推荐-第一章 音响工程基础知识—声学基础 精品
专业音响系统培训1-声学基础常识

当温度为15 ℃时, 声波在空气, 水和钢中的声速分别为340 m/s, 1 450 m/s 和5 100 m/s. 当温度升高时, 声速略有增加.
周期、波长、频率
• 声波在一个周期内传播的距离称为波长, 用符号λ 表示, 单 位为:m;声波在每秒钟内周期性振动的次数称为频率, 用符号f表示, 单位为:Hz; • 声速, 波长和频率之间的关系为: c=λ ·f • 声波完成一次振动所经历的时间称为周期,记作T,单位 为:s;
掩蔽效应
• 掩蔽效应是指同一环境中的其它声音会使聆听者降低对某 一声音的听力. 一个较强的声音往往会掩盖住一个较弱的 声音, 特别是当这两个声音处于相同的频率范围时.
• 掩蔽效应在音响技术中得到应用. 如一些降噪系统就是利 用掩蔽效应的原理设计的, 信噪比的概念及其指标要求也 是根据掩蔽效应提出来的. 在数字音源中, 可利用掩蔽效应 进行压缩编码.
f=1/T c=f ×λ= λ/T
T
2T t
0
1s
λ
• 声波在传播中会产生反射, 绕射和干涉等现象, 并具有一定 的传播规律. • 声波从一种媒质进入另一种媒质的分界面时, 会产生反射 现象. 例如声波在空气中传播时, 若遇到坚硬的墙壁, 一部 分声波将反射.如图(a)所示, 反射角等于入射角, 反射声波 好像从墙后的另一声源s′发射出来一样, s′被称为声像. 声 像s′与声源s到墙壁的距离相等.
人耳的听觉定位特性
• 人耳不但能分辨出声音的响度、音调和音色,而且还能分 辨出生源的方向和深度,既所谓空间印象感觉,这种感觉 是由人耳的听觉定位特性引起的。
• 产生听觉定位的原因是很复杂的,主要是靠声音传到两耳 的强度差(声级差)、时间差(相位差)、音色差,通过 这些差别作用于人中枢神经系统,人们即可分辨出生源的 方位。因此,强度差、时间差、音色差被称为听觉定位三 大要素。
初级音响师速成实用教程-第一章

第一章声学基本知识第一节声音的基本性质一、声音的产生与传播声音是客观物体振动,通过介质传播,作用人耳产生的主观感觉。
语言、歌唱、音乐和音响效果以及自然界的各种声音,都是由物体振动产生的。
例如我们讲话时,如果将手放在喉部,就会感到咽喉部在振动。
人的发声器官(声带),乐器的弦、击打面、薄膜等,当它们振动时,都会使周围的空气质点随着振动而造成疏密变化,形成疏密波,即声波。
物体振动产生的声音,必须通过空气或其他媒质传播,才能使我们听到。
没有空气或其他媒质,我们就听不到声音。
月球上没有空气,所以月球是“无声的世界”。
那么,空气又是怎样传播声音的呢?我们还以敲鼓为例来说明。
我们敲鼓的时候,鼓膜产生振动,使鼓膜平面发生凸凹变化。
如图1-1(a)所示,当鼓膜凸起时,鼓膜上面A处的空气受到鼓膜的压挤而密度变大,形成密部。
这部分密度大的空气又会压挤邻近B 处的空气,使B处的空气有变成密部的趋势。
但鼓膜很快又凹下去,如图1-1(b)所示,它的表面形成一个空隙,A处空气密度变小,形成疏部。
这时,B处的空气正在受到压挤变成密部,并且有使C处空气变成密部的趋势。
当鼓膜再一次凸起时,如图1-1(c)所示,A处空气又受到鼓膜压挤重新变成密部,B处空气在压挤C处空气的过程中,自己密度变小成为疏部,C处空气变成了密部。
这样,鼓膜来回地振动,使密部和疏部很快由一个气层传到另一个气层,振动的空气向四面八方传开就形成了声波。
实际上,空气质点只是在原地附近振动,并没有随着声音传播到远处去,这就像我们向平静的水面扔石子时,会在水面激起了一圈圈向外扩展的水波一样,水面上漂浮的落叶只是在原地上下振动而不随着水波向远处移动。
