初三数学总复习抛物线经典例题列举

合集下载

抛物线专题(附答案)

抛物线专题(附答案)

抛物线专题考点1 抛物线的定义题型 利用定义,实现抛物线上的点到焦点的距离与到准线的距离之间的转换1.已知点P 在抛物线y 2 = 4x 上,那么点P 到点Q (2,-1)的距离与点P 到抛物线焦点距离之和的最小值为【[解析]过点P 作准线的垂线l 交准线于点R ,由抛物线的定义知,PR PQ PF PQ +=+,当P 点为抛物线与垂线l 的交点时,PR PQ +取得最小值,最小值为点Q 到准线的距离 ,因准线方程为x=-1,故最小值为32. 已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时, M 点坐标是 ( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-[解析] 设M 到准线的距离为MK ,则MK MA MF MA +=+|||,当MK MA +最小时,M 点坐标是)4,2(,选C考点2 抛物线的标准方程题型:求抛物线的标准方程3.求满足下列条件的抛物线的标准方程,并求对应抛物线的准线方程:(1)过点(-3,2) (2)焦点在直线上【解题思路】以方程的观点看待问题,并注意开口方向的讨论.[解析] (1)设所求的抛物线的方程为22y px =-或22(0)x py p =>, ∵过点(-3,2) ∴229)3(24⋅=--=p p 或 ∴2934p p ==或 ∴抛物线方程为243y x =-或292x y =,前者的准线方程是1,3x =后者的准线方程为98y =- (2)令0x =得2y =-,令0y =得4x =,∴抛物线的焦点为(4,0)或(0,-2),当焦点为(4,0)时,42p =, ∴8p =,此时抛物线方程216y x =;焦点为(0,-2)时22p = ∴4p =,此时抛物线方程28x y =-.∴所求抛物线方程为216y x =或28x y =-,对应的准线方程分别是4,2x y =-=.4.对于顶点在原点的抛物线,给出下列条件:①焦点在y 轴上;②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为(2,1).能使这抛物线方程为y 2=10x 的条件是____________.(要求填写合适条件的序号)[解析] 用排除法,由抛物线方程y 2=10x 可排除①③④,从而②⑤满足条件.5. 若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与Y 轴的交点,A 为抛物线上一点,且3||,17||==AF AM ,求此抛物线的方程[解析] 设点'A 是点A 在准线上的射影,则3|'|=AA ,由勾股定理知22|'|=MA ,点A 的横坐标为)23,22(p -,代入方程py x 22=得2=p 或4,抛物线的方程y x 42=或y x 82= 考点3 抛物线的几何性质题型:有关焦半径和焦点弦的计算与论证6.设A 、B 为抛物线px y22=上的点,且 90=∠AOB (O 为原点),则直线AB 必过的定点坐标为__________.【解题思路】由特殊入手,先探求定点位置 [解析]设直线OA 方程为kx y =,由⎩⎨⎧==px y kx y 22解出A 点坐标为)2,2(2k p k p ⎪⎩⎪⎨⎧=-=px y x k y 212解出B 点坐标为)2,2(2pk pk -,直线AB 方程为221)2(2k pk x k pk y ---=+,令0=y 得p x 2=,直线AB 必过的定点)0,2(p【指引】(1)由于是填空题,可取两特殊直线AB, 求交点即可;(2)B 点坐标可由A 点坐标用k1-换k 而得。

初三抛物线试题大全及解析

初三抛物线试题大全及解析

初三抛物线试题大全及解析一、抛物线的基本概念抛物线是一种重要的几何图形,它在中考数学试题中占有重要地位。

抛物线通常由一条直线和一个二次曲线组成,它可以用来描述一些常见的数学问题,如二次函数、几何问题等。

二、抛物线试题类型1. 已知抛物线解析式求未知量2. 抛物线的性质与应用3. 抛物线的形状与开口方向、对称轴、顶点坐标的关系4. 抛物线与方程的综合题5. 与抛物线有关的实际问题三、抛物线试题解析【例1】(基础题)已知抛物线解析式为y=x²-2x-3,请回答下列问题:(1)求该抛物线的开口方向、对称轴和顶点坐标;(2)当x在什么范围内时,y随x的增大而增大?【解析】(1)因为a=1>0,所以抛物线开口向上。

