规律探索题-2013中考汇编-适合八年级(上册下册均可)
中考数学规律探索题中考找规律题目有答案

中考规律探索1以下为全部整理类型;规律探索共两套试题;供参考学习使用一.选择题1.观察下列等式:31=3;32=9;33=27;34=81;35=243;36=729;37=2187… 解答下列问题:3+32+33+34…+32013的末位数字是 A .0 B .1 C .3 D .72. 把所有正奇数从小到大排列;并按如下规律分组:1;3;5;7;9;11;13;15;17;19;21;23;25;27;29;31;…;现用等式A M =i;j 表示正奇数M 是第i 组第j 个数从左往右数;如A 7=2;3;则A 2013= A .45;77 B .45;39 C .32;46 D .32;233.下表中的数字是按一定规律填写的;表中a 的值应是 .4.下列图形都是由同样大小的矩形按一定的规律组成;其中第1个图形的面积为2cm 2;第2个图形的面积为8 cm 2;第3个图形的面积为18 cm 2;……;第10个图形的面积为 A .196 cm 2B .200 cm 2C .216 cm 2D . 256 cm 25.如图;动点P 从0;3出发;沿所示的方向运动;每当碰到矩形的边时反弹;反弹时反射角等于入射角;当点P 第2013次碰到矩形的边时;点P 的坐标为 A 、1;4 B 、5;0 C 、6;4 D 、8;36.如图;下列各图形中的三个数之间均具有相同的规律.根据此规律;图形中M 与m 、n 的关系是A . M=mnB . M=nm+1C .M=mn+1D .M=mn+17.我们知道;一元二次方程12-=x 没有实数根;即不存在一个实数的平方等于-1;若我们规定一个新数“”;使其满足12-=i 即方程12-=x 有一个根为;并且进一步规定: 一切实数可以与新数进行四则运算;且原有的运算律和运算法则仍然成立;于是有,1i i =12-=i ;,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n;我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么;20132012432i i i i i i +⋅⋅⋅++++的值为A .0B .1C .-1D .8.下列图形都是由同样大小的棋子按一定的规律组成;其中第①个图形有1颗棋子;第②个图形一共有6颗棋子;第③个图形一共有16颗棋子;…;则第⑥个图形中棋子的颗数为A .51B .70C .76D .81图① 图②图③···第8题图二.填空题1.观察下列图形中点的个数;若按其规律再画下去;可以得到第n个图形中所有的个数为用含n的代数式表示.2.如图;在直角坐标系中;已知点A﹣3;0、B0;4;对△OAB连续作旋转变换;依次得到△1、△2、△3、△4…;则△2013的直角顶点的坐标为.3.如图;正方形ABCD的边长为1;顺次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1;由顺次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…;以此类推;则第六个正方形A6B6C6D6周长是.4.直线上有2013个点;我们进行如下操作:在每相邻两点间插入1个点;经过3次这样的操作后;直线上共有个点.5.如图;古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1;5;12;22…为五边形数;则第6个五边形数是.6 .如图;是用火柴棒拼成的图形;则第n个图形需根火柴棒.7.观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…;则1+3+5+…+2013的值是.8.如图12;一段抛物线:y=-xx-30≤x≤3;记为C1;它与x轴交于点O;A1;将C1绕点A1旋转180°得C2;交x 轴于点A2;将C2绕点A2旋转180°得C3;交x 轴于点A3;……如此进行下去;直至得C13.若P37;m在第13段抛物线C13上;则m =_________.9.直线上有2013个点;我们进行如下操作:在每相邻两点间插入1个点;经过3次这样的操作后;直线上共有个点. 10.观察下列各式的计算过程:5×5=0×1×100+25;15×15=1×2×100+25;25×25=2×3×100+25;35×35=3×4×100+25;…………请猜测;第n个算式n为正整数应表示为____________________________.11.将连续的正整数按以下规律排列;则位于第7行、第7列的数x是__ __.12、如下图;每一幅图中均含有若干个正方形;第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去;则第6幅图中含有个正方形;••••••①②③13.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆; 第2个图形有10个小圆; 第3个图形有16个小圆; 第4个图形有24个小圆; ……;依次规律;第6个图形有 个小圆. 14.已知一组数2;4;8;16;32;…;按此规律;则第n 个数是 . 15、我们知道;经过原点的抛物线的解析式可以是y =ax 2+bxa ≠0 1对于这样的抛物线:当顶点坐标为1;1时;a =__________;当顶点坐标为m ;m ;m ≠0时;a 与m 之间的关系式是__________;2继续探究;如果b ≠0;且过原点的抛物线顶点在直线y =kxk ≠0上;请用含k 的代数式表示b ;3现有一组过原点的抛物线;顶点A 1;A 2;…;A n 在直线y =x 上;横坐标依次为1;2;…;n 为正整数;且n ≤12;分别过每个顶点作x 轴的垂线;垂足记为B 1;B 2;…;B n ;以线段A n B n 为边向右作正方形A n B n C n D n ;若这组抛物线中有一条经过D n ;求所有满足条件的正方形边长.16.如图;所有正三角形的一边平行于x 轴;一顶点在y 轴上;从内到外;它们的边长依次为2;4;6;8;…;顶点依次用1A 、2A 、3A 、4A 、…表示;其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位;则顶点3A 的坐标是 ;22A 的坐标是 .第16题图17.如图;已知直线l :y=33x ;过点A 0;1作y 轴的垂线交直线l 于点B ;过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1;过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去;则点A 2013的坐标为 .18、如图;在平面直角坐标系中;一动点从原点O 出发;按向上;向右;向下;向右的方向不断地移动;每移动一个单位;得到点A 1 0;1;A 21;1;A 31;0;A 42;0;…那么点A 4n +1n 为自然数的坐标为 用n 表示19.当白色小正方形个数n 等于1;2;3…时;由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.