高等数学实验报告书答案6

合集下载

高等数学第六章答案

高等数学第六章答案

第六章 定积分的应用第二节 定积分在几何上的应用 1. 求图中各阴影部分的面积: (1) 16. (2) 1(3)323. (4)323.2. 求由下列各曲线所围成的图形的面积: (1) 463π-. (2)3ln 22-. (3)12e e+-.(4)b a -3. 94.4. (1).1213(2).45. (1) πa 2. (2)238a π. (3)218a π.6. (1)423π⎛- ⎝ (2)54π(3)2cos 2ρθρθ==及162π-+7.求下列已知曲线所围成的图形, 按指定的轴旋转所产生的旋转体的体积: (1)2x x y y x =和轴、向所围图形,绕轴及轴。

(2)22y x y 8x,x y ==和绕及轴。

(3)()22x y 516,x +-=绕轴。

(4)xy=1和y=4x 、x=2、y=0,绕。

(5)摆线()()x=a t-sint ,1cos ,y 0x y a t =-=的一拱,绕轴。

2234824131,;(2),;(3)160;(4);(5)5a .52556πππππππ()8.由y =x 3, x =2, y =0所围成的图形, 分别绕x 轴及y 轴旋转, 计算所得两个旋转体的体积.1287x V π=. y V =645π9.把星形线3/23/23/2a y x =+所围成的图形, 绕x 轴旋转, 计算所得旋转体的体积.332105a π 10.(1)证明 由平面图形0≤a ≤x ≤b , 0≤y ≤f (x )绕y 轴旋转所成的旋转体的体积为 ⎰=badx x xf V )(2π. 证明略。

(2)利用题(1)结论, 计算曲线y =sin x (0≤x ≤π)和x 轴所围成的图形绕y 轴旋转所得旋转体的体积. 22π11.计算底面是半径为R 的圆, 而垂直于底面上一条固定直径的所有截面都是等边三角形的立体体积. 343R .12.计算曲线3223y x =上相应于38x ≤≤的一段弧的弧长。

