承载力计算-抗弯-矩形截面-双筋excle计算公式

合集下载

单筋,矩形,正截面受弯,承载力计算

单筋,矩形,正截面受弯,承载力计算
M Mu 1 fcbh02 10.5 MA Mu fyAsh0 10.5 7
四、适用条件验算
(1) 防止少筋脆性破坏
min
min 时取 min
(2) 防止超筋脆性破坏
b或x bh0
As
bh0
max b
fc fy
A
h h0 a
b
As
Ⅰ钢筋: b 0 .614 Ⅱ钢筋: b 0 .544 Ⅲ钢筋: b 0 .518
(2)受压区合力C的作用点不变。
x1xc
1、 A1都是经验系数 凝, 土通 强过 度 6 混 查
三、基本计算公式
x 1xc
Mu
1 fc x/2 C h0
T fy As
x h0
X 0 1fcbxfyAs
M0
M
Mu
1
fcbx(h0
x )
2
x
M
Mu
fy As(h0
) 2
1 fcbh0 fyAs
ee c fc1 1 c
n
0
e 当e 0 <ec≤ ecu 时(水平段):
o
e0
ecu
c 0 fc
(4) 钢筋的应力-应变方程为:
钢筋的应力等于钢筋应变与其弹性模量的乘积,
f 但不大于强度设计值 fy 。极限拉应变取为 0.01。 y
Ese e ey fy e ey
A
Es
1
ey
弹塑性
配筋率 A s bh 0
8
开始

M、
b、
h、
a

s
f y、

1
f c、
A s、
f t、
m

in

矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算一、矩形截面大偏心受压构件正截面的受压承载力计算公式 (一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件,可以得到下面两个基本计算公式:s y s y c A f A f bx f N -+=''1α (7-23)()'0''012a h A f x h bx f Ne s y c -+⎪⎭⎫ ⎝⎛-=α (7-24)式中: N —轴向力设计值;α1 —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S 合力点之间的距离;a he e i -+=2η (7-25) a i e e e +=0 (7-26)η—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e 0 —轴向力对截面重心的偏心距,e 0 =M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20㎜中的较大者; x —受压区计算高度。

(2)适用条件1) 为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求b x x ≤ (7-27)式中 x b — 界限破坏时,受压区计算高度,o b b h x ξ= ,ξb 的计算见与受弯构件相同。

2) 为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:'2a x ≥ (7-28) 式中 a ′ — 纵向受压钢筋合力点至受压区边缘的距离。

(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得s s s y c A A f bx f N σα-+=''1 (7-29)⎪⎭⎫ ⎝⎛'-+⎪⎭⎫ ⎝⎛-=s s y c a h A f x h bx f Ne 0''012α (7-30) ()'0''1'2s s s s c a h A a x bx f Ne -+⎪⎭⎫⎝⎛-=σα (7-31)式中 x — 受压区计算高度,当x >h ,在计算时,取x =h ;σs — 钢筋As 的应力值,可根据截面应变保持平面的假定计算,亦可近似取:y b s f 11βξβξσ--=(7-32)要求满足:y s y f f ≤≤σ'x b — 界限破坏时受压区计算高度,0h x b b ξ=;b ξξ、 — 分别为相对受压区计算高度 x/h 0和相对界限受压区计算高度x b /h 0 ;'e e 、′— 分别为轴向力作用点至受拉钢筋A s 合力点和受压钢筋A s ′合力点之间的距离 a he e i -+=2η (7-33) ''2a e he i --=η (7-34) (2)对于小偏心受压构件当bh f N c >时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:()()s s y c a a h A f h h bh f e e a h N -+⎪⎭⎫⎝⎛-≤⎥⎦⎤⎢⎣⎡---'0''00'22 (7-35 )式中 '0h — 钢筋's A 合力点至离纵向较远一侧边缘的距离,即s a h h -='0。

双筋矩形截面正截面承载力计算公式及适用条件

双筋矩形截面正截面承载力计算公式及适用条件

表3.2.5 T形、I形及倒L形截面受弯构件翼缘计算宽度bf'
项次
考虑情况
1
按计算跨度l0考虑
2
按梁(纵肋)净距sn考虑
按翼缘 3 高度hf'
考虑
hf'/h0 ≥0.1 0.1 > hf'/h0 ≥0.05
hf'/h0 <0.05
T形截面、I形截面
肋形梁 肋形板
独立梁
l0/3
l0/3
b + sn

