度起 主要作用的是四面体间Si-O的键力;再引入 R2O,其中Li+半径小,削弱Si-O键的作用大,
3、为什么要研究玻璃?(结构和 性能) • 熔体是玻璃制造的中间产物
• 瓷釉在高温状态下是熔体状态
原 因
• 耐火材料的耐火度与熔体含量 有直接关系 • 瓷胎中40%—60%是玻璃状 态(高温下是熔融液态) • 复合材料增强玻璃纤维
§3-2 玻璃的结构
(一)X—RAD结果 (二)结构描述 基本内容
玻璃和液体的近程有序可以从径向分布函数的特征来 证实。
径向分布函数
原子的径向分布函数的定义是这样的:取固体中任意
一个原子中心作原点,计算在离开这个原点附距离
为r到 r+dr 的球壳内原子的数目,如为c1。把固体
中每个原子作为原点,都可以得到这样一个 ci 值。 n 1 对试样中所有原子取平均值即得到 n Ci。定义
Li O Na O K O
2 2 2
(5) R2+对粘度作用:
R2+对O/Si影响与R+相同,同时应考虑离子极化 对粘度的影响。
100 80
Si
(P)
60 40
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 非 晶 态 固 体
3-1 试述石英晶体、石英熔体、Na 2O ·2 SiO 2熔体结构和性质上的区别。

如何用实验方法来区分它们?
3-2 试证明下面两式相等;
11111111K K Mo n
Mo Mo n αααα⎥⎥⎥⎥⎥

⎤⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+-= ⎪⎪⎪⎪⎭

⎝⎛
-+⎪
⎪⎪⎪
⎭⎫

⎛-+=-Mo Mo n Mo Mo n K K N αααα11
1)1(11111
11 3-3 熔体粘度在727℃时是108泊,在1156℃时是10`泊,在什么温度下它是104泊?(用解之)(/lg K T B A +=η) 3-4 试用0
l T T F
E g -+=η方程式,绘出下列两种熔体在1350~500℃间的粘性曲线(
1~lg η)。

两种熔体常数如下:
3-5 一种熔体在1300℃的粘度是3100泊,在800℃是108泊,在1050℃时其粘度为多少?在此粘度下急冷,是否形成玻璃?
3-6 从以下两种釉式中,,你能否判断两者的熔融温度、粘度、表面张力上的差别?说明理由。

(1)3223
2225.01.23.03.03.02.02.0O B SiO O Al PbO CaO O Na O K ⎪⎪
⎭⎪
⎪⎬⎫
(2)23220.101.16.02.02.0SiO O Al CaO MgO O K ⎪⎭

⎬⎫
3-7 SiO 2熔体的粘度在1000℃时为108泊,在1400℃时为108泊。

SiO 2玻璃粘滞流动的活化能是多少?上述数据是在恒压下取得,如果在恒容下得到,你预计活化能会不同吗?为什么?
3-8 名词解释(并比较其异同)
(1)玻璃体和熔体
(2)Tg和T f
(3)玻璃分相和玻璃析晶
(4)亚稳分解与不稳分解
(5)硅酸盐玻璃和硼酸盐玻璃
3-9 试用实验方法鉴别晶体SiO2, SiO2玻璃、硅胶和熔融二氧化硅。

并从结构角度来解释这些同质异构体。

3-10 结构上比较硅酸盐晶体与硅酸盐玻璃的区别。

3-11 一种玻璃组成为80wt%SiO2和20wt%Na2O数,试计算非桥氧百分数?
3-12 玻璃的组成是13wt%Na2O, 13wt%CaO 和74wt%SiO2,若用纯碱、石灰石和石英砂作原料,用1000公斤石英砂熔制该玻璃,问其它两种原料各需多少公斤?
3-13 玻璃的组成是13wt% Na2O、13wt%CaO和74wt%SiO2,计算非桥氧分数。

3-14 淬火玻璃与退火玻璃在结构与性能上有何差异?
试用玻璃结构参数说明两种玻璃高温下粘度的大小?
3-16 已知石英玻璃的密度为2.3g/cm3,假定玻璃中原子尺寸与晶体SiO2相同。

试计算玻璃的原子堆积系数(APF)是多少?
3-17 有一种平板玻璃组成为14 Na2O-13CaO-72SiO2,其密度为2.5 g/cm3,计算该玻璃的原子堆积系数(AFP)为多少?。

相关文档
最新文档