用n 表示;n 是正整数20. 2013 衢州4分如图;在菱形ABCD 中;边长为10;∠A=60°.顺次连结菱形ABCD 各边中点;可得四边形A 1B 1C 1D 1;顺次连结四边形A 1B 1C 1D 1各边中点;可得四边形A 2B 2C 2D 2;顺次连结四边形A 2B 2C 2D 2各边中点;可得四边形A 3B 3C 3D 3;按此规律继续下去….则四边形A 2B 2C 2D 2的周长是 ;四边形A 2013B 2013C 2013D 2013的周长是 .21.一组按规律排列的式子:a2;43a ;65a ;87a ;….则第n 个式子是________22.观察下面的单项式:a;﹣2a 2;4a 3;﹣8a 4;…根据你发现的规律;第8个式子是 . 23.如图;已知直线l :y=x;过点M2;0作x 轴的垂线交直线l 于点N;过点N 作直线l 的垂线交x 轴于点M 1;过点M 1作x轴的垂线交直线l 于N 1;过点N 1作直线l 的垂线交x 轴于点M 2;…;按此作法继续下去;则点M 10的坐标为 .24.为庆祝“六一”儿童节;某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律;摆第n图;需用火柴棒的根数为.答案:选择题:1、C 2、C 3、21 4、B 5、D 6、D 7、D 8、 C填空题:1、n+12 2、8052;0 3、0.5 4、16097 5、51 6、2n+1 7、1014049 8、 2 9、16097 10、10n-1+52=100nn-1+25 11、85 12、91 13、46 14、2n 15、1-1;a =-1m或am +1=0;2解:∵a ≠0 ∴y =ax 2+bx =ax +2b a2-24b a ∴顶点坐标为-2ba;-24b a∵顶点在直线y =kx 上∴k -2ba=-24b a∵b ≠0 ∴b =2k3解:∵顶点A n 在直线y =x 上 ∴可设A n 的坐标为n ;n ;点D n 所在的抛物线顶点坐标为t ;t由12可得;点D n 所在的抛物线解析式为y =-1tx 2+2x∵四边形A n B n C n D n 是正方形 ∴点D n 的坐标为2n ;n∴-1t2n 2+2×2n =n∴4n =3t∵t 、n 是正整数;且t ≤12;n ≤12∴n =3;6或9∴满足条件的正方形边长为3;6或916、0;31-;-8;-8. 17、()()201340260,40,2或注:以上两答案任选一个都对18、2n;1 19、n 2+4n 20、20;21、221na n n 为正整数22、-128a 8 23、884736;0 24、6n+2规律探索21、 我们平常用的数是十进制数;如2639=2×103+6×102+3×101+9×100;表示十进制的数要用10个数码又叫数字:0;1;2;3;4;5;6;7;8;9..在电子数字计算机中用的是二进制;只要两个数码:0和1..如二进制中101=1×22+0×21+1×20等于十进制的数5;10111=1×24+0×23+1×22+1×21+1×20等于十进制中的数23;那么二进制中的1101等于十进制的数 ..2、 从1开始;将连续的奇数相加;和的情况有如下规律:1=1=12;1+3=4=22;1+3+5=9=32;1+3+5+7=16=42;1+3+5+7+9=25=52;…按此规律请你猜想从1开始;将前10个奇数即当最后一个奇数是19时;它们的和是 .. 3、小王利用计算机设计了一个计算程序;输入和输出的数据如下表:输入 (1)2345… 输出……那么;当输入数据是8时;输出的数据是A 、618B 、638C 、658D 、6784、如下左图所示;摆第一个“小屋子”要5枚棋子;摆第二个要11枚棋子;摆第三个要17枚棋子;则摆第30个“小屋子”要 枚棋子.5、如下右图是某同学在沙滩上用石子摆成的小房子;观察图形的变化规律;写出第n 个小房子用了 块石子6、如下图是用棋子摆成的“上”字:第一个“上”字 第二个“上”字 第三个“上”字如果按照以上规律继续摆下去;那么通过观察;可以发现:1第四、第五个“上”字分别需用 和 枚棋子;2第n 个“上”字需用 枚棋子..7、如图一串有黑有白;其排列有一定规律的珠子;被盒子遮住一部分;则这串珠子被盒子遮住的部分有_______颗.(1)(2)(3)第4题第7题图⑴ ⑵ ⑶1 2 348、根据下列5个图形及相应点的个数的变化规律:猜想第6个图形有 个点;第n 个图形中有 个点.. 9、下面是按照一定规律画出的一列“树型”图:经观察可以发现:图2比图1多出2个“树枝”;图3比图2多出5个“树枝”;图4比图3多出10个“树枝”;照此规律;图7比图6多出 个“树枝”..10、观察下面的点阵图和相应的等式;探究其中的规律:1在④和⑤后面的横线上分别写出相应的等式;2通过猜想写出与第n 个点阵相对应的等式_____________________..11、用边长为1cm 的小正方形搭成如下的塔状图形;则第n 次所搭图形的周长是_______________cm 用含n 的代数式表示..12、如图;都是由边长为1例如第1个图形的表面积为6个平方单位;第2个图形的表面积为18个平方单位;第3个图形的表面积是36..个图形的表面积 个平方单位13、图1是一个水平摆放的小正方体木块;图2、3是由这样的小正方体木块叠放而成;按照这样的规律继续叠放下去;至第七个叠放的图形中;小正方体木块总数应是A 25B 66C 91D 12014、如图是由大小相同的小立方体木块叠入而成的几何体;图⑴中有1个立方体;图⑵中有4个立方体;图⑶中有9个立方体;……按这样的规律叠放下去;第8个图中小立方体个数是 .15、图1是棱长为a 的小正方体;图2、图3由这样的小正方体摆放而成.按照这样的方法继续摆放;由上而下分别叫第一层、第二层、…、第n 层;第n 层的小正方体的个数为s .解答下列问题:1按照要求填表:2写出当n =10时;s= .16、如图用火柴摆去系列图案;按这种方式摆下去;当每边摆10根时即10 n 时;需要的火柴棒总数为 根;n1 2 3 4… s 1 3 6……………①1=12; ②1+3=22;③1+3+5=32; ④ ;⑤ ;第 ··· ···图1 图2 图3B 17、用火柴棒按如图的方式搭一行三角形;搭一个三角形需3支火柴棒;搭2个三角形需5支火柴棒;搭3个三角形需7支火柴棒;照这样的规律下去;搭n 个三角形需要S 支火柴棒;那么用n 的式子表示S 的式子是 _______ n 为正整数.18、;请观察下图:则第n 个图形中需用黑色瓷砖 ____ 19题图19、如图;用同样规格的黑白两种正方形瓷砖铺设正方形地面;观察图形并猜想填空:当黑色瓷砖为20块时;白色瓷砖为 块;当白色瓷砖为n 2n 为正整数块时;黑色瓷砖为 块.20、观察下列由棱长为1的小立方体摆成的图形;寻找规律:如图1中:共有1 个小立方体;其中1个看得见;0个看不见;如图2中:共有8个小立方体;其中7个看得见;1个看不见;如图3中:共有27个小立方体;其中有19个看得8个看不见;……;则第6个图中;看不见的小立方体有 个..21、下面的图形是由边长为l 的正方形按照某种规律排列而组成的. 