高等数学6习题答案

高等数学6习题答案

高等数学6习题答案高等数学是大学阶段的重要学科之一,对于理工科学生来说尤为重要。

在学习高等数学的过程中,习题是不可或缺的一部分。

通过做习题,学生可以巩固所学的知识,提高解题能力。

然而,有时候我们会遇到一些难以理解或者解答的习题,这时候就需要参考答案来帮助我们解决问题。

但是,有人认为提供高等数学习题的答案是对学生的一种不负责任的行为。

他们认为,习题的答案应该由学生自己去思考和解答,通过自己的努力来提高解题能力。

如果一味地依赖答案,学生将失去思考和探索的机会,无法真正理解和掌握数学知识。

然而,我认为提供高等数学习题的答案是有必要的。

首先,习题的答案可以帮助学生验证自己的解答是否正确。

在学习过程中,我们难免会犯错,有时候我们可能会得出错误的答案。

通过对比答案,我们可以及时发现和纠正错误,避免形成错误的思维定式。

其次,习题的答案可以帮助学生理解解题思路。

有时候,我们可能会对某个习题感到困惑,不知道从何入手。

此时,参考答案可以给我们一些启示,帮助我们找到解题的思路和方法。

通过参考答案,我们可以学习到一些解题的技巧和方法,提高解题的效率和准确性。

此外,习题的答案还可以帮助学生巩固所学的知识。

通过做习题,我们可以将理论知识应用到实际问题中,加深对知识的理解和记忆。

而通过对比答案,我们可以发现和理解解题过程中的关键步骤和思想,进一步巩固和强化所学的知识。

当然,提供习题的答案并不意味着我们只是机械地抄写答案,而是应该在思考和理解的基础上进行。

我们应该首先自己尝试解题,思考解题的思路和方法,然后再参考答案进行对比和验证。

通过这样的学习方式,我们才能真正理解和掌握数学知识,提高解题能力。

总之,提供高等数学习题的答案是有必要的。

它可以帮助学生验证解答的正确性,理解解题思路,巩固所学的知识。

但是,我们在使用答案的过程中应该注意,要在自己的思考和理解的基础上进行,不能机械地依赖答案。

只有通过自己的努力和思考,我们才能真正理解和掌握数学知识,提高解题能力。

高等数学第六版课后习题及答案 第一章第二节

高等数学第六版课后习题及答案 第一章第二节

高等数学第六版课后习题及答案 第一章第二节 习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n.解 当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有 εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε . 取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).。

高等数学实验报告(下)

高等数学实验报告(下)

高等数学数学实验报告实验人员:院(系)学号: 姓名:实验一 空间曲线与曲面的绘制一、 实验题目做出几个标准二次曲面的图形二、实验目的和意义本实验的目的是利用数学软件Mathematica 绘制三维图形来观察空间曲线和空间曲面图形的特点,以加强几何的直观性。

三、计算公式空间曲面的绘制作一般式方程),(y x f z =所确定的曲面图形的Mathematica 命令为:Plot3D[f[x,y],{x,xmin,xmax},{y,ymin,ymax},选项]作参数方程],[],,[,),(),(),(max min max min v v v u u v u z z v u y y v u x x ∈∈⎪⎩⎪⎨⎧===所确定的曲面图形的Mathematica 命令为:ParametricPlot3D[{x[u,v],y[u,v],z[u,v]},{u,umin,umax},{v,vmin,vmax},选项]四、程序设计 1.双曲抛物面 实验程序: t4ParametricPlot3Du ,v,2u^23v^2,u,4,4,v,4,4,PlotPoints 30,Axes False,Boxed False,AspectRatio1;Show t42. 圆锥面 实验程序: t5ParametricPlot3Du Cos v ,u Sin v ,u ,u,5,5,v,0,2Pi ,PlotPoints 30,Boxed False,AxesFalse,AspectRatio 1;Show t53. 椭圆抛物面实验程序:t6ParametricPlot3D2u Sin v,u Cos v,u^2,u,0,4,v,0,2Pi,PlotPoints30,Axes False,Boxed False;Show t6五、程序运行结果1.双曲抛物面2.圆锥面3.椭圆抛物面六、结果的讨论和分析采用参数方程的方法绘制双曲抛物面,圆锥面,椭圆抛物面的图形,因为参数方程已知,所以编程更简洁且准确率高。

