宝马全可变气门控制(Valvetronic)
发动机全可变气门升程技术现状的分析与展望

发动机全可变气门升程技术现状的分析与展望邓明阳;孙旭【摘要】全可变气门升程技术能实现气门升程的完全连续可变,是解决发动机燃油经济性和排放性二者矛盾的核心技术之一.文章对当前一些具有代表性的发动机全可变气门升程技术进行了分类介绍,并以有关汽车公司推出的典型产品为例,来论述不同全可变气门升程机构,并展望了Multiair技术今后的研究走向.【期刊名称】《南通航运职业技术学院学报》【年(卷),期】2011(010)003【总页数】5页(P69-72,82)【关键词】发动机;全可变气门;气门升程;气门正时【作者】邓明阳;孙旭【作者单位】南通航运职业技术学院交通工程系,江苏南通226010;南通航运职业技术学院交通工程系,江苏南通226010【正文语种】中文【中图分类】U472.430 引言汽车发动机的气门驱动机构历经了传统固定配气相位、可变配气相位和可变气门升程的技术发展过程。
不同可变气门机构均可在一定程度上提高发动机的怠速稳定性、输出功率和低速下外特性扭矩,降低燃油消耗和HC、NOX排放。
气门控制着发动机充量交换过程的特性参数主要有三个:气门开启相位、气门开启持续期(气门保持开启持续的曲轴转角)和气门升程,这三个特性参数对发动机的性能、油耗和排放有重要的影响。
通常将气门开启相位和气门开启持续期统称为气门正时,即气门的开启与关闭时刻。
目前,发动机上用到的可变气门技术按照控制参数不同主要分为可变气门正时和可变气门升程两种技术。
[1]两种可变气门技术规模化应用的发展历程如图1所示。
图1 可变气门技术的分类与变迁可变气门正时和可变气门升程按其控制过程都经历了分段可变向连续可变的发展历程。
可变气门升程技术相对复杂些,目前批量生产的有分级式和连续式,但连续可变气门升程技术还未达到大规模实用化程度。
本文根据结构特点和驱动方式的不同,将主流的典型可变气门升程技术分为凸轮轴驱动和无凸轮轴驱动两大类,并着重就目前主要应用在量产车上的全可变气门升程机构的典型结构、工作原理和技术特点等进行分类探讨和总结。
宝马3系车型说明

328i* 运动设计套装
■ ■ — ■ ■ — ■ ■ ■ ■ □ ■ ■
M运动型 ■ ■ — ■ ■ — ■ ■ ■ ■ — ■ ■
—
—
—
—
—
—
■
—
—
■
—
■
—
—
■
■
■
■
■
■
■
■
—
—
■
■
■
■
■
■
■
■
■
■
—
—
■
—
—
■
—
■
■
■
■
■
■
■
—
—
■
■
■
■
■
■
■
■
■
—
—
—
■
■
■
■
□
□
□
■
■
■
—
—
—
—
—
—
■
■
—
—
—
4 带换挡拨片
所有本目录列出的选择装备都在原厂安装。如有其他要求,请到您的BMW 代理商处查阅详细的附件目录。
■ 标准装备
□ 选择装备
— 恕无法供应
* 本配置表所示配置信息仅供参考,实际配置信息以中国上市产品为准。
进取型 —
—
— — — — — — — —
320i* 时尚型
—
—
— — — — — — — —
道路救援服务 远程售后服务 自动泊车辅助 全彩平视显示系统
语音控制功能
进取型 —
—
— — — — — — — —
316i 运动设计套装 —
宝马可变气门升程技术讲解

我们想大家解析了关于汽车发动机可变气门正时技术,简单来说它是通过电脑控制发动机气门的开启时间,利用进气门与排气门不同的开启时间来控制汽车发动机的效率与经济性,但这种技术对于汽车发动机性能方面的提升却不大。
随着汽车行业的发展,发动机的性能如何已经成为一款车能否取得成功的关键,这也就促使各大汽车厂家的工程师们对发动机技术进行了进一步研究。
通过研究后,他们发现了可以弥补发动机可变气门正时技术不足的方法,而这也就是我们今天这节技术大讲堂要说的发动机可变气门升程技术。