1观察图形;填写下表:2推测第n 个图形中;正方形的个数为________;周长为______________都用含n 的代数式表示.22、观察下图;我们可以发现:图⑴中有1个正方形;图⑵中有5个正方形;图⑶中共有14个正方形;按照这种规律继续下去;图⑹中共有_______个正方形..23、某正方形园地是由边长为1的四个小正方形组成的;现要在园地上建一个花坛阴影部分使花坛面积是园地面积的一半;以下图中设计不合要求....的是 第22题图 24;25<1>、 <3>26、2次把第1次铺的完全围起来;如图2;第3次把第23;…依此方法;第n 次铺完后;用字母n 表示第n 次镶嵌所使用的木块块数为 . n 为正整数27、用黑白两种颜色的正六边形地面砖按如下所示的规律;拼成若干个图案: ⑴ 第4个图案中有白色地面砖 块; ⑵ 第n 个图案中有白色地面砖 块..28、分析如下图①;②;④中阴影部分的分布规律;按此规律在图③中画出其中的阴影部分.29、将一圆形纸片对折后再对折;得到图2;然后沿着图中的虚线剪开;得到两部分;其中一部分展开后的平面图形是30.如图1;小强拿一张正方形的纸;沿虚线对折一次得图2;再对折一次得图3;然后用剪刀沿图3中的虚线剪去一个角;再DCB打开后的形状是A B C D31、 用一条宽相等的足够长的纸条;打一个结;如图1所示;然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE;其中∠BAC= 度.32、如图;一张长方形纸沿AB 对折;以AB 中点O 为顶点将平角五等分;并沿五等分的折线折叠;再沿CD 剪开;使展开后为正五角星正五边形对角线所构成的图形.则∠OCD 等于A .108°B .144°C .126°D .129°33、如图;把一个正方形三次对折后沿虚线剪下则得到的图形是A B C D 第35题图34、将一张长方形的纸对折;如图5所示可得到一条折痕图中虚线. 继续对折;对折时每次折痕与上次的折痕保持平行;连续对折三次后;可以得到7条折痕;那么对折四次可以得到 条折痕 .如果对折n 次;可以得到 _____________条折痕 ..35、观察图形:图中是边长为1;2;3 …的正方形:当边长n =1时;正方形被分成2个大小相等的小等腰直角三角形;当边长n =2时;正方形被分成8个大小相等的小等腰直角三角形;当边长n =3时;正方形被分成18个大小相等的小等腰直角三角形;以此类推:当边长为n 时;正方形被分成大小相等的小等腰直角三角形的个数是 ..36、水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如右图;是一个正方体的平面展开图;若图中的“似”表示正方体的前面; “锦”表示右面; “程”表示下面.则“祝”、 “你”、“前”分别表示正方体的___________________.37、如图是一块长方形ABCD 的场地;长AB =102m;宽AD =51m;从A 、B 两处入口的中路宽都为1m;两小路汇合处路宽为2m;其余部分种植草坪;则草坪面积为A5050m 2 B4900m 2 C5000m 2D4998m 238、读一读;想一想;做一做:国际象棋、中国象棋和围棋号称为世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多:“皇后”不仅能控制她所在的行与列中的每一个小方格;而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘;图中的“皇后Q ”能控制图中虚线所经过的每一个小方格.① 在如图乙的小方格棋盘中有一“皇后Q ”;她所在的位置可用“2;3”来表示;请说明“皇后Q ”所在的位置“2;3”的意义;并用这种表示法分别写出棋盘中不能被该“皇后Q ”所控制的四个位置.②如图丙也是一个4×4的小方格棋盘;请在这个棋盘中放入四个“皇后Q ”;使这四个“皇后Q ”之间互不受对方控制在图丙中的某四个小方格中标出字母Q 即可._沿虚线剪开 程前 你 祝 似 锦 AS D S CSB S 图1DEBA图23 甲行乙3丙参考答案1、132、1003、C4、1795、 3n+1-3+nn+1或n+12+2n-16、118、22 24n+27、278、31;n2-n-19、8010、1+3+5+7=42;1+3+5+7+9=52;1+3+5+……+2n-1=n2 11、 4n 12、9013、C 14、64 5、110 21+2+3+……+n=nn+1/2 16、16517、s=2n+1 18、4n+6 19、16;4n+420、125 21、113、18;28、38; 25n+3;10n+8 22 、9123、B 24、B 25、A 26、8n-6 27、118 ;24n+228、29、C30、 C31、3632、A 33、C34、15 ;2n-1 35、 2n2 36、后面、上面、左面 37、C38、1 1;1;3;1;4;2;4;4;2。
2012-2013中考数学试卷分类汇编规律探索型问题(20201002000016)

中考数学试卷分类汇编规律探索型问题一选择题1. (2013浙江省,10, 3分)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A比图A i多出2个“树枝”,图A比图A多出4个“树枝”,图A比图A3多出8个“树枝”,……,照此规律,图A比图A多出“树枝”()A.28B.56C.60D. 124A| 4)A,* io«a【答案】C3. (2013广东肇庆,15, 3分)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n (n是大于0的整数)个图形需要黑色棋子的个数是▲.【答案】n(n 2)4. (2013内蒙古乌兰察布,18, 4分)将一些半径相同的小圆按如图所示的规律摆放,请仔细观第n个图形有个小圆•(用n的代数式表示)0© 0八林Z o a o o0Q O WWW A O O OOO ooO O OOOC0 Q0 0 90000°O第1个图形第2个图形第3个图形第4个图形第18题图【答案】n(n 1) 4或n1 2 3 n 45. (2013湖- 南益阳,16, 8 分) 观察下列算式①1X3-2 2=3 - 4 = -1②2X4-3 2=8 - 9 = -1③3X5-4 2=15 - 16 =-11请你按以上规律写出第4个算式;2把这个规律用含字母的式子表示出来;3你认为(2)中所写出的式子一定成立吗?并说明理由. 【答案】解:⑴4 6 -52=24 -25 = -1 ;⑵答案不唯一.如n(n +2)-(n +1『=一1;2 2=n 2n -n -2n —1 =-1.6. (2013广东汕头,20, 9分)如下数表是由从1开始的连续自然数组成,观察规律并完 成各题的解答.(1) 表中第8行的最后一个数是 _____ ,它是自然数 _____ 的平方,第8行共有 ______ 个数;(2) 用含n 的代数式表示:第 n 行的第一个数是 _________ ,最后一个数是 _________ ,第n 行共有 _______ 个数;(3)求第n 行各数之和. 【解】(1) 64, 8, 15;2 2(2) (n -1)2 1 , n 2, 2n -1 ;(3) 第2行各数之和等于3 X 3 ;第3行各数之和等于 5X 7 ;第4行各数之和等于7 X 7-13 ; 类似的,第n 行各数之和等于(2n -1)(n 2-n 1) = 2n 3-3n 2 • 3n -1 . 二填空题 1.(2013四川绵阳18, 4)观察上面的图形,它们是按一定规律排列的,依照此规律,第____ 个图形共有120个。