倒L形截面 肋形梁 肋形板
l0/6
b + sn/2

b + 12hf'

b + 12hf' b + 6hf' b + 5hf'
b + 12hf'
b
b + 5hf'
注:表中b为梁的腹板宽度。
2. T形截面的分类
第一类T形截面:中性轴通过翼缘,即x hf 第二类T形截面:中性轴通过肋部,即 x>hf
【解】查表得 fc=11.9N/mm2,ft=1.27N/mm2, fy=360N/mm2,α1=1.0,ξb=0.518
假定纵向钢筋排一层,则h0 = h-35 =400 -35 = 365mm, 1. 确定翼缘计算宽度
根据表3.2.5有: 按梁的计算跨度考虑: bf′ =l / 3=4800/3=1600mm 按梁净距sn 考虑:bf′=b+sn =3000mm 按翼缘厚度hf′考虑:hf′/h0 =80/365=0.219>0.1, 故不受此项限制。
【例3.2.6】某独立T形梁,截面尺寸如图3.2.13◆所示, 计算跨度7m,承受弯矩设计值695kN·m,采用C25级混凝 土和HRB400级钢筋,试确定纵向钢筋截面面积。

正截面抗弯承载力计算公式

正截面抗弯承载力计算公式

正截面抗弯承载力计算公式弯曲方向上的抗弯矩可以通过以下公式计算:M=σ*y*S其中,M为弯矩,单位为N·mm;σ为截面的应力,单位为N/mm²;y为截面的离心距,即截面中心到受拉纤维的距离,单位为mm;S为截面的抵抗矩,单位为mm³。

剪切方向上的抗剪力可以通过以下公式计算:V=τ*A其中,V为剪力,单位为N;τ为截面中剪应力,单位为N/mm²;A为截面的剪切面积,单位为mm²。

综合考虑两种方向上的抗弯承载力,可以得到正截面抗弯承载力的计算公式:W = Min(M/b , V/yc)其中,W为正截面的抗弯承载力,单位为N;M为弯矩,单位为N·mm;b为截面的宽度,单位为mm;V为剪力,单位为N;yc为截面的离心距,即截面中心到受拉纤维的距离,单位为mm。

在实际设计中,为了保证结构的安全性,通常需要根据材料的强度参数和结构的要求来确定截面的尺寸和形状。

在正截面抗弯承载力的计算过程中,需要注意以下几个要点:1.材料的强度参数:计算前需要明确截面所采用的材料的强度参数,如屈服强度和抗拉强度等。

2.截面形状的选择:根据结构的要求和截面的受力条件,选择适当的截面形状,如矩形、圆形、梯形等。

3.弯矩和剪力的确定:根据结构的受力分析,确定截面上的弯矩和剪力大小。

4.抵抗矩和剪切面积的计算:根据截面形状的不同,采用相应的计算方法计算抵抗矩和剪切面积。

5.安全系数的考虑:为了保证结构的安全性,在计算过程中通常会引入相应的安全系数,以考虑不同因素对结构性能的影响。

总之,正截面抗弯承载力的计算需要考虑弯曲方向上的抗弯矩和剪切方向上的抗剪力,通过综合考虑两者,可以得到正截面的抗弯承载力的计算公式。

在使用公式进行计算时,需要明确材料的强度参数,选择适当的截面形状,并考虑安全系数的影响,以确保结构的安全性。

矩形截面混凝土梁受弯计算表格

矩形截面混凝土梁受弯计算表格

㎜2
20
¢=
8
mm >

2513.27 mm2 70 x
OK! NO!!!
验算受压区高度x=fyAs1/(α1fcb)=
360 N/㎜2
A) 单筋矩形截面在纵向受拉钢筋达到充分发挥作用或不出现超筋破坏所 能承受的最大弯矩设计值Mu,max
2 M u ,max = a1 f c bh0 x b (1 - 0.5x b )
=
415.68 kNm
B)单筋矩形截面已知弯矩求配筋 M实际= 128 kNm 704.75 ㎜2
AS =
纵向受拉钢筋总截面面积 As=As1+As2= 1999.51 ㎜2 受拉钢筋取钢筋直径
20¢=Biblioteka 2实取9 2
mm ≤

实配钢筋面积AS= 2827.43 mm 受压钢筋取钢筋直径 12 ¢= 实取 实配钢筋面积AS= 2α 's= 226.19 mm 70.00 mm
2
OK!