不过,水波和声波是不同性质的两种波。
水波传播时,水质点的振动方向是上下的,和水波传播的方向互相垂直,这种波称为横波(严格地讲,水波不完全是横波);声波传播时,空气质点的振动方向和声波传播的方向在一条直线上,这种波称为纵波。
声波传播到人耳后,人耳是怎样听到声音的呢?我们知道,人耳是由外耳、中耳、内耳组成的,如图1-2所示。
音响系统工程培训教程

音响系统工程培训教程音响系统工程是一门涉及声学、电子学、建筑学等多学科知识的综合性技术。
它旨在为各种场所,如会议室、剧院、体育馆、家庭影院等,提供高质量的声音重现和传播。
本教程将为您介绍音响系统工程的基础知识、设计原则、设备选型、安装调试以及常见问题解决等方面的内容,帮助您初步了解和掌握音响系统工程的核心要点。
一、音响系统工程基础知识(一)声音的基本特性声音是由物体振动产生的机械波,通过空气等介质传播到人耳,引起听觉感受。
声音的基本特性包括频率、振幅、波长和相位。
频率决定了声音的音调高低,振幅决定了声音的响度大小,波长和相位则影响声音的传播和干涉现象。
(二)声学原理声学是研究声音产生、传播、接收和效应的科学。
在音响系统工程中,需要了解声波的反射、折射、衍射、吸收和扩散等现象,以及房间声学的相关知识,如混响时间、驻波、声聚焦等,这些因素都会对音响系统的性能产生重要影响。
(三)音响系统的组成一个完整的音响系统通常由声源、信号处理设备、功率放大器和扬声器等部分组成。
声源可以是麦克风、CD 播放器、电脑等;信号处理设备包括调音台、均衡器、效果器等,用于对声音信号进行调节和处理;功率放大器用于将处理后的信号进行放大,以驱动扬声器发声;扬声器则是将电信号转换为声音信号的最终设备。
二、音响系统工程设计原则(一)目标和需求分析在设计音响系统之前,首先需要明确系统的使用场所、用途、听众数量和声学环境等因素,确定系统的性能指标和功能要求,如声音覆盖范围、音质清晰度、音量大小等。
(二)扬声器布局扬声器的布局是影响音响系统性能的关键因素之一。
根据场所的形状、大小和声学特性,选择合适的扬声器类型(如点声源扬声器、线阵列扬声器等)和安装位置,以实现均匀的声音覆盖和良好的声像定位。
(三)功率和增益计算根据扬声器的灵敏度、功率和声音覆盖范围等参数,计算所需的功率放大器功率和系统增益,确保系统能够提供足够的音量和动态范围,同时避免过度放大导致失真和噪声。
音响基础知识讲解

音响基础知识一、声学基础:1、名词解释(1)波长——声波在一个周期内的行程。
它在数值上等于声速(344米/秒)乘以周期,即λ=CT(2)频率——每秒钟振动的次数,以赫兹为单位(3)周期——完成一次振动所需要的时间(4)声压——表示声音强弱的物理量,通常以Pa为单位(5)声压级——声功率或声强与声压的平方成正比,以分贝为单位(6)灵敏度——给音箱施加IW的噪声信号,在距声轴1米处测得的声压(7)阻抗特性曲线——扬声器音圈的电阻抗值随频率而变化的曲线(8)额定阻抗——在阻抗曲线上最大值后最初出现的极小值,单位欧姆(9)额定功率——一个扬声器能保证长期连续工作而不产生异常声时的输入功(10)音乐功率——以声音信号瞬间能达到的峰值电压来计算的输出功率(PMPO)(11)音染——声音染上了节目本身没有的一些特性,即重放的信号中多了或少了某些成份(12)频率响应——即频响,有效频响范围为频响曲线最高峰附近取一个倍频程频带内的平均声压级下降10分贝划一条直线,其相交两点间的范围2、问答(1)声音是如何产生的?答:世界上的一切声音都是由物体在媒质中振动而产生的。
扬声器是通过振膜在空中振动,使前方和后方的空气形成疏密变化,这种波动的现象叫声波,声波使耳膜同样产生疏密变化,传级大脑,于是便听到了声音。