中考规律探索型问题及答案

规 律 探1.如图,下面是按照一定规律画岀的“数形图”,经观察可以发现:图A 比图A i 多岀2个“树枝”比图A 多岀4个“树枝”,图A 比图A 3多岀8个“树枝”,……,照此规律,图A 比图A2多岀“树枝”()D. 124【答案】C的代数式表示)OQQG O 0-O 0 0 5第1个图形 第2个图形0 Q0 0 0 0 90 0 O0 Q Q 9 0 Qoo oo • a C 殆彷0 4 0 0 0O第3个图形第4个图形【答案】n(n 1) 4或n 2 n 4 3.观察下列算式:2① 1 X 3 - 2 = 3 - 4 = -1 ② 2 X 4 - 3 2 = 8 - 9 = -1③ 3 X 5 - 4 2 = 15 - 16 = -1④ _________________________6.观察下面的变形规律:1 1 1 11 1 11----- =1 — — • ------------ = — — — • -------- =———1 2 223233434解答下面的问题:2.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆 (用含n(1 )请你按以上规律写出第 4个算式; 2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写岀的式子一定成立吗?并说明理由. 【答案】解:⑴4 6 5224 25 1 ;2⑵答案不唯一.如n n 2 n 11 ;2 2 2⑶ n n 2 n 1 n 2n n 2n 11.4. 观察上面的图形,它们是按一定规律排列的,依照此规律,第 【答案】155. 先找规律,再填数: 22n n2n 1【答案】11006____ 个图形共有120个8.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答(1) _______________________________ 表中第8行的最后一个数是 ___________________ ,它是自然数 的平方,第8行共有 ____________________________ 个数;(2) ______________________________________________ 用含n 的代数式表示:第 n 行的第一个数是 _____ ,最后一个数是 _____________________________________________ ,第n 行共有____________ 个 数;(3)求第n 行各数之和.【解】(1) 64,8,15;(2) (n 1)2 1,n 2,2n 1;(3)第2行各数之和等于 3X 3 ;第3行各数之和等于 5X 7;第4行各数之和等于 7 X 7-13 ;类似的,第n(1 )若n 为正整数,请你猜想n(n 1)(2) (3) 证明你猜想的结论; 1 .求和: 丄+…+3 42009 2010【答案】 1(1)(2) 证明:n 1 n(n 1)n n(n 1)n 1 n n(n 1)1 n(n 1)(3) 原式=1+…+42009 2010 2010200920107.设 S ,=1g 丄,S 2=1厶 12 22 22丄,X3232■V …,S.=1 A4 n(n【答案】S n1 1~~2n=[1S= (用含n 的代数式表示,其中2n1 1 k 1 [1 占2 2 A 1 爲]2 21 n(n 1)1 n(n1 1 1 ‘ S =(1厂)+(1 厂)+(1 厂尸…+(1n(n 1))2小n 2n n 1接下去利用拆项法1 n(n 1)即可求和.n 1设 S .. .3则行各数之和等于(2n 1)(n2 n 1) = 2 n3 3n2 3n 1.「、 2 32012上乙“ _ 人— 2 3 2012 — 2 3 4 2013 e. — — 2013八9.求 1+2+2+2+…+2 的值,可令 S=1+2+2+2+…+2 ,则 2S=2+2+2+2+…+2,因此 2S- S=2 - 1.仿照以上推理,计算出1+5+52+53+…+5 2012的值为( )选C.个小正方形。
2013年中考数学规律探索型问题

2013年中考数学规律探索型问题12.(2012山东省滨州,12,3分)求1+2+22+23+…+22012的值,可令S=1+2+22+23+…+22012,则2S=2+22+23+24+…+22013,因此2S ﹣S=22013﹣1.仿照以上推理,计算出1+5+52+53+…+52012的值为( )A .52012﹣1B .52013﹣1C .D .【解析】设S=1+5+52+53+…+52012,则5S=5+52+53+54+…+52013, 因此,5S ﹣S=52013﹣1,S=.【答案】选C .【点评】本题考查同底数幂的乘法,以及类比推理的能力.两式同时乘以底数,再相减可得s的值.(2012广东肇庆,15,3)观察下列一组数:32,54,76,98,1110,…… ,它们是按一定规律排列的,那么这一组数的第k 个数是 ▲ .【解析】通过观察不难发现,各分数的分子与分母均相差1,分子为连续偶数,分母为连续奇数.【答案】122 k k【点评】本题是一道规律探索题目,考查了用代数式表示一般规律,难度较小.18. ( 2012年四川省巴中市,18,3)观察下列面一列数:1,-2,3,-4,5,-6,…根据你发现的规律,第2012个数是___________ 【解析】观察知: 下列面一列数中,它们的绝对值是连续正整数,第2012个数的绝对值是2012,值偶数项是负数,故填-2012. 【答案】-2012【点评】本题是找规律的问题,确定符号是本题的难点.20.(2012贵州省毕节市,20,5分)在下图中,每个图案均由边长为1的小正方形按一定的规律堆叠而成,照此规律,第10个图案中共有 个小正方形。
解析:观察图案不难发现,图案中的正方形按照从上到下成奇数列排布,写出第n 个图案的正方形的个数,然后利用求和公式写出表达式,再把n=10代入进行计算即可得解.答案:解:第1个图案中共有1个小正方形,第2个图案中共有1+3=4个小正方形,第3个图案中共有1+3+5=9个小正方形,…,第n 个图案中共有1+3+5+…+(2n-1)=2)121(-+n n =n2个小正方形,所以,第10个图案中共有102=100个小正方形.故答案为:100.点评:本题是对图形变化规律的考查,根据图案从上到下的正方形的个数成奇数列排布,得到第n 个图案的正方形的个数的表达式是解题的关键.18.(2012贵州六盘水,18,4分)图7是我国古代数学家杨辉最早发现的,称为“杨辉三角形”.它的发现比西方要早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的!“杨辉三角形”中有许多规律,如它的每一行的数字正好对应了()na b +(n 为非负整数)的展开式中a 按次数从大到小排列的项的系数.