众所周知,发动机的动力表现主要取决于单位时间内汽缸的进气量,上一节技术大讲堂我们说过,气门正时代表了气门开启的时间,而气门升程则代表的是气门开启的大小,从原理上看,可变气门正时技术也是通过改变进气量来改善动力表现的,但实际上气门正时则只能增加或者缩小气门开启时间,并不能有效改善汽缸内单位时间的进气量,从数学角度上看,气门正时是将分母和分子同时等比例放大,而这对于数字的扩大或缩小则没有任何改善,也正式因此对于可变气门正时技术队于发动机动力性的帮助并不大。
而当气门开启大小也可以实现可变调节的话,那么就可以针对不同的转速使用合适的气门开启大小,从而提升发动机在各个转速内的动力性能,这就是和可变气门正时技术相辅相承的可变气门升程技术。
正如我们在用皮管接水时,当我们将皮管口的面积变小后,从皮管中喷出的水压力将变大,水流出的力道也将不同,发动机可变气门升程技术利用的就是这种原理,让混合气的雾化更加的充分,燃烧也更完全。
目前市场上使用具有可变气门升程技术发动机的厂家共有三个,分别是本田(Vtec/i-Vtec)、日产(VVEL)和宝马(Valvetronic)。
本田可变气门升程技术:Vtec/i-Vtec本田是最早将可变气门升程技术应用到车载发动机上的厂商,而且不同于其它厂商先使用可变气门正时,后追加可变气门升程技术的做法,本田的工程师在研发项目之初就将这两种技术同步进行。
宝马N42发动机资料

德国排放法规 其它国家或地区 发动机长度( mm) 与 M43TU 相比耗油量节省比率 E46/5 最高车速 Vmax(km/h)(暂定)
N42B18 4 缸 直列
1796 84/81
91
N42B20 4 缸 直列
1995 84/90
91
4 x 56 1 x 65
50
4 x 56 1 x 65
N42 发动机
名称为“盈余”的上部区域就是燃油燃烧时获得的功率。名称为“损 失”的下部区域是气缸换气功。为了使燃烧后的废气从气缸中排出并 将新鲜空气吸入气缸内,这是必须消耗的能量。 在 Valvetronic 发动机进气过程中节气门几乎一直完全开启。负荷控 制通过气门关闭时刻实现。与通过节气门控制负荷的普通发动机相 比,其进气装置内不产生真空,就是说不需要为产生真空而消耗能量。 通过降低进气过程中的功率损失可提高效率。 在前面的视图中左侧是功率损失相对较大的普通工作方式。 从右侧视图中可以看出功率损失较低。 与柴油发动机相比,传统汽油发动机的进气量通过加速踏板和节气门 来调节并在理想混合比(λ=1)时喷入相应数量的燃油。 与分层进气的汽油直接喷射相比,进气量在这个系统中通过 Valvetronic 来调节并借此实现 λ=1 模式。 不必使用费用较高且对硫敏感的废气再处理装置。 记录区: _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________ _____________________________________________________
汽车专业毕业论文——宝马VANOS系统的研究

常州工程职业技术学院毕业设计(论文)(__________2012__________届)设计(论文)题目宝马可变气门正时控制机构VANOS系统研究系部机械工程技术系班级汽修0911学生姓名指导教师常州工程职业技术学院二0一年月日宝马可变气门正时控制机构VANOS系统研究摘要:汽油机可变气门技术作为一种性价比相当高的技术方案,得到了广泛的应用。
特别是近几年由于油价的攀升和日趋严格的环保法规,加之技术的相对成熟和成本的降低,该技术在一些高档车上也开始采用。
本论文针对采用现代轿车用汽油机最新技术-完全可变气门驱动机构VVA 的宝马新款系列发动机进行结构、原理方面的技术分析,从而给出宝马新款系列发动机新技术特点的综合分析报告。
主要研究内容包括:以完全可变气门技术为主要研究对象,对宝马完全可变气门技术的结构和工作原理进行分析,从而进一步的了解可变气门技术;其次,对宝马新款发动机上的其他新技术,如几何截面控制的DISA可变进气系统,汽油缸内直接喷射技术和混合气形成与燃烧的双模式控制策略,汽油机最新的排气后处理技术-NOx存储式催化转换装置的工作原理,汽油机EGR控制技术的工作原理,润滑系统和冷却系统采用的新技术等等,进行研究分析。