(2)什么叫共振?共振声对扬魂器音质有影响吗?答:如果物体在受迫振动的振动频率与它本身的固有频率相等时,称为共振当物体产生共振时,不需要很大的外加振动能量就能是使用权物体产生大幅度的振动,甚至产生破坏性的振动。
当扬声器振膜振动时,由于单元是固定在箱体上的,振动通过盆架传递到箱体上。
部分被吸收,转化成热能散发掉;部分惟波的形式再辐射,由于共振声不是声源所发出的声音,将会影响扬声器的重放,使音质变坏,尤其是低频部分(3)什么是吸声系数与吸声量?它们之间的关系是什么?答:吸声性能拭目以待好坏通常用吸声系级“α”表示,即α=1-K;吸声量是用吸声系数与材料的面积大小来表示。
音响技术基础知识

19
第1章 音响技术基础知识
3) 音量(Intensity) 音量是指声音的强度或响度,标志声音的强弱程度。它 主要与声源振动幅度的大小有关,太弱了听不见,太强了会 使人受不了。人耳所能听到的声强约为0~12 dB,寂静的室内 噪声约为30 dB,在白天室内噪声可达45 dB。
(1-1)
3
第1章 音响技术基础知识
1.1.2 声音的特性参数 1. 频率与倍频程 倍频程是用来比较两个声频大小的,两个不同频率的声
音作比较时,起决定意义的是两个频率的比值,而不是它们 的差值。
倍频程定义为两个声音的频率或音调之比的对数,其公 式为
(1-2)
4
第1章 音响技术基ቤተ መጻሕፍቲ ባይዱ知识
2. 声阻抗与特性阻抗 媒质中某点的声压和质点速度的复数比值称为声阻抗率, 其单位是Pa·s/m(帕·秒每米),它的实部是声阻率,虚部是声抗 率。 声场中声阻抗Za定义为表面上的平均有效声压p与经过有 效体积的速度U之比,即
(1-9)
11
第1章 音响技术基础知识
声功率级指的是对待测声功率与基准声功率的比值取常 用对数后再乘10所得的值,单位dB,用LW表示 ,即
(1-10)
12
第1章 音响技术基础知识
13
第1章 音响技术基础知识
14
第1章 音响技术基础知识
6. 频谱与谱级 声源发出的声音并不是单一频率的,而是同时含有许多 复杂的频率。频谱是把时间函数的分量按幅值或相位表示为 频率函数的分布图形。根据声音的不同,它的声谱可能是线 谱、连续谱或二者之和,即混合谱。实际的声音是由许多不 同频率、不同强度的纯音组合而成的。
1.1.3 听觉特性 1. 听觉的感受性 人类听觉感受的动态范围很宽,能感受到的最小声压级
音响工程师声学知识

音响工程师声学知识音响工程师必备声学知识以下这些声学基础知识是音响工程师必须掌握和知道的,提供给各位阅读参考。
房间共振一些内装修材料比较坚硬的房间内,当声源发声时,常会激发这个房间内的某些固有频率(或称简正频率)的声音,即出现民房间共振现象。
当发生共振现象时,声源中某些频率特别地加强加了。
例如,噪声能使灯罩或窗玻璃产生振动而发声,而且声音的音调一一定的。
说明物体被一外界干扰振动激发时,将按照客观存在本身所具有的共振频率之一而振动。
激发频率越接近物体的某一共振频率,共振响应就越大。
就一个管乐来说,是管中的空气柱在共振,其共振频率主要由空气柱的长度来决定。
在一个房间中,空气振动的共振频率由主要由房间的大小来决定。
此外,这种房间共振还表现为使某些频率(主要是低频)的声音在空间分布上很不均匀,即出现了在某些固定位置上的加强(峰)和某些固定位置上的减弱(谷)。
声源的指向性人的头和扬声器与低频声的波长相比是小的,这种情况下可视为无指向性点声源,但对高频声,就具有明显的指向性。
频率高,声波波长短,声源下面的声压比背面和侧面大得多,直达声声能就集中于辐射轴线附近,指向性强;而低频声,声源前后的声压变化不大。