例如222()2a b a ab b +=++展开式中的系数1、2、1恰好对应图中第三行的数字;再入,33223()33a b a a b ab b +=+++展开式中的系数1、3、3、1恰好对应图中第四行的数字.请认真观察此图,写出4()a b +的展开式.4()a b += ▲ .分析:该题属规律型,通过观察可发现第五行的系数是:1、4、6、4、1,再根据例子中字母的排列规律即得到答案.解答:解:由题意,4432234()464a b a a b a b ab b +=++++, 故填432234464a a b a b ab b ++++.点评:本题考查了数字的变化规律,从整体观察还要考虑字母及字母指数的变化规律,从而得到答案.17. (2012山东莱芜, 17,4分) 将正方形ABCD 的各边按如图所示延长,从射线AB 开始,分别在各射线上标记点321,,A A A ….,按此规律,则点A2012在射线 上.【解析】根据表格中点的排列规律,可以得到点的坐标是每16个点排列的位置一循环, 2012=16×125+12,所以点A2012所在的射线和点12A 所在的直线一样。
2013年各地中考题类型规律探究题、开放探究题

规律探究题,开放探究题一、选择题1.(2013湖北十堰,8,3分)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()2.(2013湖北武汉,8,3分)两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,……,那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点答案:C解析:两条直线的最多交点数为:12×1×2=1,三条直线的最多交点数为:12×2×3=3,四条直线的最多交点数为:12×3×4=6,所以,六条直线的最多交点数为:12×5×6=15,二、填空题3.(2013湖南娄底,18,4分)如图,是用火柴棒拼成的图形,则第n个图形需2n+1根火柴棒.4.(2013绥化,8,3分)如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O 后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线OC上.5.(2013湖北恩施州,16,3分)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是171.6.(2013牡丹江,26,8分)已知∠ACD=90°,MN是过点A的直线,AC=DC,DB⊥MN于点B,如图(1).易证BD+AB=CB,过程如下:过点C作CE⊥CB于点C,与MN交于点E∵∠ACB+∠BCD=90°,∠ACB+∠ACE=90°,∴∠BCD=∠ACE.∵四边形ACDB内角和为360°,∴∠BDC+∠CAB=180°.∵∠EAC+∠CAB=180°,∴∠EAC=∠BDC.又∵AC=DC,∴△ACE≌△DCB,∴AE=DB,CE=CB,∴△ECB为等腰直角三角形,∴BE=CB.又∵BE=AE+AB,∴BE=BD+AB,∴BD+AB=CB.(1)当MN绕A旋转到如图(2)和图(3)两个位置时,BD、AB、CB满足什么样关系式,请写出你的猜想,并对图(2)给予证明.(2)MN在绕点A旋转过程中,当∠BCD=30°,BD=时,则CD=2,CB=+1.BE=CBBE=CBBD=AB=BE=CBAB=DH=BH=BD=×=1CH=,CB=CH+BH=上一动点,设PC=x,作PE∥AB交BC于E,PF∥BC交AB于F.(1)证明:△PCE是等腰三角形;(2)EM、FN、BH分别是△PEC、△AFP、△ABC的高,用含x和k的代数式表示EM、FN,并探究EM、FN、BH之间的数量关系;(3)当k=4时,求四边形PEBF的面积S与x的函数关系式.x为何值时,S有最大值?并求出S的最大值.CM=CPCM=CP=,tanC=k=tanA=,tanA=EM+FN=﹣x(×难点.。
2013年全国中考数学规律探索试题汇编

2013年全国中考数学规律探索试题汇编(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).考点:中心对称;规律型:点的坐标.专题:规律型.分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P2013的坐标.解答:解:点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵=503…3,∴点P2013的坐标为(0,﹣2).故答案为:(0,﹣2).点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律..(2013•潍坊)当白色小正方形个数等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用表示,是正整数)(2013•淄博)如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是. -4abc6b-2…(2013•湖州)将连续正整数按以下规律排列,则位于第7行第7列的数x是85.考点:规律型:数字的变化类.分析:先根据第一行的第一列与第二列相差2,往后分别相差3,4,5,6,7,第二行的第一列与第二列相差3,往后分别相差4,5,6,7,第三行的第一列与第二列相差4,往后分别相差5,6,7,8,由此得出第七行的第一列与第二列分别相差8,往后分别相,9,10,11,12,13,从而求出答案.解答:解:第一行的第一列与第二列差个2,第二列与第三列差个3,第三列与第四列差个4,…第六列与第七列差个7,第二行的第一列与第二列差个3,第二列与第三列差个4,第三列与第四列差个5,…第五列与第六列差个7,第三行的第一列与第二列差个4,第二列与第三列差个5,第三列与第四列差个6,第四列与第五列差个7,…第七行的第一列与第二列差个8,是30,第二列与第三列差个9,是39,第三列与第四列差个10,是49,第四列与第五列差个11,是60,第五列与第六列差个12,是72,第六列与第七列差个13,是85;故答案为:85.点评:此题考查了数字的变化类,这是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题,解决本题的关键是得到每行中前一列与后一列的关系.(2013•衢州)如图,在菱形ABCD中,边长为10,∠A=60°.顺次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去…….则四边形A2B2C2D2的周长是▲;四边形A2013B2013C2013D2013的周长是▲.(2013•台州)任何实数a,可用表示不超过a的最大整数,如,现对72进行如下操作:,这样对72只需进行3次操作后变为1,类似地,①对81只需进行次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是。
中考数学《规律探索》专题复习试题含解析