高等数学同济大学第六版 6-3答案

高等数学同济大学第六版 6-3答案

习题6-31. 由实验知道, 弹簧在拉伸过程中, 需要的力F (单位: N )与伸长量s (单位: cm)成正比, 即F =ks (k 为比例常数). 如果把弹簧由原长拉伸6cm , 计算所作的功.解 将弹簧一端固定于A , 另一端在自由长度时的点O 为坐标原点, 建立坐标系. 功元素为dW =ksds , 所求功为 182160260===⎰s k ksds W k(牛⋅厘米).2. 直径为20cm 、高80cm 的圆柱体内充满压强为10N/cm 2的蒸汽. 设温度保持不变, 要使蒸汽体积缩小一半, 问需要作多少功? 解 由玻-马定律知:ππ80000)8010(102=⋅⋅==k PV .设蒸气在圆柱体内变化时底面积不变, 高度减小x 厘米时压强 为P (x )牛/厘米2, 则ππ80000)]80)(10[()(2=-⋅x x P , π-=80800)(x P .功元素为dx x P dW )()10(2⋅=π, 所求功为 2ln 8008018000080800)10(400402πππππ=-=-⋅⋅=⎰⎰dx dx W (J). 3. (1)证明: 把质量为m 的物体从地球表面升高到h 处所作的功是hR mgRhW +=, 其中g 是地面上的重力加速度, R 是地球的半径;(2)一颗人造地球卫星的质量为173kg , 在高于地面630km 处进入轨道. 问把这颗卫星从地面送到630的高空处, 克服地球引力要作多少功?已知g =9.8m/s 2, 地球半径R =6370km .证明 (1)取地球中心为坐标原点, 把质量为m 的物体升高的功元素为dy y kMm dW 2=, 所求的功为 )(2h R R mMh k dy y kMm W hR R+⋅==⎰+. (2)533324111075.910)6306370(106370106301098.51731067.6⨯=⨯+⨯⨯⨯⨯⨯⋅⨯=-W (kJ). 4. 一物体按规律3ct x =作直线运动, 媒质的阻力与速度的平方成正比. 计算物体由x =0移至x =a 时, 克服媒质阻力所作的功. 解 因为3ct x =, 所以23)(cx t x v ='=, 阻力4229t kc kv f -=-=. 而32)(cx t =, 所以 34323429)(9)(x kc cx kc x f -=-=. 功元素dW =-f (x )dx , 所求之功为37320343203432072799)]([a kc dx x kcdx x kc dx x f W a aa ===-=⎰⎰⎰. 5. 用铁锤将一铁钉击入木板, 设木板对铁钉的阻力与铁钉击入木板的深度成正比, 在击第一次时, 将铁钉击入木板1cm . 如果铁锤每次打击铁钉所做的功相等, 问锤击第二次时, 铁钉又击入多少?解 设锤击第二次时铁钉又击入h cm , 因木板对铁钉的阻力f 与铁钉击入木板的深度x (cm)成正比, 即f =kx , 功元素dW =f dx =kxdx , 击第一次作功为k kxdx W 21101==⎰,击第二次作功为)2(212112h h k kxdx W h+==⎰+. 因为21W W =, 所以有 )2(21212h h k k +=, 解得12-=h (cm).6. 设一锥形贮水池, 深15m , 口径20m , 盛满水, 今以唧筒将水吸尽, 问要作多少功?解 在水深x 处, 水平截面半径为x r 3210-=, 功元素为dx x x dx r x dW 22)3210(-=⋅=ππ,所求功为⎰-=1502)3210(dx x x W π⎰+-=15032)9440100(dx x x x π =1875(吨米)=57785.7(kJ).7. 有一闸门, 它的形状和尺寸如图, 水面超过门顶2m . 求闸门上所受的水压力.解 建立x 轴, 方向向下, 原点在水面. 水压力元素为xdx dx x dP 221=⋅⋅=, 闸门上所受的水压力为21252252===⎰x xdx P (吨)=205. 8(kN).8. 洒水车上的水箱是一个横放的椭圆柱体, 尺寸如图所示. 当水箱装满水时, 计算水箱的一个端面所受的压力.解 建立坐标系如图, 则椭圆的方程为11)43()43(2222=+-y x . 压力元素为dx x x dx x y x dP 22)43()43(38)(21--⋅=⋅⋅=,所求压力为 ⎰⎰-⋅⋅+=--⋅=222322cos 43cos 43)sin 1(4338)43()43(38ππtdx t t dx x x P ππ169cos 49202==⎰tdx (吨)=17.3(kN).(提示: 积分中所作的变换为t x sin 4343=-)9. 有一等腰梯形闸门, 它的两条底边各长10m 和6m , 高为20m . 较长的底边与水面相齐. 计算闸门的一侧所受的水压力. 解 建立坐标系如图. 直线AB 的方程为 x y 1015-=,压力元素为dx x x dx x y x dP )5110()(21-⋅=⋅⋅=,所求压力为1467)5110(200=-⋅=⎰dx x x P (吨)=14388(千牛).10. 一底为8cm 、高为6cm 的等腰三角形片, 铅直地沉没在水中, 顶在上, 底在下且与水面平行, 而顶离水面3cm , 试求它每面所受的压力. 解 建立坐标系如图.腰AC 的方程为x y 32=, 压力元素为dx x x dx x x dP )3(34322)3(+=⋅⋅⋅+=,所求压力为168)2331(34)3(34602360=+=+=⎰x x dx x x P (克)=1.65(牛).11. 设有一长度为l 、线密度为μ的均匀细直棒, 在与棒的一端垂直距离为a 单位处有一质量为m 的质点M , 试求这细棒对质点M 的引力. 解 建立坐标系如图. 在细直棒上取一小段dy , 引力元素为 dy ya Gm y a dy m G dF 2222+=+⋅=μμ, dF 在x 轴方向和y 轴方向上的分力分别为dF ra dF x -=, dF r ydF y =.2202222022)(1)(la a l Gm dy y a y a aGm dy y a Gm r a F l lx +-=++-=+⋅-=⎰⎰μμμ, )11()(12202222022l a a Gm dy y a y a Gm dy y a Gm r y F l ly +-=++=+⋅=⎰⎰μμμ. 12. 设有一半径为R 、中心角为 ϕ 的圆弧形细棒, 其线密度为常数 μ . 在圆心处有一质量为m 的质点F . 试求这细棒对质点M 的引力. 解 根据对称性, F y =0.θμcos 2⋅⋅⋅=R dsm G dF x θθμθθμd RGm R Rd Gm cos cos )(2=⋅=, θθμϕϕd R Gm F x ⎰-=22cos2sin 2cos 220ϕμθθμϕR Gm d R Gm ==⎰. 引力的大小为2sin 2ϕμR Gm , 方向自M 点起指向圆弧中点.。