实际上,演员在舞台上的对白或演唱,随频率的高低都带有指向性。
人在话讲时,并不是均匀地向四周辐声音的,而是下面最响,背后最轻,也即沿着嘴唇前面有一定的指向性,与发声者相同距离的前、后位置,对于较高频率的语言声,其响度的差别可达1倍以上。
因此,站在讲话者后面或侧面的人,由于直达声中缺少很重要的.高频成分,很难清听懂。
如果适当地在讲话者的周围加设反射面,可以提高讲话者后面的清晰度,但高频声比低频声更容易被墙面材料和空气所吸收,所以在讲话者后面时听起来总是比较差些。
所以,厅堂形状的设计、场声器位置的布置,都要考虑声源的指向性。
混响时间什么是混响时间?当室内声场达到稳态,声源停止发声后,声压级降低60dB所经历的时间称为混响时间,记作T60或RT,单位是秒(s)。
音响师入门基础知识
音响师入门基础知识音响师入门基础知识1.什么是音场的宽度及深度一般理解是二声道(或多声道)扩声时,声音辐射的水平角度。
深度就是纵深感了。
这些就是平常我们所说的声音的立体感。
2.什么是音场?音场就是声场,就是音源辐射的声能,通过媒体质点的运动以球面方式向四周扩散。
媒体中有声波存在的区域称为声场。
说明白一点,就听得声音的范围。
3.什么是激励器,激励器的工作原理过程是怎么样的啊?声音激励器又称频谱增强器,它与混响效果器一样,是美化声音效果的一种装置。
它的作用是对高音细节和低音分别进行激励和提升,并能滤除“咝咝”声和发闷的低音频率。
使低音更加丰满浑厚中高音更加明亮,人声更有感染力,提高了声音的清晰度,减少了声音背景的咝咝声和低音的模糊度。
把声音修饰得更丰满、更透亮更完美。
声音激励器低音提升的原理是通过一个低音激励器,把音乐信号中的基音激励产生极为丰富的偶次谐波(偶次泛音),这些新的偶次谐波恰好是在基音的八度音范围,产生特别适合人的听觉感受。
与此同时,还能滤除50-80HZ之间发闷的低音频率,把低音修饰得柔而不闷,人声更为透亮。
声音激励器对高音细节的激励是通过连续不断分析音源信号中的高音成分,自动修饰激励高频分量不足的声音信号,并能滤除由于高音提升后出现的咝咝声。
4.什么是均衡器?主要有哪几种?均衡器是频率均衡器的简称。
主要对音频范围内的设备或系统频率进行调整(提升或衰减)。
一般可分为图示式均衡器及参量式均衡器。
图示式均衡器,一般将需要调整的电位器做成滑杆式。
针对不同频点,对应的调整电位器进行向上提升或向下衰减。
从电位器滑杆的不同位置,看出各频点的补偿状况即为图示式。
参量式均衡器就是参数可调的音调控制器。
可对2-4个频段中的频点作提升或衰减(俗称音调控制器)。
调音台各通道中的音调控制即为参量式均衡器。
5.声场布置的原则有哪些啊?其实所说的声场布置得原则,应该是采用什么形式来布置声场。
谈到声场布置,其实质是扬声器的布置。
现代音响和调音技术音响技术基础
第1章 音响技术基础
1.1 声学基础 1.2 声源、 声场及室内声学 1.3 音响系统旳分类和构成 1.4 音响系统旳电声性能指标 1.5 立体声基础
第1章 音响技术基础
1.1 声学基础
1.1.1 声波旳基本特征 1.声波和声音 声波是机械振动或气流扰动引起周围弹性介质发
生波动旳现象。声波也称为弹性波。声波旳定义有两 种:一是弹性媒质中传播旳压力、应力、质点位移、 质点速度等旳变化或几种变化旳综合;二是声源产生 振动时,
第1章 音响技术基础
迫使其周围旳空气质点往复移动,使空气中产生附加 旳交变压力,这一压力波称为声波。产生声波旳物体 称为声源。传播声波旳物体称为媒质。声波所涉及旳 空间范围称为声场。
扬声器发声时,会引起周围空气旳振动而产生声 波,其传播方向与空气质点振动方向相同。所以,能 够说声波是一种纵波。