中考数学《规律(Lv)探索》专题复习试题含解析一(Yi)、选择题1. 如图,将一张等边(Bian)三角形纸片沿中位线剪成4个小三角形,称为第一次操作;然后,将其中的一个三角形按(An)同样方式再剪成4个小三(San)角形,共得到7个小(Xiao)三角形,称为第二次操作;再将其中一个三角形按同样方式再剪成4个小三角形,共得(De)到10个小三角形,称为第三次操(Cao)作;…根据以上操作,若要得到100个小三角形,则需要操作的次数是()A.25 B.33 C.34 D.50【考点】规律型:图形的变化类.【分析】由第一次操作后三角形共有4个、第二次操作后三角形共有(4+3)个、第三次操作后三角形共有(4+3+3)个,可得第n次操作后三角形共有4+3(n﹣1)=3n+1个,根据题意得3n+1=100,求得n的值即可.【解答】解:∵第一次操作后,三角形共有4个;第二次操作后,三角形共有4+3=7个;第三次操作后,三角形共有4+3+3=10个;…∴第n次操作后,三角形共有4+3(n﹣1)=3n+1个;当3n+1=100时,解得:n=33,故选:B.2.观察图中正方形四个顶点所标的数字规律,可知,数2016应标在()A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角D.第505个正方形的右下角【考点】规律型:点的坐标.【分(Fen)析】根据图形中对应的数字和各个(Ge)数字所在的位置,可以推出数2016在第多少个正方形和它所在的位置,本(Ben)题得以解决.【解(Jie)答】解(Jie):∵2016÷4=504,又(You)∵由题目中给出的几个(Ge)正方形观察可知,每个正方形对应四个数,而第一个最小的数是0,0在(Zai)右下角,然后按逆时针由小变大,∴第504个正方形中最大的数是2015,∴数2016在第505个正方形的右下角,故选D.3.(2016.山东省临沂市,3分)用大小相等的小正方形按一定规律拼成下列图形,则第n个图形中小正方形的个数是()A.2n+1 B.n2﹣1 C.n2+2n D.5n﹣2【考点】规律型:图形的变化类.【分析】由第1个图形中小正方形的个数是22﹣1、第2个图形中小正方形的个数是32﹣1、第3个图形中小正方形的个数是42﹣1,可知第n个图形中小正方形的个数是(n+1)2﹣1,化简可得答案.【解答】解:∵第1个图形中,小正方形的个数是:22﹣1=3;第2个图形中,小正方形的个数是:32﹣1=8;第3个图形中,小正方形的个数是:42﹣1=15;…∴第n个图形中,小正方形的个数是:(n+1)2﹣1=n2+2n+1﹣1=n2+2n;故选:C.【点评】本题主要考查图形的变化规律,解决此类题目的方法是:从变化的图形中发现不变的部分和变化的部分及变化部分的特点是解题的关键.二、填空题1.如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为4n﹣3 .【考点】规律型:图形的变化类.【分析】结合题意,总结可知,每(Mei)个图中三角形个数比图形的编号的(De)4倍(Bei)少(Shao)3个三角形,即可(Ke)得出结果.【解(Jie)答】解:第(Di)①是(Shi)1个三角形,1=4×1﹣3;第②是5个三角形,5=4×2﹣3;第③是9个三角形,9=4×3﹣3;∴第n个图形中共有三角形的个数是4n﹣3;故答案为:4n﹣3.【点评】此题主要考查了图形的变化,解决此题的关键是寻找三角形的个数与图形的编号之间的关系.2.如图,直线l:y=-x,点A1坐标为(-3,0). 过点A1作x轴的垂线交直线l于点B1,以原点O为圆心,OB1长为半径画弧交x轴负半轴于点A2,再过点A2作x 轴的垂线交直线l于点B2,以原点O为圆心,OB2长为半径画弧交x轴负半轴于点A 3,…,按此做法进行下去,点A2016的坐标为 .【考点】一次函数图像上点的坐标特征,规律型:图形的变化类.【分析】由直线l:y=-x的解析式求出A1B1的长,再根据勾股定理,求出OB1的长,从而得出A2的坐标;再把A2的横坐标代入y=-x的解析式求出A2B2的长,再根据勾股定理,求出OB2的长,从而得出A3的坐标;…,由此得出一般规律.【解(Jie)答】解(Jie):∵点(Dian)A1坐(Zuo)标为(-3,0),知(Zhi)O A1=3,把(Ba)x=-3代入(Ru)直线(Xian)y=-x中,得y= 4 ,即A1B1=4.根据勾股定理,OB1===5,∴A2坐标为(-5,0),O A2=5;把x=-5代入直线y=-x中,得y=,即A2B2=.根据勾股定理,OB2====,∴A3坐标为(-3512,0),O A3=3512;把x=-3512代入直线y=-x中,得y=,即A3B3=.根据勾(Gou)股定理,OB 3====,∴A 4坐标(Biao)为(-3523,0),O A 4=3523;……同理(Li)可得(De)A n 坐(Zuo)标为(-,0),O A n =3521--n n ;∴A 2016坐(Zuo)标为(-,0)故(Gu)答案为:(− 3520142015,0)【点(Dian)评】本题是规律型图形的变化类题是全国各地的中考热点题型,考查了一次函数图像上点的坐标特征. 解题时,要注意数形结合思想的运用,总结规律是解题的关键. 解此类题时,要得到两三个结果后再比较、总结归纳,不要只求出一个结果就盲目的匆忙得出结论。
中考规律探索题及答案
探索规律题类型一数字规律1、下面是按一定规律排列的一列数:,那么第n个数是.解析∵分子分别为1、3、5、7,…,∴第n个数的分子是2n﹣1。
?∵4﹣3=1=12,7﹣3=4=22,12﹣3=9=32,19﹣3=16=42,…,∴第n个数的分母为n2+3。
∴第n个数是。
2、观察下列等式:,,,,,,。
试猜想,的个位数字是_____ 。
解析本题主要考查规律探索。
观察等式:,,,,,可得,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,次方的个位数字是,个位数字的变化是以、、、为周期,即周期为,又因为,所以的个位数字与的个位数字相同为。
故本题正确答案为。
考点规律探索。
3、古希腊数学家把数1,3,6,10,15,21,叫做三角形数,它有一定的规律性,若把第一个三角形数记为,第二个三角形数记为,第n个三角形数记为,则.答案解:,═,,═,═,…,,则,因此,本题正确答案是:.解析根据三角形数得到,,,,,即三角形数为从1到它的顺号数之间所有整数的和,即、,然后计算可得.4、按一定规律排列的一列数:,,,,,,,,请你仔细观察,按照此规律对应的数字应为_____。
答案解析本题主要考查规律探索。
将中间两个化为分数之后为:,,,,,,,,观察可知分子是从开始不断递增的奇数,分母是从开始不断递增的质数,那么根据这个规律即可得到。
故本题正确答案为。
考点规律探索。
5、如图,下列各图形中的三个数之间均具有相同的规律,依此规律,那么第4个图形中的,一般地,用含有m,n的代数式表示y,即.?答案解:观察,发现规律:,,,?,因此,本题正确答案是:63;解析观察给定图形,发现右下的数字=右上数字(左下数字,依此规律即可得出结论.6、观察下列数据:,,,,,,它们是按一定规律排列的,依照此规律,第个数据是_____。
答案解析本题主要考查规律探索。
由数据,,,,,,可观察到,第奇数个数据为负数,第偶数个数据为正数,所以数据中带有这个因式,将化成,则这组数据变成,,,,,,由此可观察出,每一个分数的分子都是分母的平方再加,所以这组数据中第个分数为,将代入可得出分数。