高等数学实验下(答案)

高等数学实验下(答案)
100 200 300 400 500 600 700 800 900 1000 4.54 4.99 5.35 5.65 5.90 6.10 6.26 6.39 6.50 6.59
0.0.2 kt
中的参数 a,b,k
2) tdata=100:100:1000 cdata=1e-03*[4.54,4.99,5.35,5.65,5.90,6.10, 6.26,6.39,6.50,6.59]; x0=[0.2,0.05,0.05]; x=lsqcurvefit ('curvefun1',x0,tdata,cdata) f= curvefun1(x,tdata) plot(tdata,cdata,'*',tdata,f)
1)编写 M 文件 curvefun1.m function f=curvefun1(x,tdata) f=x(1)+x(2)*exp(-0.02*x(3)*tdata) %其中 x(1)=a; x(2)=b;x(3)=k;
11. 求
∑ 4n
n =1

2
1 的值. + 8n + 3
syms n;
symsum(1/(4*n^2+8*n+3),1,inf) ans = 1/6 12. 求 ∑
7.求 z = xe − x
2
− y2
在区域 −2 ≤
x, y ≤ 2 ,步长为 0.2,画等高线梯度图
v=-2:.2:2; [x,y]=meshgrid(v); z=x.*exp(-x.^2-y.^2); [px,py]=gradient(z,.2,.2); contour(v,v,z),hold on; quiver(v,v,px,py),hold off

高等数学第6版教材答案

高等数学第6版教材答案

高等数学第6版教材答案由于您所要求的是1000字的文章,而高等数学第6版教材答案是一个相对较长的主题,为了适应字数限制,我将根据教材的章节和知识点,以提供答案的形式进行回答,并以适当的小节进行组织,以确保文章的整洁美观和流畅性。