对称轴为直线x=-b/2a=-(-2)/2=1,顶点坐标为(1,-4)。

(2)因为对称轴为直线x=1,且开口向上,所以当x>1时,y随x的增大而增大。

【例2】(提高题)已知二次函数y=ax²+bx+c的图像经过A(1,0),B(0,-6),C(2,-4)三点,求这个二次函数的解析式。

【解析】由题意可设y=ax²+bx-6,把C(2,-4)代入得4a+2b-6=-4,即b-a=1。

再由点A(1,0)在抛物线上可求c值,即可得到二次函数的解析式。

【答案】解:由题意可设y=ax²+bx-6。

把C(2,-4)代入得4a+2b-6=-4,即b-a=1。

又因为图像经过A(1,0),B(0,-6),所以y=x²+x-6。

【例3】(压轴题)已知二次函数y=ax²+bx+c的图像经过A(0,5),B(1,3),C(-2,7)三点。

求这个二次函数的解析式和图像的对称轴。

【解析】这道题需要用到待定系数法。

首先根据条件确定系数可能取到的值,再代入求出解析式。

然后根据对称性求出对称轴。

【答案】设这个二次函数的解析式为y=a(x-h)²+k,将A(0,5),B(1,3),C(-2,7)三点代入得{c=5a+b+c=39a−2a+k=7解得{a=2k=5∴y=2(x−1)2+3图像的对称轴为直线x=1。

初中抛物线经典练习题(含详细答案)

初中抛物线经典练习题(含详细答案)

初中数学抛物线经典试题集锦编著】黄勇权第一组题型】1、已知二次函数y=x2+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ ABP的面积为15,请直接写出p 点的坐标。

2、在平面直角坐标系xOy中,抛物线y=2x2+mx+n 经过点A(5,0 ),B(2,-6).(1)求抛物线的表达式及对称轴2)设点 B 关于原点的对称点为C,写出过A、C两点直线的表达式3、在平面直角坐标系xOy 中,已知抛物线的顶点 C 为(2,4),并在x 轴上截得的长度为 6 。

(1)写出抛物线与x 轴交点 A 、B 的坐标(2)求该抛物线的表达式(3)写出抛物线与y 轴交点P 的坐标4、直线的解析式为y=2x+4 ,交x 轴于点 A ,交y 轴于点B,若以 A 为顶点,,且开口向下作抛物线,交直线AB 于点D,交y 轴负半轴于点 C ,(1)若△ ABC 的面积为20,求此时抛物线的解析式(2)若△ BDO 的面积为8,求此时抛物线的解析式答案】1、已知二次函数y=x2+bx+c过点A(2,0),C(0, -8)(1)求此二次函数的解析式,(2)在抛物线上存在一点p 使△ ABP的面积为15,请直接写出p 点的坐标解:【第一问】因为函数y=x2+bx+c过点A(2,0),C(0, -8)分别将x=2,y=0 代入y=x2+bx+c,得0=4+2b+c -①将x=0,y=-8 代入y=x2+bx+c,得-8=c -------- ②将②代入①,解得:b=2 ------------------------------------ ③此时,将② ③代入y=x2+bx+c,所以:二次函数的解析式y=x2+ 2x -8 【第二问】1△ABP的面积= 2│AB│*│y p│------------- ④因为A、B 两点在x 轴上,令x2+ 2x -8=0 (x-2)(x+4)=0 解得:x1=2,x2= -4所以:│ AB│=│X1- X2│=│2-(- 4)│ =6 ---- ⑤又△ ABP的面积=15 --------------------------------- ⑥1由④ ⑤ ⑥,得:2 *6* │y p│=15y p =5故有:y p= ± 5即:p 点的纵坐标为 5 或-5.把y=5 代入y=x2+ 2x -8 ,即:5=x2+ 2x -8x2+ 2x -13=0解得:x= -1 ± 14那么,此时p 点坐标(-1+ 14,5),(-1- 14,5)---- ⑦把y=-5 代入y=x2+ 2x -8,即:-5=x2+ 2x -8x2+ 2x -3=0 (x-1)(x+3)=0 解得:x= 1 或x= -3 那么,此时p 点坐标(1,-5),(-3,-5)⑧由⑦ ⑧得,使△ ABP的面积为15,p 点坐标是:(-1+ 14,5),(-1- 14,5),(1,-5),(-3,-5)2、在平面直角坐标系xOy中,抛物线y=2x2+mx+n 经过点A(5,0 ),B(2,-6).(1)求抛物线的表达式及对称轴(2)设点 B 关于原点的对称点为C,写出过A、C两点直线的表达式。