声音是声源振动引起旳声波传播到听觉器官所产 生旳感受。所以我们说,声音是由声源振动、声波传 播和听觉感受这三个环节所形成旳。
第1章 音响技术基础
1)音调(Pitch) 音调表达声音频率旳高下,主要与声源每秒钟振动 旳次数有关,是人耳对声调高下旳主观评价尺度。它 旳客观评价尺度是声波旳频率。音调低,表达振动频 率低,声音显得深沉;音调高,表达振动频率高,声 音就尖刺。例如C调旳音符6,相当于440Hz,而音符 6 ·,相当于880Hz,音符6 ∶ 相当于1760Hz。
Lpr表达
p2
Lp
10lg[
f pr2
]
f0
Lp
10 lg
f f0
(1―11)
第1章 音响技术基础
上式是声压谱级旳表达式,用类似措施也能够表 达其他参量旳谱级。式中p为经过滤波系统旳有效声 压,pr为基准值;Δf为滤波器旳有效带宽,Δf0为基准 带宽。
初级音响知识培训
三、分频器 是指将全频带音乐信号按需要划分为高音、低音输出或者高音、中音、 低音输出的电子装置。它可分为两种: 1、功率分频器(无源分频):位于功率放大器之后,设置在音箱内,通 过LC滤波网络,将功率放大器输出的功率音频信号分为低音,中音和高 音, 分别送至各自扬声器,这种方法被称为被动分频。 连接简单,使用 方便,但消耗功率,出现音频谷点,产生交叉失真,它的参数与扬声器 阻抗有的直接关系,而扬声器的阻抗又是频率的函数,与标称值偏离较 大,因此误差也较大,不利于调整。 2、电子分频器(有源分频):将音频弱信号进行分频的设备,位于功率 放大器前,分频后再用各自独立的功率放大器,把每一个音频频段信号 给予放大,然后分别送到相应的扬声器,这种方法被称为主动分频。因 电流较小故可用较小功率的电子有源滤波器实现,调整较容易,减少功 率损耗,及扬声器单元之间的干扰。使得信号损失小,音质好。但此方 式每路要用独立的功率放大器,成本高,电路结构复杂,适用于专业扩 声系统。
四、线材 线材对声音的影响是很大的,在高档器材中由为突出。不同线材不 仅电阻不同,而且电容、电感也各不相同。由于电容、电感的存在,就 有了与频率有关的容抗、感抗。这样滤波的作用就产生了,不同的线材 对不同频率信号表现出不同的阻抗。因此,线材就不只是一条通道了, 它还有滤波的作用,这足以“偷”去不少有用的信号,而使听音效果发 生明显改变而下降。因此,挑选适当的线材是必要的,对整套器材有互 补作用。线材一般可分为单芯线,多心线和复合线,单芯线常用的是美 国产的线圣;多心线的常用的是美国产的怪兽;复合线常用的是荷兰产 的范登豪。线材根据材质还分普通无氧铜单晶铜,合金材料和无机材料。 成分标示 XN(例如6N即 9.99999%纯铜含量)
下面是一些功放的图例,大家请给出其类型
音响工程师必备知识之声学基础
音响工程师必备知识之声学基础(一)声学基础声音在人类生活中具有重要意义,人们就是靠声音传递语言、交流思想的。
声音来源于物体的振动。
例如人的发声是由声带动引起的;扬声器发声则产生于扬声器膜片的振动;锣、鼓是靠锣面、鼓面膜的振动发声的;弦乐器是靠弦的振动发声的;笛、箫等则依靠空气柱的振动发声……正在发出声音的振动物体称为声源,传播声音的必要条件。
没有物体的振动有传2)、演唱歌声的频率范围比较宽,可分为男低音、男中音、男高音、女高音等5个声部。
基音的频率范80-1100HZ,包括全部谐波(泛音)频率范围为80-8000HZ。
5个声部的范围是:80-294HZ;110-392HZ;147-523HZ;196-698HZ和262-1047HZ。
3)、声压级正常谈话时语言的声功率为1微瓦,大声讲话时可增加到1毫瓦。