OK!
x
验算受压区高度x=fyAs1/(α1fcb)=
3
为充分发挥受压钢筋A's的作用,取As2=A's=
942.48 mm2
AS1 =
a1 fcb
fy
2 (h0 - h0 -
2M )= a1 fcb
-450.91 ㎜2
纵向受拉钢筋总截面面积 As=As1+As2= 受拉钢筋取钢筋直径 实配钢筋面积AS= 2α 's=
491.57 实取 -45.41 mm
a1 fcb 2M (h0 - h02 )= fy a1 fcb
¢=
取钢筋直径
18
1017.88 mm2 322.5

第五章受弯承载力计算双筋矩形截面

第五章受弯承载力计算双筋矩形截面

M 0
hf M u 1 f cbf hf (h0 ) 2
判别条件:
h xh f M a1 f cbf hf (h0 ) 第一类 T形截面 2
f
f
• 截面设计时:
h xh f M a1 f cbf hf ( h0 ) 第二类 T形截面 2 • 截面复核时:
解两个联立方程,求两个未知数x和As:
M u M u1 + M u 2 M u1 As f y (h0 as ) M u 2 M u M u1 x 1 f cbx(h0 ) 2
Mu2 x f y (h0 ) 2
由求出x ,然后由式出As2:
As 2
_ φ 受压钢筋选用3 20mm钢筋,As’=941mm2 。
求:所需受拉钢筋截面面积As
【解】
由附表(纵向受力钢筋的混凝土保护层最小厚度表)知,
环境类别为二级b,假定受拉钢筋放两排,设保护层
最小厚度35mm为故设α s=35+25/2=47.5mm,则
h0=400-47.5=352.5mm
由混凝土和钢筋等级,查附表(混凝土强
1)求计算系数:
M 330 106 s 2 1.0 19.1 200 4002 1 f cbh0
0.446
1 1 2 s 1 1 2 0.4 46
0.672>b 0.55
∴应设计成双筋矩形截面。
取ξ = ξ b,
M u 1 f cbh (1
1 f cbx
fy
1

As1
As f y fy
As f y + 1 f cbx fy

抗弯矩形截面承载力计算表格(双筋)

抗弯矩形截面承载力计算表格(双筋)

于在电脑上用Excel和在PDA上用Pocket Excel进行简单的结构手算,程序根据新规范编制,如有什么疑问请联系我,
制,如有什么疑问请联系我,以便立刻修正!
2。程序中黄底红字的部分需要使用者根据实际情况输入,黑色的部分请
情况输入,黑色的部分请不要随便更改,除非你发现有错误!
email:lingzhi0512@OICQ:49551484如需获
混凝土强度及弹性模量
强度 fc ft Ec 强度 fy Es C20 类型 N/mm2 9.6 N/mm2 1.1 N/mm2 25500 类型 HPB235 N/mm2 210 N/mm2 210000
梁截面尺寸
b= 250 (mm) 梁宽度 b (mm) h= 500 梁高度 h (mm) ca= 35 混凝土保护层厚度 ca (mm) h0= 465 梁有效高度 h0=h-ca 纵向钢筋:3φ22 N= 3 纵筋根数 N (mm) φ= 22 纵筋直径 φ (mm2) As= 1140 纵筋面积 As=N*(Pi*φ ^2/4) ρ= 0.98% 纵筋配筋率 ρ =As/(b*h0) Ny= 2 压筋根数 Ny (mm) φ y= 20 压筋直径 φ y (mm2) Asy= 628 压筋面积 Asy=Ny*(Pi*φ y^2/4) ρ y= 0.54% 压筋配筋率 ρ y=Asy/(b*h0) ξ = 0.092 相对受压区高度 ξ =ρ *fy/(α 1*fc) 注意:ξ <ξ b,将继续计算! x= 43 (mm) 受压区高度 x=ξ *h0 注意:x < 2ca,受压钢筋不屈服,取x=2ca=70(mm) 近似计算! Mu= 147.1 (kN-m) 抗弯承载力 Mu 说明: 1。若ξ >ξ b,则说明纵筋超筋,需要减少纵筋面积再进行计算! 2。若 x < 2ca,则说明当压区混凝土达到极限压应变是受压钢筋还 未屈服,这时取 x=2ca近似计算!

