橡胶模具设计中脱模斜度的确定
橡胶模具设计教程.

5.排气槽设计
一般排气槽宽为1.5~2mm,深0.05~0.5mm。
6.启模槽设计
启模槽的设计,应使启模容易、省力、迅速,不损坏模板。
启模槽深为4~6mm,则宽15~20mm。
7.模具的定位机构
(1)圆柱面定位
(2)圆锥面定位
(3)导柱、导套定位
四.橡胶模典型结构
总结
本章主要讲述橡胶的分类、成型工艺特点和橡胶制品的结 构工艺性;橡胶模的分类及基本结构,橡胶模成型尺寸的确定 和设计要点。要重点掌握橡胶模的典型结构、橡胶模分型面的 确定、浇注系统的设计和橡胶模的结构设计。
第二节 橡胶模设计
一.橡胶模分类及基本结构
(一)橡胶模分类
根据橡胶模制品的类型、模具的使用条件和操作方法的不同,橡胶模主 要可分为填压模、压注模和注射模。 1.填压模 将定量胶料或预成形半成品直接填入模具型腔中,然后合模,通过电热 式平板硫化机进行加压、加热、硫化等工艺得到橡胶模制品的模具。 2.压注模 将混炼过的胶料或半成品装入模具料室中,通过压机将胶料由模具的浇 注系统挤入模具的型腔内。 3.注射模 利用专用的注胶设备,将预热塑化状态的胶料强行挤压射入模具的型腔, 然后硫化、起模得到制品。
(三)橡胶模结构设计
1.浇注系统的设计
(1)主浇道的设计 主浇道可以直接设置在模板上,也可以设计成嵌套式的。 主浇道为圆锥孔,上小下大,锥度一般为1:12、1:10等;大头 出口处设计成圆角,圆角半径0.5~2.5mm左右;尽量短些,降 低胶料的消耗及压力和热能的损失。
(2)分浇道的设计 分浇道是胶料进入主浇道后和进入进料口充满型腔前,流
型面处由于留有缝隙,会在制品的工作面留有胶边和痕迹,经
修边整理,也很难达到较好的质量。
脱模斜度的设计原则

脱模斜度的设计原则一、引言在模具设计中,脱模斜度是一个非常重要的设计参数。
它直接影响到产品的成型质量和生产效率。
因此,正确地设计脱模斜度是保证产品质量和提高生产效率的关键之一。
二、脱模斜度的定义脱模斜度是指在模具中加入一定角度的倾斜,以使得模具中的零件能够顺利地从模具中取出而不会卡住或者损坏。
三、脱模斜度的分类1.正常脱模斜度:指产品表面与垂直方向所成的夹角,通常为1-3°。
2.特殊脱模斜度:指需要特别考虑材料流动方向或者加工方式等因素而设置的倾角。
四、脱模斜度的设计原则1.结合产品特点进行设计。
不同形状、尺寸和材质的产品所需的脱模斜度不同,需要根据实际情况进行调整。
2.保证产品表面质量。
设置适当的正常脱模斜度可以减少表面缺陷和气泡等问题。
3.考虑材料流动方向。
对于注塑件等需要充填材料的产品,需要根据材料流动方向设置特殊脱模斜度,以保证材料能够完全充填模具。
4.考虑加工方式。
对于需要进行后续加工的产品,需要考虑后续加工时的方便程度,如钻孔、铣削等。
5.考虑模具结构。
在设计脱模斜度时需要考虑模具结构的复杂程度和制造难度,以保证设计方案的可行性。
五、脱模斜度的实际应用1.注塑件的脱模斜度一般为1-3°,同时还需根据材料流动情况设置特殊脱模斜度。
2.压铸件的脱模斜度一般为1-2°,同时还需考虑铸件表面质量和后续加工要求。
3.拉伸件的脱模斜度一般为2-4°,同时还需考虑拉伸方向和表面质量要求等因素。
六、总结正确地设计脱模斜度是保证产品质量和提高生产效率的关键之一。
在实际应用中需要根据产品特点、材料流动方向、加工方式和模具结构等因素进行综合考虑。
影响橡胶制品脱模的因素及对策