正常讲话时与讲话人距1米时的平均声压级为65-69dB。
4)、动态范围语言的动态范围(最大声压级与最小声压级之差值)为20-40dB,戏剧60-80dB。
2、音乐信号音乐信号的频谱范围很宽。
它与乐器的类型有关。
在乐器中管风琴具有最宽的基音范围,量分布范围很宽,从30-16000HZ随着频率的升高而减小,低音(包括80HZ以下的超低音)能量最大;中低音的强度稍低,高音强度则迅速下降。
因此扬声器箱中的低音、中音和高音扬声器单元的功率配置必须与之相适应。
当分频频率为570HZ时,低音和中高音的功率比为1.42;当分频频率为900HZ时,低音和中高音的功率比为1.78;当分频频率为1430HZ时,低音和中高音的功率比为2.54。
3、复杂信号波形的频谱无论人声、乐器声还是自然界中各种声音都不是单音(或纯音),而是复合音,其波形都不是正弦波,但它们都可以分解成若干强度的不同频率的谐波。
声音的音色主要由这些谐波的数量、强度、分布和它们之间的相位关系决定。
自然界中的随机噪声是非周期性重复波形,包含在系统给定频响特性范围内的全部频率分量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上限和下限截止频率的一般关系
f2 2n f1
式中:n为倍频程的系数,或称倍频程 数,它可以是分数或整数。例如:n=1/3即 指1/3倍频程;n=1即指倍频程。
2020年11月1日11时13分
中心频率
频带的中心频率fc是上、下截止频率的几何平 均,即
fc f1f2
2020年11月1日11时13分
声强级与声压级关系
• 由于声强与声压存在着关系I=p2/ρc,将其 代入式中得
P I
2c
P
10 lg 10 lg
20 lg
L L I I P P ref
2 c
ref
P ref
2020年11月1日11时13分
声功率级(Lw或SWL)
LW
10 lg W Wref
2020年11月1日11时13分
房间的平均吸声系数
A S
S1
S2
A S3
Sn
2020年11月1日11时13分
声波的干涉
• 若两个频率相同、振幅相 等、相位差为零或恒定的 波在同一介质中传播,则 在空间某些地方振幅最大, 在某些地方振幅最小,这 种现象称为波干涉现象, 这两个波叫相干波。
• 当振动频率、振幅和传播 速度相同而传播方向相反 的两列波叠加时,就产生 驻波
2020年11月1日11时13分
声音的传递
2020年11月1日11时13分
二、频率、声速和波长
• 振动体每秒振动的次数称为频率,用符号f 表示,频率的单位是赫兹(Hz),简称赫。
• 声波在传声介质中,每秒钟传播的距离称 为声波的传播速度,简称声速,用符号c表 示,单位是米/秒(m/s)
• 物体或空气分子每完成一次往复运动或疏 密相间的运动所经过的距离称为波长,用 符号λ表示,单位是米
• 当l<λ时,波动性为主; • 当l>λ时,粒子性为主; • 当l≈λ时,两种性质在一定情况下都会表现
出来,此时情况比较复杂
2020年11月1日11时13分
声波的衍射
(a) 声波的绕射
2020年11月1日11时13分
(b) 小障板对声传播的影响
声波的反射
2020年11月1日11时13分
声波的透射与吸收
2020年11月1日11时13分
声压级(Lp或SPL)
Lp 20 lg P (dB) Pref
式中,参考声压Pref =2×10-4(μbar)=2×105(Pa),为1kHz时的闻阈声压值
2020年11月1日11时13分
声强级(LI或SIL)
L 10 lg I
I
I ref
式中,参考声强Iref=10-12(w /m2)为1kHz时的闻阈声强值