中考数学---抛物线型问题典型例题练习PPT课件

中考数学---抛物线型问题典型例题练习PPT课件
过 K 点,并说明理由.
【答案】(1)66
(2)①基准点 K 的高度 h 为 21m;②b> 9 ; 10
(3)他的落地点能超过 K 点,理由见解析.
【分析】(1)根据起跳台的高度 OA 为 66m,即可得 c=66;
(2)①由 a=﹣ 1 ,b= 9 ,知 y=﹣ 1 x2+ 9 x+66,根据基准点 K 到起跳台的水平距
3.2022 年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练
场的横截面示意图,取某一位置的水平线为 x 轴,过跳台终点 A 作水平线的垂线为 y 轴,建
立平面直角坐标系.图中的抛物线
C1
:
y
1 12
x2
7 6
x
1 近似表示滑雪场地上的一座小山坡,
某运动员从点 O
正上方
(3)由抛物线 C1
:
y
1 12
x2
7 6
x
1 可知坡顶坐标为
(7, 61) ,此时即当 x 7时,运动员
12
运动到坡顶正上方,若与坡顶距离超过 3 米,即 y 1 72 7b c 61 3 ,由此即可求出 b
8
12
的取值范围.
【详解】
解:(1)根据题意可知:点
A(0,4),点
B(4,8)代入抛物线 C2
3
3
【点睛】本题考查了运用待定系数法求二次函数的解析式的运用,由函数值求自变量的值的
运用,解答时求出二次函数的解析式是关键.
2.甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面 OBA 可视为抛物线的一部分, 在某一时刻,桥拱内的水面宽 OA 8m ,桥拱顶点 B 到水面的距离是 4m .