历年初三数学中考规律探索问题试题汇编及答案
中考数学规律探索问题试题汇编一、选择题 1、如图,是一个装饰物品连续旋转闪烁所成的三个图形,照此规律闪烁,下一个呈现出来的图形是( )。
B2、按右边33⨯方格中的规律,在下面4个符号中选择一个填入方格左上方的空格内( )A3、为庆祝“六g 一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为( )A A .26n + B .86n + C .44n + D .8n4、某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时分裂成6个并死去1个,3小时后分裂成10个并死去1个,按此规律,5小时后细胞存活的个数是( )C A. 31 B. 33 C. 35 D. 37 二、填空题1、把正整数1,2,3,4,5,……,按如下规律排列:1 2,3, 4,5,6,7,8,9,10,11,12,13,14,15,… … … …按此规律,可知第n行有 个正整数.2n-12、将正整数按如图所示的规律排列下去。
若用有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,3)表示实数9,则(7,2)表示的实数是 。
233、试观察下列各式的规律,然后填空:1)1)(1(2-=+-x x x 1)1)(1(32-=++-x x x x1)1)(1(423-=+++-x x x x x ……则=++++-)1)(1(910x x xx ΛΛ_______________。
111-x 。
4、观察下列各式:(第01题图) A B C D11235...22151(11)1005225=⨯+⨯+= 22252(21)1005625=⨯+⨯+= 22353(31)10051225=⨯+⨯+=……依此规律,第n 个等式(n 为正整数)为 .22(105)(1)1005n n n +=+⨯+5、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…,其中从第三个数起,每一个数都等于它前面两上数的和。
2013全国中考数学试题分类汇编-规律探索
2013规律探索题(2013•衡阳)观察下列按顺序排列的等式:,,,,…,试猜想第n 个等式(n 为正整数):a n =﹣.(2013,娄底)如图,是用火柴棒拼成的图形,则第n 个图形需__________根火柴棒.a 的值应是 .(2013,永州)电脑系统中有个“扫雷”游戏,要求游戏者标出所有的雷,游戏规则:一个方块下面最多埋一个雷,如果无雷,掀开方块下面就标有数字,提醒游戏者此数字周围的方块(最多八个)中雷的个数(实际游戏中,0通常省略不标,此WORD 中为方便大家识别与印刷,我还是把图乙中的0都标出来吧,以示与未掀开者的区别),如图甲中的“3”表示它的周围八个方块中仅有3个埋有雷.图乙第一行从左数起的七个方块中(方块上标有字母),能够确定一定是雷的有 .(请填入方块上的字母)(2007•荆州)观察下面的单项式:a ,﹣2a 2,4a 3,﹣8a 4,…根据你发现的规律,第8个式子是 .(2013•达州)如图,在△ABC 中,∠A=m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度。
2013•达州)已知()()11f x x x =⨯+,则()()11111112f ==⨯+⨯()()11222123f ==⨯+⨯……3()图甲A B C D GE F 2341322422221111111133()图乙0000已知()()()()1412315f f f f n ++++= ,求n 的值。
(2013•广安)已知直线y=x+(n 为正整数)与坐标轴围成的三角形的面积为S n ,则S 1+S 2+S 3+…+S 2012=.2013•乐山)对非负实数x “四舍五入”到个位的值记为<x >,即当n 为非负整数时,若n-12≤x <n+ 12 ,则<x >=n,如<0.46>=0,<3.67>=4,给出下列关于<x >的结论: ① <1.493>=1,② <2x >=2<x >, ③ 若<12x -1>=4,则实数x 的取值范围是9≤x <11, ④ 当x ≥0,mx >+<y>. 其中,正确的结论有 (()10y x x=>的图像上,11P OA ∆,∆1、12A A 、23A A ,……1A A n n -都在n P 的坐标是 (用含n(2013•绵阳)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2013=( ) A .(45,77) B .(45,39) C .(32,46) D .(32,23)(2013•遂宁)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n )图,需用火柴棒的根数为 6n+2 .(2013•雅安)已知一组数2,4,8,16,32,…,按此规律,则第n个数是2n.(2013•资阳)从所给出的四个选项中,选出适当的一个填入问号所在位置,使之呈现相同的特征(2013•资阳)已知在直线上有n(n≥2的正整数)个点,每相邻两点间距离为1,从左边第1个点起跳,且同时满足以下三个条件:①每次跳跃均尽可能最大;②跳n次后必须回到第1个点;③这n次跳跃将每个点全部到达.设跳过的所有路程之和为S n,则S=______________25(2013•自贡)如图,在函数的图象上有点P1、P2、P3…、P n、P n+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P n、P n+1分别作x轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S n,则S1=,S n=.(用含n的代数式表示)(2013•沈阳)有一组等式:2222222222222222++=++=++=++=……请观察它们的构成规1233,2367,341213,452021律,用你发现的规律写出第8个等式为_________2013•恩施州)把奇数列成下表,根据表中数的排列规律,则上起第8行,左起第6列的数是.(2013•黄石)在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
规律探索
一.选择题
1.(2013·泰安,20,3分)观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187…
解答下列问题:3+32+33+34…+32013的末位数字是()
A.0 B.1 C.3 D.7
2.(2013四川绵阳,12,3分)把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M=(i,j)表示正奇数M是第i组第j个数(从左往右数),如A7=(2,3),则A2013=()
A.(45,77)B.(45,39)C.(32,46)D.(32,23)
3.(2013湖南益阳,13,4分)下表中的数字是按一定规律填写的,表中a的值应是.