此外,宝马新款系列发动机新技术还包括机体组件新材料、新工艺的应用。
本文通过对宝马新款发动机的完全可变气门技术和发动机上其他新技术的研究分析,对这些技术的结构和工作原理充分的了解,进而了解未来发动机技术的发展趋势,了解发动机技术的研究方向。
关键词:发动机可变气门技术新技术Abstract:Recently gasoline engine adopting the variable valve timing mechanism as a effective technology has been a wide range of applications。
In particular,due to rising oil prices and increasingly stringent environmental regulations,coupled with relatively mature technologies and lower costs,the technology in a number of high-end vehicles have begun to be adopted。
专业名词

1 Valvetronic电子气门油耗更少,性能更佳:Valvetronic电子气门让您从BMW发动机获得更多乐趣。
此项尖端技术用电动控制每个汽缸上进气门的提升,取代了传统节气门。
这样一来,您的发动机能够自由地呼吸,在油耗更少的同时性能更佳。
由于消除了传统节气门造成的泵吸损失和空气流扰动,发动机更加高效,反应也更加迅捷。
与传统节气门的情况相反,空气可以通过进气歧管自由流动,Valvetronic电子气门精确地调节进入汽缸的空气量。
Valvetronic电子气门使用步进马达控制装备有一系列中间摇臂的次级偏心轴,而次级偏心轴则又控制阀门提升度。
作为一种控制空气供给的手段,节气门不再是必要的,但为安全考虑,仍然安装节气门作为紧急后备装置。
通过优化燃油/空气混合过程,Valvetronic电子气门最多能够节省百分之十的燃油(以ECE驾驶标准为准)。
此外,Valvetronic电子气门还可改善冷起动能力,降低废气排放并提供更平稳迅捷的动力输出。
2可调式凸轮轴控制装置/Double-VANOS双凸轮轴可变气门正时系统更平稳的怠速,更大的扭矩,更灵活的动力:Double-VANOS 双凸轮轴可变气门正时系统改变凸轮轴的正时让功率在整个转速范围内都得到优化。
不论您的行驶速度如何,它都能帮助您获得更佳的性能,更高的燃油效率和更低的排放。
“可调式凸轮轴控制装置”的名字源于德语术语“variable Nockenwellensteuerung”,意为可变凸轮轴控制。
Double-VANOS双凸轮轴可变气门正时系统可持续调节进气门和排气阀的凸轮轴位置,由此带来低发动机转速时扭矩明显增大,高发动机转速时功率更高,同时降低油耗和排放。
在低发动机转速时,移动凸轮轴的位置,使气门延时打开,提高怠速质量并改进功率输出的平稳性。
在发动机转速增加时,气门提前打开:增强扭矩,降低油耗并减少排放。
高发动机转速时,气门重新又延时打开,为全额功率输出提供条件。
奥迪,英菲尼迪,宝马等车的可变气门正时
可变气门可变气门正时技术几乎已成为当今发动机的标准配置,为了进一步挖掘传统内燃机的潜力,工程人员又在此基础上研发出可变气门升程技术,当二者有效的结合起来时,则为发动机在各种工况和转速下提供了更高的进、排气效率。
提升动力的同时,也降低了油耗水平。
●配气相位机构的原理和作用我们都知道,发动机的配气相位机构负责向气缸提供汽油燃烧做功所必须的新鲜空气,并将燃烧后的废气排出,这一套动作可以看做是人体吸气和呼气的过程。
从工作原理上讲,配气相位机构的主要功能是按照一定的时限来开启和关闭各气缸的进、排气门,从而实现发动机气缸换气补给的整个过程。
那么气门的原理和作用又应该怎么理解呢?我们可以将发动机的气门比作是一扇门,门开启的大小和时间长短,决定了进出的人流量。