初三数学抛物线解析式练习题

初三数学抛物线解析式练习题

初三数学抛物线解析式练习题抛物线是数学中重要的曲线之一,具有广泛的应用和意义。

学好抛物线解析式对于初三学生来说非常重要,本文将为大家提供一些抛物线解析式的练习题,帮助大家加深对该概念的理解和掌握。

题1:已知抛物线的顶点为(2, 4),焦点为(2, 2),求抛物线的解析式。

解:由于抛物线的顶点和焦点的横坐标相同,所以抛物线的解析式可以表示为:y = a(x - 2)^2 + 4,其中a为待定系数。

再根据焦点的纵坐标可以得到:2 = a(2 - 2)^2 + 4,解方程可得a = -1/2。

因此,抛物线的解析式为:y = -1/2(x - 2)^2 + 4。

题2:已知抛物线的焦点为(-1, 2),过点(2, 6)的直线是抛物线的切线,求抛物线的解析式。

解:首先,由于抛物线的焦点为(-1, 2),所以抛物线的顶点的横坐标为-1。

设抛物线的解析式为:y = ax^2 + bx + c,其中a、b、c为待定系数。

由题意可得三个方程:1)过点(2, 6):6 = 4a + 2b + c;2)抛物线的顶点:c = 2;3)抛物线的切线:6 = 4a(2 - 1) + 2b。

根据第二个方程可得c = 2,代入其他两个方程可得:1)6 = 4a + 2b + 2;2)6 = 4a + 2b。

解方程组可得a = 0,b = 3。

因此,抛物线的解析式为:y = 3x + 2。

题3:已知抛物线的焦点为(1, 1),经过点(2, 3),求抛物线的解析式。

解:与题2类似,设抛物线的解析式为:y = ax^2 + bx + c,其中a、b、c为待定系数。

由题意可得三个方程:1)过点(2, 3):3 = 4a + 2b + c;2)抛物线的焦点:1 = a(1 - 1)^2 + b(1 - 1) + c;3)焦点与直线的距离公式:1 = 2a(1 - 1) + b(1 - 1) + c - 3。

化简方程2和方程3可得:1)1 = c;2)1 = c - 3。

抛物线专题练习(含解析)

抛物线专题练习(含解析)