[精华]混凝土结构的受弯构件正截面承载力计算

[精华]混凝土结构的受弯构件正截面承载力计算

第四章 受弯构件正截面承载力
(1)材料选用
▲混凝土:现浇梁板:常用C20~C30级混凝土; 预制梁板:常用C20~C35级混凝土。
(这是由于适筋梁的Mu主要取决于fyAs,因此RC受弯构 件的 fc 不宜较高)
▲钢筋:梁常用Ⅱ~Ⅲ级钢筋,板常用Ⅰ~Ⅱ级钢筋。 (RC受弯构件是带裂缝工作的,由于裂缝宽度和挠度变形
d
a'
0.5(1 ) 0.55
故取 x = xb
h0 即取 M1 s,max 1 fcbh02
(注:为提高破坏时的延性也可取x = 0.8xb)
第四章 受弯构件正截面承载力 (2)情况二:已知:M,b、h、fy、 fy ’、 fc、As’
求:As 未知数:x、 As
M f y As (h0 a)

x) 2
第四章 受弯构件正截面承载力 ▲基本公式的另一表达形式
基本公式 1 fcbx f y As
M
Mu
1 fcbx(h0

x) 2
f y As (h0

x) 2
当令 =x/h0
s=1-0.5
s= (1-0.5 ) 此两式可知: 、 s 、 s三个系

数只要知道其中一个,其余两个即可
其中M1 s,max1 fcbh02
第四章 受弯构件正截面承载力 ▲补充条件x= bh0或 = b的依据
由基本公式求得:
As

As

1 fc
fy
b h0
2
M
1 fcbh02 (1 0.5 )
f y (h0 a)
为使As 、 As’的总量最小,必须 使
d ( As As ) 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Es= 200000 (N/mm2)
α 1= β 1= ξ b= α E=
1.00 0.80 0.55 6.67
1.0<C50<内插<C80<0.94 0.8<C50<内插<C80<0.74 ξ b=β 1/(1+fy/0.0033Es) α E=Es/Ec
混凝土强度及弹性模量
强度 类型 C20 fc N/mm2 9.6 ft N/mm2 1.1 Ec N/mm2 25500
强度 类型 HPB235 fy N/mm2 210 Es N/mm2 210000
梁截面尺寸
b=
250
h=
500
cห้องสมุดไป่ตู้=
35
h0=
465
纵向钢筋:3φ22
(mm) (mm) (mm) (mm)
梁宽度 b 梁高度 h 混凝土保护层厚度 ca 梁有效高度 h0=h-ca
N=
3
纵筋根数 N
φ=
22 (mm) 纵筋直径 φ
ξ = 0.092
相对受压区高度 ξ =ρ *fy/(α 1*fc)
注意:ξ <ξ b,将继续计算!
x=
43 (mm) 受压区高度 x=ξ *h0
注意:x < 2ca,受压钢筋不屈服,取x=2ca=70(mm) 近似计算!
Mu= 147.1 (kN-m) 抗弯承载力 Mu
说明: 1。若ξ >ξ b,则说明纵筋超筋,需要减少纵筋面积再进行计算! 2。若 x < 2ca,则说明当压区混凝土达到极限压应变是受压钢筋还 未屈服,这时取 x=2ca近似计算!
As= 1140 (mm2) 纵筋面积 As=N*(Pi*φ ^2/4)
ρ = 0.98%
纵筋配筋率 ρ =As/(b*h0)
Ny=
2
压筋根数 Ny
φ y=
20 (mm) 压筋直径 φ y
Asy=
628 (mm2) 压筋面积 Asy=Ny*(Pi*φ y^2/4)
ρ y= 0.54%
压筋配筋率 ρ y=Asy/(b*h0)
强度及弹性模量
C25 11.9 1.27 28000
C30 14.3 1.43 30000
HRB335HRB400 300 360
200000 200000
C35 16.7 1.57 31500
C40 19.1 1.71 32500
C45 21.1 1.8 33500
C50 23.1 1.89 34500
C55 25.3 1.96 35500
钢筋和混凝土指标
C fc= ft=
30 C?(20,25,30,35,40,45,50,55) 混凝土等级 14.3 (N/mm2) 混凝土抗压强度设计值 fck 1.43 (N/mm2) 混凝土抗拉强度设计值 ft
Ec= HRB fy=
30000 (N/mm2) 混凝土弹性模量 Ec 335 HRB(235,335,400) 纵筋强度等级 300 (N/mm2) 纵筋抗拉压强度设计值 fy
相关文档
最新文档