【小节一】函数与极限1.1 函数的基本概念1.2 极限的定义与性质1.3 极限的四则运算法则1.4 无穷小与无穷大1.5 极限存在准则【小节二】导数与微分2.1 导数的定义2.2 导数的几何意义2.3 导数的四则运算法则2.4 高阶导数与导数的应用2.5 微分的概念与微分公式【小节三】定积分与不定积分3.1 定积分的概念与性质3.2 定积分的计算方法3.3 不定积分的概念与性质3.4 不定积分的基本公式3.5 定积分与不定积分的关系【小节四】微分方程与数值积分4.1 微分方程的基本概念4.2 一阶微分方程4.3 高阶微分方程4.4 微分方程的应用4.5 数值积分的概念与方法【小节五】多元函数微分学5.1 二元函数与偏导数5.2 高阶偏导数与隐函数定理5.3 多元函数的极值与条件极值5.4 多元函数的微分与全微分5.5 多元函数的极限与连续性【小节六】多元函数积分学6.1 二重积分的概念与性质6.2 二重积分的计算方法6.3 三重积分的概念与性质6.4 三重积分的计算方法6.5 曲线积分与曲面积分【小节七】无穷级数与幂级数7.1 数项级数的概念与性质7.2 收敛级数的判定方法7.3 幂级数的收敛区间与幂函数展开7.4 绝对收敛与条件收敛7.5 幂级数的运算与常用幂级数【小节八】常微分方程8.1 常微分方程的基本概念8.2 一阶常微分方程解的存在性与唯一性8.3 二阶常系数线性微分方程8.4 变量可分离的微分方程8.5 常微分方程的应用通过以上几个小节的组织,呈现了高等数学第6版教材中的主要章节和知识点,同时保持了整洁美观和流畅性。

每个小节的内容可以根据实际需要进一步展开,并提供具体的问题答案和相关概念的解释。

高等数学实验教材答案

高等数学实验教材答案

高等数学实验教材答案高等数学实验教材答案是学习高等数学实验课程的重要参考资料。

在这篇文章中,我将为大家提供一份高等数学实验教材的答案,以帮助学生更好地理解和掌握相关知识。

一、微分与导数1.1 定义与性质1.2 基本微分法则1.3 乘积法则、商法则与链式法则1.4 高阶导数与隐函数求导1.5 几何应用:切线与法线二、积分与不定积分2.1 定义与性质2.2 基本积分法则2.3 分部积分法2.4 有理函数的积分2.5 几何应用:定积分与曲线下面积三、微分方程3.1 一阶常微分方程3.2 高阶常微分方程3.3 可降阶的高阶常微分方程3.4 几何应用:曲线的凹凸性与拐点四、级数与幂级数4.1 数项级数与收敛性4.2 幂级数的收敛半径与收敛区间4.3 函数展开为幂级数4.4 幂级数展开与微分、积分的关系五、多元函数与偏导数5.1 多元函数的概念与性质5.2 偏导数及其计算5.3 隐函数与参数方程求导5.4 多元函数的极值与条件极值5.5 几何应用:方向导数与梯度六、重积分6.1 重积分的定义与性质6.2 二重积分的计算6.3 三重积分的计算6.4 极坐标、柱坐标与球坐标下的积分6.5 几何应用:质量、重心与转动惯量七、曲线积分与曲面积分7.1 第一类曲线积分7.2 第二类曲线积分7.3 常见曲线的参数方程与弧长7.4 曲面积分的概念与性质7.5 几何应用:质量、重心与转动惯量的曲面积分表示八、常微分方程与拉普拉斯变换8.1 齐次与非齐次线性常微分方程8.2 求解常系数齐次线性常微分方程8.3 非齐次线性常微分方程的常数变易法8.4 拉普拉斯变换的定义与性质8.5 拉普拉斯变换与求解微分方程以上是高等数学实验教材的答案大纲。

希望这份答案对广大学生们学习和理解高等数学实验课程有所帮助。

请将这份答案作为参考,并结合教材中的练习题进行实践,以巩固所学知识。

祝大家在高等数学实验课程中取得好成绩!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六 多元函数微分法及其应用
6.1 实验目的
掌握利用Mathematica 软件计算偏导数、全微分、空间曲线的切线与法平面、
曲面的切平面与法线、二元函数的等值线、多元函数极值的方法; 通过实验进一步熟悉多元函数微分法及其应用的有关内容。