影响橡胶制品脱模的因素及对策一般说, 橡胶模压制品都要通过相应的模具来进行成型加工, 一件橡胶制品经过高温、高压硫化后, 从模具模腔或模芯中取出俗称脱模。
而脱模不良是橡胶制品质量缺陷和影响生产效率的重要原因之一。
它可造成制件扭曲变形及撕裂等缺陷, 有的甚至损伤模具, 给正常生产带来麻烦。
研究影响橡胶制品脱模的不利因素, 对保证制品质量, 防止缺陷, 防止废品, 提高生产效率具有重要意义。
1影响橡胶制品脱模的因素橡胶制品脱模不良主要是指制品顶出时, 不能顺利脱落。
这是由许多影响因素所致的, 这些因素相互关系复杂, 影响程度与表现形式各不相同, 主要有橡胶制品设计、模具设计与制造、生产工艺、操作方法、模具保养等。
1.1橡胶制品设计对脱模的影响橡胶制品设计直接影响制品的脱模性能, 因此制品设计应满足制品易于脱模的要求。
制品设计中影响脱模的主要因素是脱模斜度, 为了开模取出制品, 在垂直分型面制品内外表面均应设有足够的脱模斜度。
有的制品虽有脱模斜度, 但取值太小有的制品只是外表面有斜度, 忽视了内表面以及内部的筋和毅等处的斜度;也有的制品根本没有斜度, 这些都给制品脱模带来困难。
制品出炉后, 因制品冷却而产生向心收缩, 在型芯或销子上产生很大的抱紧力, 而阻碍脱模。
若增加脱模斜度, 便可明显减少这个阻力, 也可避免因无斜度造成制品的撕裂等缺陷。
脱模斜度与制品的形状、厚度有关, 通常凭经验确定, 一般制品斜度都在1°~3°之间。
1.2模具设计与制造对脱模的影响1.2.1模具设计对脱模的影响橡胶模具是生产橡胶制品的主要装备之一, 模具按压出原理不同可分为注压模、压铸模、压制模模具设计是依据制品形状、特性和使用要求, 根据同一件橡胶制品而设计出几种不同结构的模具。
模具结构直接关系到制品质量、生产效率、模具加工难易程度和使用寿命等。
因此模具结构设计研究是相当重要的。
为了保证橡胶制品有正确的几何形状和一定的尺寸精度, 模具构设计应遵循以下几项原则:(1)掌握和了解橡胶制品所用材料的硬度、收缩率以及使用要求。
塑件脱模斜度

塑件脱模斜度
塑件脱模斜度是指塑件在脱离模具时,其壁面与脱模方向之间所设计的斜度。
这个斜度的设计是为了确保塑件能够顺利地从模具中脱出,避免塑件在脱模过程中受到损坏或者产生变形。
脱模斜度的设计需要考虑多个因素,包括塑件的材质、壁厚、形状、脱模方式等。
一般来说,塑件的脱模斜度应该根据具体情况进行设计,通常在1°~3°之间。
如果塑件的壁厚较厚或者形状较复杂,可能需要适当增大脱模斜度。
在设计脱模斜度时,还需要注意以下几点:
1.脱模斜度的方向应该与塑件的脱模方向一致,以确保塑件能够顺
利脱模。
2.脱模斜度的设计应该考虑到模具的制造精度和磨损情况,以确保
在实际生产过程中塑件能够正常脱模。
3.在设计脱模斜度时,还需要考虑到塑件的外观要求。
如果塑件对
外观要求较高,可能需要采用较小的脱模斜度,以避免塑件表面出现明显的痕迹或变形。
总之,塑件脱模斜度的设计是注塑模具设计中的重要环节之一,需要根据具体情况进行合理设计,以确保塑件能够顺利、完整地从模具中脱出。
塑胶产品厚度和脱模斜度设计要点