门开启的角度越大,开启的时间越长,进出的人流量越大,反之亦然。
同样的道理用于发动机上,就产生了气门升程和正时的概念。
气门升程就好象门开启的角度,气门正时就好象门开启的时间。
以立体的思维观点看问题,角度加时间就是一个空间的大小,它也决定了在单位时间内的进、排气量。
●可变气门正时和升程技术可以使发动机的“呼吸”更为顺畅自然发动机的气门通常由凸轮轴带动,对于没有可变气门正时技术的普通发动机而言,进、排气们开闭的时间都是固定的,但是这种固定不变的气门正时却很难顾及到发动机在不同转速和工况时的需要。
前面说过发动机进、排气的过程犹如人体的呼吸,不过固定不变的“呼吸”节奏却阻碍了发动机效率的提升。
如果你参加过长跑比赛,就能深刻体会到呼吸节奏的把握对体能发挥的重要性——太急促或刻意的屏息都可能增加疲劳感,使奔跑欲望降低。
所以,我们在长跑比赛时往往需要不断按照奔跑步伐来调整呼吸频率,以便时刻为身体提供充足的氧气。
对于汽车发动机而言,这个道理同样适用。
可变气门正时和升程技术就是为了让发动机在各种负荷和转速下自由调整“呼吸”,从而提升动力表现,提高燃烧效率。
●可变气门正时技术前面说过气门正时控制着气门的开启时间,那么VVT(可变气门正时)技术是如何工作的呢?它又是怎样达到提升效率、节约燃油的效果呢?——气门重叠角对发动机性能的影响当发动机处在高转速区间时,四冲程发动机的一个工作冲程仅需千分之几秒,这么短的时间往往会引起发动机进气不足和排气不净,影响发动机的效率。
汽车发动机电控系统检修 学习单元5.3 可变气门正时和升程控制系统故障检修
学习单元5.3可变气门正时和升程控制系统故障检修
目录
CATALOG
情境导入
学习目标
理论知识
实践技能
情境分析
学习小结
《汽车发动机电控系统检修》
学习单元5.3可变气门正时和升程控制系统故障检修
PART 01
情境导入
《汽车发动机电控系统检修》
学习单元5.3可变气门正时和升程控制系统故障检修 情境导入
可变正时技术实现的技术途径
《汽车发动机电控系统检修》
学习单元5.3可变气门正时和升程控制系统故障检修
二、可变气门技术的常见类型
2.常见可变气门技术的类型及英文缩写 VVT-i:Variable Valve Timing-intelligent,丰田公司开发的“智能可变气门正时控制系统”。 VVTL-i: Variable Valve Timing & Lift Intelligent,本田公司开发的“智能可变气门正时和升程控制系统”。 VTEC:Variable Valve Timing and Lift Electronic Control,本田公司开发出的“可变气门正时和升程电子控制系统”。 i-VTEC:Intelligent Variable Valve Timing and Lift Electronic Control,本田公司开发的“智能可变气门正时和升程电子控制系统”。 VANOS:Variable Camshaft Control,宝马公司开发的“可变凸轮轴位置控制系统”。 VALVETRONIC:宝马公司开发的可变气门控制系统,由全可变气门行程控制装置和可变凸轮轴控制装置(双VANOS)构成。 MIVEC:Mitsubishi Innovative Valve Timing Electronic Control system”,三菱公司开发的“三菱智能可变气门正时电子控制系 统”。 AVS:Audi Valvelift System,奥迪公司开发的“奥迪可变气门升程控制系统” CVVT:Continue Variable Valve Timing,现代公司开发的“连续可变气门正时控制系统” VVEL:Variable Valve Event and Lift System,日产公司开发的可变气门升程控制系统。 C-VTC:Continue Valve timing Control,日产公司开发的连续可变气门正时控制系统。
宝马_BMW_技术