6.2 实验内容
一、 偏导数
实验题1 求.tan ln y
x z =的偏导数。

[实验]输入:
即有:
.2csc 2,
2csc 22
y
y
x x y
z y
y
x x
z -=∂∂=∂∂
实验题2 验证函数nx e
y t
kn sin 2-=满足方程:22x
y
k t y ∂∂=∂∂。

[实验]输入:
y @x _,t_D :=ã-k
n 2t
Sin @n x D ;
D @y @x ,t D ,t D -k D @y @x ,t D ,x,x
D
得结果:0
即有:22x
y
k t y ∂∂=∂∂。

二、 全微分
实验题3 计算函数yz x u =的全微分。

[实验]输入:
u @x _,y_,z_D :=x y z ;Dt @u @x ,y,z
D
得结果:
@D 即有:.ln ln 1xdz yx xdy zx dx yzx du yz yz yz ++=-
三、 多元复合函数的求导 实验题4 ..23,,ln 2y
z
x z y x v y x u v u z ∂∂∂∂-===和求而设 [实验]输入:
得结果:
即有:
.)23(2)23ln(2)23(3)23ln(22
2
322
2
2y y x x y x y x y z y y x x y x y x x z ----=∂∂-+-=∂∂
四、 空间曲线的切线与法平面
实验题5 画出曲线 ..2sin 4,cos 1,
sin ⎪⎪⎩
⎪⎪⎨⎧
=-=-=t
z t y t t x 在点)22,1,12(-π
处的切线及
法平面。

[实验]输入:
得结果:91,1, !!2
=
再输入:
得结果:
五、 曲面的切平面与法线
实验题6 求曲面3=+-xy z e z 在点(2,1,0)处的切平面及法线方程。

[实验](1)输入:
F @x _,y_,z_D :=ãz -z +x y -3;a =¶x F @x ,y,z D .8x ®2,y ®1,z ®0<b =¶y F @x ,y,z
D .8x ®2,y ®1,z ®0
<c =¶z F @x ,y,z
D .8x ®2,y ®1,z ®0<Simplify @a H x -2L +b H y -1L +c H z -0
L D
得结果:1 2
-4+ x+2 y
即有:切平面方程为 x + 2 y – 4 = 0 法线方程为 .0
2112-=-=-z y x
六、 二元函数的等值线
实验题7 作出二元函数z=ln(x+y)的等值线。

[实验]输入:
ContourPlot[Log[x+y],{x,0.1,5},{y,0.1,5}]
得结果:
七、 多元函数的极值
实验题8 求二元函数f(x,y)=4(x - y) - x 2 - y 2的极值。

[实验]输入:
f @x _,y_D :=4 H x -y L -x 2-y 2;
Solve
@8¶x f @x ,y D 0,¶y f @x ,y D 0<,8x ,y
<D
得结果:{{x →2,y →-2}} 再输入:
A =¶x,x f @x ,y
D .8x ®2,y ®-2<;
B =¶x,y f @x ,y D .8x ®2,y ®-2<;c =¶y,y f @x ,y D .8x ®2,y ®-2<;
A c -
B *B f @2,-2
D
得结果:-2
0 -2 4
8
即函数f(x,y)可能的极值只有一个点:(2,-2),又因为在该
点处有:Ac-B 2=4>0且A=-2<0
故点(2,-2)就是函数f(x,y)唯一的极值点且是极大值点,f(x,y)的极大值为f(2,-2) = 8 .
实验题9 求三元函数f(x ,y ,z)=xyz 满足条件:x>0,y>0,z>0,
7
1
111=++z y x 的最小值。

[实验]输入:
得结果:{9261,{x →21,y →21,z →21}}
即当x = y = z = 21时,函数f(x,y,z)有最小值:9261.
评分 指导老师。

相关文档
最新文档