塑胶产品厚度和脱模斜度设计要点1.3、厚度设计实例塑料的成型工艺及使用要求对塑件的壁厚都有重要的限制。
塑件的壁厚过大,不仅会因用料过多而增加成本,且也给工艺带来一定的困难,如延长成型时间(硬化时间或冷却时间)。
对提高生产效率不利,容易产生汽泡,缩孔,凹陷;塑件壁厚过小,则熔融塑料在模具型腔中的流动阻力就大,尤其是形状复杂或大型塑件,成型困难,同时因为壁厚过薄,塑件强度也差。
塑件在保证壁厚的情况下,还要使壁厚均匀,否则在成型冷却过程中会造成收缩不均,不仅造成出现气泡,凹陷和翘曲现象,同时在塑件内部存在较大的内应力。
设计塑件时要求壁厚与薄壁交界处避免有锐角,过渡要缓和,厚度应沿着塑料流动的方向逐渐减小。
2 脱模斜度2.1 脱模斜度的要点脱模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。
此外,成型的方式,壁厚和塑料的选择也在考虑之列。
一般来讲,对模塑产品的任何一个侧壁,都需有一定量的脱模斜度,以便产品从模具中取出。
脱模斜度的大小可在0.2°至数度间变化,视周围条件而定,一般以0.5°至1°间比较理想。
具体选择脱模斜度时应注意以下几点:a. 取斜度的方向,一般内孔以小端为准,符合图样,斜度由扩大方向取得,外形以大端为准,符合图样,斜度由缩小方向取得。
如下图1-1。
图1-1b. 凡塑件精度要求高的,应选用较小的脱模斜度。
c. 凡较高、较大的尺寸,应选用较小的脱模斜度。
d. 塑件的收缩率大的,应选用较大的斜度值。
e. 塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。
f. 一般情况下,脱模斜度不包括在塑件公差范围内。
g. 透明件脱模斜度应加大,以免引起划伤。
一般情况下,PS料脱模斜度应大于3°,ABS及PC料脱模斜度应大于2°。
h. 带革纹、喷砂等外观处理的塑件侧壁应加3°~5°的脱模斜度,视具体的咬花深度而定,一般的晒纹版上已清楚例出可供作参考之用的要求出模角。
脱模斜度的作用

脱模斜度的作用
脱模斜度是指模具开启后,模具中心线相对于模具底部的倾斜角度。
脱模斜度在模具设计和生产中起着重要的作用。
首先,脱模斜度能够确保模具在注塑过程中正常开合,避免模具卡死或半开状态,从而保证产品的质量和生产效率。
其次,脱模斜度还能够防止产品出现毛边或翘曲等缺陷。
如果脱模斜度过小或过大,可能会导致产品表面不平整或变形,影响产品的外观和性能。
此外,脱模斜度还能够减少模具磨损和损坏。
过大或过小的脱模斜度会导致模具受力不均衡,加速模具磨损和损坏,需要频繁更换模具,增加生产成本。
因此,在模具设计和生产过程中,应根据产品要求和模具材料选择适当的脱模斜度,从而确保产品质量和生产效率,降低生产成本。
- 1 -。
产品外观面皮纹表面脱模斜度的设计要求

通知
C3P中心标准通字[2006]第106 号
为了规范表面皮纹处理的制品的脱模斜度的选择,使在设计表面皮纹处理的制品选择脱模斜度时有据可寻,避免模具脱伤。
现制定制品皮纹处理的外观面脱模斜度设计要求,产品处即日起试行。
特此通知。
附:制品皮纹处理的外观面脱模斜度设计要求
发:产品处
C3P中心
2006.05.19制品皮纹处理的外观面脱模斜度设计要求
1、皮纹处理的外观面脱模斜度设计原则
带皮纹、喷砂等外观处理的塑料件与表面镜面处理的塑料件相比脱模斜度应尽量加大,具体的视皮纹深度而定。
皮纹深度越深,脱模斜度应越大。
对于不同的皮纹图案,在选择脱模斜度时也有不同。
皮纹图案的选择由客户确定,可推荐使用公司内部的皮纹样板类型。
皮纹处理的制品的侧壁的脱模斜度可遵循下面的原则:
对于皮纹深度小于10µ的,脱模斜度可以选择≥2°;
对于皮革纹①,皮纹深度每增加8-10µ,脱模斜度增加1°;
②1°。
3、其它特殊情况
有些制品侧壁要求较小的脱模斜度,但皮纹深度较深,为了保证外观质量,应通过特殊模具结构实现,如:滑块机构。
①表面看起来像皮革一样的图案
②表面看起来像梨皮一样的图案。
塑胶件的结构设计:拔模斜度篇(下)