2020年11月1日11时13分
声源的指向性
声源的指向性
2020年11月1日11时13分
人说话时的指向性图案
声源的指向性
2020年11月1日11时13分
指向性的影响
2020年11月1日11时13分
第二节 声波的度量
• 声压、声强、声功率 • 声压级、声强级和声功率级 • 声级的叠加
2020年11月1日11时13分
音域分段 超低音 低音 中低音
中高音 高音
三、频程
• 在声学测量中,不可能测量这个范围中的 每一个频率,而总是在某一频率区间取特 定值进行测量。这个频率区间称为频带。
• 频带由上限频率f2和下限频率f1确定,f1、 f2又称为截止频率。f1、f2的间隔可以用频 率比或以2为底的对数表示,称为频程。
• 用声压或声强来表示声音的强弱,数字太 长,很不方便
• 常采用按对数方式分级的办法作为表示声 音大小的常用单位,这就是声压级、声强 级和声功率级
2020年11月1日11时13分
级
级
系数
lg
测量值 参考值
级:对数概念,无量纲单位,为表示方便,以dB为单位 系数:用于扩大计算值的表示范围,对于力、长度单位, 取值为20 ,对于能量概念,取值为10 公式计算值会因参考值的变化而变化
2020年11月1日11时13分
1/3倍频程和1/1倍频程的中心频率和带宽
2020年11月1日11时13分
1/3倍频程和1/1倍频程的中心频率和带宽
2020年11月1日11时13分
四、声波的特性
声波在室内的反 射、吸收、透射 和绕射现象
2020年11月1日11时13分
波的性质
• 判别的关键在于障碍物的尺寸l与波长λ的比 值。
一、声压、声强、声功率
• 由声波引起的压强变化称为声压,用符号P 表示,单位为微巴(μbar)或帕(Pa)
• 声源在单位时间内向外辐射的声能量叫做 声功率,用符号W表示,单位为瓦(w)
• 声场中某点的声强,是指在单位时间内 (每秒钟),声波通过垂直于声波传播方 向单位面积的声能量,用符号I表示,单位 为瓦/米2(w /m2)
根据能量守恒定律,设 单位时间内入射到物体上 的总声能为Eo,反射的声 能为Er,物体吸收的声能 为Ea,透过物体的声能为 Et,则:
Eo=Er+Ea+Et
2020年11月1日11时13分
吸声系数
从入射波与反射波所在的空间考虑,定义 材料的吸声系数α为
1 1 Er Ea Et
Eo
Eo
吸声系数α的值越大,吸声性能越好
2020年11月1日11时13分
平方反比定律
在无反射声波的自由声场中,点声源发 出的球面波,均匀向四周辐射声能,因此, 距离声场中心为r的球面上的声强为
I
W
4r 2
2020年11月1日11时13分
பைடு நூலகம்
二、声压级、声强级和声功率级
• 人的听觉与声压、声强不是呈正比例关系, 而是近似的与它们的对数值成正比
式中,参考功率Wref=10-12(w)为1kHz时的闻阈声功率值
第一章 声学基础
北京联合大学 音响工程技术课程组
2020年11月1日11时13分
第一节 声波
一、声波的产生与传播 二、频率、声速和波长 三、频程 四、声波的特性
2020年11月1日11时13分
一、声波的产生与传播
2020年11月1日11时13分
声波的产生
一、声波的产生与传播
点 声 源 的 传 播
2020年11月1日11时13分
频率、波长和音调对照表
频率(Hz) 20 40 50 100 200 400 500
1000 5000 10000 20000
2020年11月1日11时13分
波长(m) 17.20 8.60 6.88 3.44 1.72 0.86 0.688 0.344 0.0688 0.0344 0.0172