BMW 尖端科技
自稳定控制+牵引 (ASC + T)
自稳定控制+牵引 (ASC + T: Automatic Stability Control + Traction) 装备了自稳定控制+牵引(With ASC+T)的车辆,即使是在恶 劣的条件下,仍然可以避免 打滑从而保持车辆的可操控 性。智能化的控制系统,会 避免车辆在湿滑路面起步加 速时发生的打滑,并将车辆 稳定、安全地保持在行进方 向上。
偏航系统
• 行驶中车速超过60公里时,偏航提示开始 发挥作用,一旦车辆在未开启转向灯的情 况下偏离车道,方向盘会产生连续震动以 提示驾驶员。实际使用时,偏航提示在车 轮还未接触到分道线时便开始提示,只是 震动有些小。
摄像机切换系统
• 新7系在前轮轮眉处加装了两个摄像机,以帮助驾驶员通 过狭窄地区或停车入位。使用车速在15公里以下,超过这 一速度摄像机不会开启。这套系统需要驾驶员手动开启, 并不会主动介入,在使用速度范围你,按下排挡旁边的摄 像机按钮,即可通过两侧的摄像机观察路面情况,避免通 过狭窄路面或停车时发生侧面的刮蹭。
起初,这项技术仅可以调节 进气凸轮轴。双可变气门正 时控制系统(Double VANOS)允许 更精细的调整,这是由于他 同时还控制排气凸轮轴。 同 时,这种持续的调整会贯穿 发动机的全部速度区间。
9
BMW 尖端科技
电子气门系统 (Valvetronic)
全变量气门升程控制 (VVT)
10
电子气门系统可以无级调 节进气门升程,在发动机 转速较低时,进气门开启 量较小;发动机转速高时, 进气门开启量大。这样, 发动机可以通过气门升程 的调节来改变转速,相比 较采用节气门的发动机转 速调节方式,电子气门系 统更准确、更直接,同时 也更节省燃油。在BMW的 N系列发动机中,此项技 术被全面采用。
宝马VANOS发动机技术 电子气门控制系统的工作原理
宝马VANOS发动机技术电子气门控制系统的工作原理电子气门控制系统的工作原理电子气门控制系统的工作原理与人类在身体紧张时的状态类似。
假设您去跑步。
您身体所吸进的空气质量将由肺来调节。
您会不由自主地深吸气并由此为肺提供较多的空气,以便在身体中进行能量转换。
如果您现在由跑步换成一种较慢的步法,例如散步,则身体需要的能量和空气相对减少。
您的肺将以平缓呼吸的方式对此进行自动调节。
在这种情况下,如果您在嘴上堵上一块手帕呼,吸将非常费力。
在电子气门控制系统的新鲜空气进气装置中“取消了”节气门(与手帕类似)。
气门升程肺根据空气需要量进行调节。
发动机可以自由呼吸。
在发动机电子气门控制系统进气过程中,节气门几乎一直打开一个合适的角度,以保证出现一个50 mbar 的近似真空。
负荷控制通过气门的关闭时刻实现。
与通过节气门实现负荷控制的普通发动机相比,在进气系统中只产生一个较小的真空,也就是说省去了产生真空的能耗,通过进气过程中较小的功率损失获得较高的效率。
与柴油发动机不同在常规汽油发动机中,进气量通过加速踏板和节气门进行调节并按化学计算比例ë =1 喷射所需要的燃油量。
在带电子气门控制系统的发动机上所吸进的空气量由气门的开启升程和开启持续时间决定。
通过精确控制供油量这里也能实现按ë =1 运行。
与此相反,带汽油直接喷射和浓度分区功能的发动机,在较宽的负荷范围内以低燃油空气混合比工作。
昂贵且易受硫腐蚀的废气后处理装置,例如直喷式汽油发动机上使用的在带有电子气门控制系统的发动机上因此就不需要了。
宝马VANOS发动机技术图中每个进气门分别有两组凸轮控制,一组是高速凸轮,一组是低速凸轮。
红色圆框内就是可变气门行程的控制机构。
当发动机在低转速范围时,红色的控制活塞是落在气门座内的。
这样高速凸轮只能驱动气门座向下行程而不能带动整个气门动作,整个气门由低速凸轮驱动气门顶向下行程,这样获得的气门开度就较小。
当发动机在高转速范围时,红色的控制活塞在液压的驱动下从气门座推入到气门顶中,等于是把气门座和气门刚性的连接在一起,当高速凸轮驱动气门座时就能带动气门向下行程获得较大的气门开度。