塑胶件的结构设计:拔模斜度篇(下)接上篇:塑胶件的结构设计:拔模斜度篇(上)05拔模斜度设计的原则•保证出模要求•保证结构功能•保证外观要求二、保证结构功能一个完整的产品本质上是不同的零件有序的构成,不同零件之间通过连接关系连接成一个整体,一个零件的拔模不仅仅对自身的结构产生影响,同时也会影响到与之配合的另一零件。
1、零件拔模后,对螺丝支承面的影响。
对支撑面进行拔模,可以方便出模,但是拔模后,螺丝的支承面与螺柱中心线不垂直,强行锁紧后,被固定件可能会被压歪。
2、零件拔模后,对过盈配合的影响。
塑胶件之间可以互相配对拔模,过盈配合精度不影响,但是对于无拔模斜度的标准件(如轴承、转轴等)与塑件件过盈配合就需要注意,比如以下这种小轴与柱子内孔的过盈配合,内孔如果拔模,过盈效果容易失效,内孔通过司筒针出模可以实现内孔无拔模。
对于轴承的过盈配合,稍大的轴承孔无法通过司筒针出模达到无拔模斜度,采用常规出模方式需要设计拔模斜度,如下面轴承孔,内孔大面拔模,筋位面积小,可以不拔模,强脱出模。
3、零件拔模后,分型面的确定会影响结构精度。
在拔模时,当对零件中的d1、d2、d3、d4有同心度要求时,分型面必须在A~A处且d1与d2设计在同一型芯上才能使模具保证其要求。
4、零件拔模后,分型线(夹线)出模、外观、结构的影响。
一般的通孔是通过前后模的碰穿成型,只是碰穿位置的不同,导致夹线的位置也不同,通孔拔模后,一般有以下3种碰穿方式,夹线(批锋)就产生在前后模的相碰处。
1)前模碰后模,即孔的内壁面拔模后留在前模,常应用于外观的一些特征孔,如散热孔、出音孔、外接口孔等,这些孔一般在外观面上不允许看到孔的夹线或批锋,并且一般都需要导角,所以一般选择此方式,但是,值得注意的是,这种方式有粘前模的风险,特别是孔的个数较多时,如一些散热孔、出音孔,所以,如果后模没有足够的结构保证模具前后模分开时留在后模,应考虑使用前后模对碰,且前模碰的深度小于后模碰的深度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
橡胶模具设计中脱模斜度的确定
脱模斜度也叫做拔模斜度。
与铸造模具、塑料成形模具、陶瓷模具(工业用)一样,橡胶模具的设计,在必要的时候,对相关的模具构件也需要进
行脱模斜度的设计。
设计脱模斜度的目的在于使生产操作中的脱模取件或抽
取芯棒、芯轴(或者型芯拼块)等能够顺利进行。
在橡胶模具结构中,对相关构件的脱模斜度的设计,需要考虑以下几个因素:
1)制品零件的使用要求所允许的最大斜度(或者锥度)。
2)制品零件的形体结构特点。
3)模具的结构特点。
4)分型面的结构特点、设计布局的位置以及启模取件时,是否使用卸模架等。
一般来说,脱模斜度的设计,其数值的选择和确定,是以不影响制品零件的使用功能为前提条件的,在其许可的范围内(包括不影响外形美观在内),对于难以脱模取件或者抽拔芯轴、型芯等的制品零件,其脱模斜度的数值尽
可能作最大程度的选择。
通常,抽芯取件的难度越大,脱模斜度选取的数值也应越大。
对于制品零件的使用不允许有较大的斜度或锥度,模具设计时脱模斜度的选择,最好
是在制品零件公差带的1/2~1/3范围之内作最大选取。
脱模斜度的设计,首先必须了解制品零件的使用场合及其功能要求,了解制品零件各个部位的作用,工作面的位置以及和其他有关机械零部件的相
互装配关系与配合关系,以便确定其模具的结构方案与脱模斜度的数值。
同时,还要求橡胶制品零件的设计人员在设计制品零件时,要充分地考虑和了
解橡胶制品零件生产制造的工艺特点,特别是模制化生产工艺对制品零件的
形体结构要求,也就是橡胶模制品零件的设计工艺性。