4. (2013重庆市(A),10,4分)下列图形都是由同样大小的矩形按一定的规律组成,其中第(1)个图
形的面积为2cm2,第(2)个图形的面积为8 cm2,第(3)个图形的面积为18 cm2,……,第(10)个图形的面积为()
A.196 cm2B.200 cm2C.216 cm2D.256 cm2
5.(2013山东德州,12,3分)如图,动点P从(0,3)
出发,沿所示的方向运动,每当碰到矩形的边时反弹,反
弹时反射角等于入射角,当点P第2013次碰到矩形的边
时,点P 的坐标为()
A、(1,4)
B、(5,0)
C、(6,4)
D、(8,3)
6.(2013山东日照,11,4分)如图,下列各图形中的三个数之间均具有相同的规律.根据此规律,图形中
M 与m 、n 的关系是( )
A . M=mn
B . M=n(m+1)
C .M=mn+1
D .M=m(n+1)
7.(2013湖南永州,8,3分)我们知道,一元二次方程12-=x 没有实数根,即不存在一个实数的平方
等于-1,若我们规定一个新数“”,使其满足12-=i (即方程12-=x 有一个根为),并且进一步规定: 一切
实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有,1i i =12
-=i ,
,).1(23i i i i i -=-=⋅=.1)1()(2224=-==i i 从而对任意正整数n ,我们可得到,.)(.4414i i i i i i n n n ===+同理可得,1,,143424=-=-=++n n n i i i i 那么,2012432i
i i i i i +⋅⋅⋅++++的值为 ( )
A .0
B .1
C .-1
D .
8.(2013重庆,11,4分)下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有1颗棋子,第②个图形一共有6颗棋子,第③个图形一共有16颗棋子,…,则第⑥个图形中棋子的颗数为( )
A .51
B .70
C .76
D .81 二.填空题
1.(2013江西,11,3分)观察下列图形中点的个数,若按其规律再画下去,可以得到第n 个图形中所有的个数为 (用含n 的代数式表示).
图① 图② 图③
···
(第8题图)
2.(2013兰州,19,4分)如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2013的直角顶点的坐标为.
3.(2013广东珠海,10,4分)如图,正方形ABCD的边长为1,顺
次连接正方形ABCD四边的中点得到第一个正方形A1B1C1D1,由顺
次连接正方形A1B1C1D1四边的中点得到第二个正方形A2B2C2D2…,
以此类推,则第六个正方形A6B6C6D6周长是.
4.(2013贵州安顺,18,4分)直线上有2013个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有个点.
5.(2013湖北孝感,17,3分)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是.
6 .(2013湖南娄底,18,4分)如图,是用火柴棒拼成的图形,则第n个图形需根火柴棒.
7.(2013贵州省黔东南州,16,4分)观察规律:1=12;1+3=22;1+3+5=32;1+3+5+7=42;…,则1+3+5+…+2013的值是.
8.(2013山东滨州,18,4分)观察下列各式的计算过程:
5×5=0×1×100+25, 15×15=1×2×100+25, 25×25=2×3×100+25, 35×35=3×4×100+25, …… ……
请猜测,第n 个算式(n 为正整数)应表示为____________________________.
9.(2013浙江湖州,15,4分)将连续的正整数按以下规律排列,则位于第7行、第7列的数x 是__ __.
10、(2013深圳,16,3分)如下图,每一幅图中均含有若干个正方形,第①幅图中含有1个正方形;第②幅图中含有5个正方形;……按这样的规律下去,则第(6)幅图中含有 个正方形;
11.(2013四川宜宾,14,3分)将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆, 第2个图形有10个小圆, 第3个图形有16个小圆, 第4个图形有24个小圆, ……,依次规律,第6个图形有 个小圆.
12. (2013四川雅安,13,3分)已知一组数2,4,8,16,32,…
,按此规律,则
••••••
①
② ③
第n 个数是
13.(2013广东湛江,16,4分)如图,所有正三角形的一边平行
于x 轴,一顶点在y 轴上,从内到外,它们的边长依次为2,4,6,8,…,顶点依次用1A 、2A 、3A 、4A 、…表示,其中12A A 与x 轴、底边12A A 与45A A 、45A A 与78A A 、…均相距一个单位,则
顶点3A 的坐标是 ,22A 的坐标是 .
14.(2013•东营,17,4分)如图,已知直线l :y=3
3
x ,过点A (0,1)
作y 轴的垂线交直线l 于点B ,过点B 作直线l 的垂线交y 轴于点A 1;过点A 1作y 轴的垂线交直线l 于点B 1,过点B 1作直线l 的垂线交y 轴于点A 2;……按此作法继续下去,则点A 2013的坐标为 .
15.(2013·聊城,17,3分)如图,在平面直角坐标系中,一动点从原点O 出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),…那么点A 4n +1(n 为自然数)的坐标为 (用n 表示)
16.(2013·潍坊,17,3分)当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)
17. (2013•衢州4分)如图,在菱形ABCD中,边长为10,∠A=60°.顺
次连结菱形ABCD各边中点,可得四边形A1B1C1D1;顺次连结四边形A1B1C1D1各边中点,可得四边形A2B2C2D2;顺次连结四边形
A2B2C2D2各边中点,可得四边形A3B3C3D3;按此规律继续下去….则四边形A2B2C2D2的周长是;四边形A2013B2013C2013D2013的周长是.
18.(2013山西,15,3分)一组按规律排列的式子:a2,
4
3
a
,
6
5
a
,
8
7
a
,….则第n个式子是________
19.(2013四川巴中,20,3分)观察下面的单项式:a,﹣2a2,4a3,﹣8a4,…根据你发现的规律,第8个式子是.
20.(2013四川内江,24,6分)如图,已知直线l:y=x,过点M(2,0)
作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点
M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,…;
按此作法继续下去,则点M10的坐标为.
21.(2013四川遂宁,15,4分)为庆祝“六•一”儿童节,某幼儿园举行用火柴棒摆“金鱼”比赛.如图所示:按照上面的规律,摆第(n)图,需用火柴棒的根数为.
三、解答题:
1 (2013•绍兴8分)如图,矩形ABCD中,AB=6,第1次平移将矩形ABCD沿AB的方向向右平移5个单位,得到矩形A1B1C1D1,第2次平移将矩形A1B1C1D1沿A1B1的方向向右平移5个单位,得到矩形A2B2C2D2…,第n次平移将矩形A n﹣1B n﹣1C n﹣1D n﹣1沿A n﹣1B n﹣1的方向平移5个单位,得到矩形A n B n C n D n (n>2).
(1)求AB1和AB2的长.
(2)若AB n的长为56,求n.。