抛物线专题练习1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.163.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .85.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .56.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )7.A .1 B .2 C .3 D .47.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.538.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .489.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l的斜率为( )A .3B .1C .2D.1210.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .14.(2020·安徽省池州二中模拟)直线y=k(x-1)与抛物线y2=4x交于A,B两点,若|AB|=163,则k=.15.(2020·江苏省淮北中学模拟)已知抛物线y2=2px(p>0)过点A(2,y0),且点A到其准线的距离为4.(1)求抛物线的方程;(2)直线l:y=x+m与抛物线交于两个不同的点P,Q,若OP⊥OQ,求实数m的值.16.(2020·浙江省丽水中学模拟)如图,已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:GF为⊥AGB的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y2=2px(p>0)的焦点为F,A是抛物线上横坐标为4,且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M.(1)求抛物线的方程;(2)若过M作MN⊥F A,垂足为N,求点N的坐标.1.(2020·吉林省长春模拟)点M (5,3)到抛物线y =ax 2的准线的距离为6,那么抛物线的标准方程是( )A .x 2=112yB .x 2=112y 或x 2=-136yC .x 2=-136yD .x 2=12y 或x 2=-36y【答案】D【解析】将y =ax 2化为x 2=1a y .当a >0时,准线y =-14a ,则3+14a =6,⊥a =112.当a <0时,准线y =-14a ,则⎪⎪⎪⎪3+14a =6,⊥a =-136. ⊥抛物线方程为x 2=12y 或x 2=-36y2.(2020·江西省安义中学模拟)已知抛物线y =px 2(其中p 为常数)过点A (1,3),则抛物线的焦点到准线的距离等于( )A.92B.32C.118D.16【答案】D【解析】由抛物线y =px 2(其中p 为常数)过点A (1,3),可得p =3,则抛物线的标准方程为x 2=13y ,则抛物线的焦点到准线的距离等于16.故选D.]3.(2020·山东省乳山市第一中学模拟)顶点在原点,且过点(-4,4)的抛物线的标准方程是( ) A .y 2=-4xB .x 2=4yC .y 2=-4x 或x 2=4yD .y 2=4x 或x 2=-4y 【答案】C【解析】设所求抛物线方程为y 2=kx 或x 2=my ,又点(-4,4)在抛物线上,则有-4k =16或4m =16,解得k =-4或m =4,所求抛物线方程为y 2=-4x 或x 2=4y .故选C.]4.(2020·河南省信阳市第一中学模拟)已知AB 是抛物线y 2=8x 的一条焦点弦,|AB |=16,则AB 中点C 的横坐标是( )A .3B .4C .6D .8【答案】C【解析】设A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p =16,又p =4,所以x 1+x 2=12,所以点C 的横坐标是x 1+x 22=6.]5.(2020·四川省自贡市一中模拟)若直线AB 与抛物线y 2=4x 交于A ,B 两点,且AB ⊥x 轴,|AB |=42,则抛物线的焦点到直线AB 的距离为( )A .1B .2C .3D .5【答案】A【解析】由|AB |=42及AB ⊥x 轴,不妨设点A 的纵坐标为22,代入y 2=4x 得点A 的横坐标为2,从而直线AB 的方程为x =2.又y 2=4x 的焦点为(1,0),所以抛物线的焦点到直线AB 的距离为2-1=1,故选A.]6.(2020·四川省资阳模拟)设F 为抛物线y 2=2x 的焦点,A ,B ,C 为抛物线上三点,若F 为⊥ABC 的重心,则|F A →|+|FB →|+|FC →|的值为( )A .1B .2C .3D .4 【答案】C【解析】依题意,设点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),又焦点F ⎝⎛⎭⎫12,0,所以x 1+x 2+x 3=3×12=32,则|F A →|+|FB →|+|FC →|=⎝⎛⎭⎫x 1+12+⎝⎛⎭⎫x 2+12+⎝⎛⎭⎫x 3+12=(x 1+x 2+x 3)+32=32+32=3 7.(2020·陕西省延安模拟)已知F 是抛物线C 1:y 2=2px (p >0)的焦点,曲线C 2是以F 为圆心,p2为半径的圆,直线4x -3y -2p =0与曲线C 1,C 2从上到下依次相交于点A ,B ,C ,D ,则|AB ||CD |=( )A .16B .4 C.83 D.53【答案】A【解析】因为直线4x -3y -2p =0过C 1的焦点F (C 2的圆心),故|BF |=|CF |=p 2,所以|AB ||CD |=|AF |-p2|DF |-p2.由抛物线的定义得|AF |-p 2=x A ,|DF |-p2=x D .由⎩⎪⎨⎪⎧4x -3y -2p =0,y 2=2px ,整理得8x 2-17px +2p 2=0,即(8x -p )(x -2p )=0,可得x A =2p ,x D =p 8,故|AB ||CD |=x Ax D =2pp 8=16.故选A 8.(2020·广东省惠州市一中模拟)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线方程为x =-2,过点F 的直线与抛物线C 交于M (x 1,y 1),N (x 2,y 2)两点,若|MN |=8,则y 21+y 22=( )A .16B .32C .24D .48【答案】B【解析】由准线方程为x =-2,可知p =4,则抛物线C 的方程为y 2=8x .由抛物线的定义可知,|MN |=|MF |+|NF |=x 1+x 2+4=8,则x 1+x 2=4,即y 218+y 228=4,故y 21+y 22=32.故选B.] 9.(2020·湖南省邵阳市二中模拟)已知F 是抛物线C :y 2=2px (p >0)的焦点,过点R (2,1)的直线l 与抛物线C 交于A ,B 两点,R 为线段AB 的中点.若|F A |+|FB |=5,则直线l 的斜率为( )A .3B .1C .2 D.12【答案】B【解析】由于R (2,1)为AB 中点,设A (x A ,y A ),B (x B ,y B ).根据抛物线的定义|F A |+|FB |=x A +x B +p =2×2+p =5,解得p =1,抛物线方程为y 2=2x .y 2A =2x A ,y 2B =2x B,两式相减并化简得y B-y A x B -x A =2y A +y B =22×1=1,即直线l 的斜率为1.故选B.]10.(2020·湖北省汉川市一中模拟)已知直线l :y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.223 【答案】D【解析】由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x ,消去y 得k 2x 2+(4k 2-8)x +4k 2=0.Δ=(4k 2-8)2-16k 4>0,解得-1<k <1.设A (x 1,y 1),B (x 2,y 2).x 1+x 2=8k 2-4.⊥ x 1x 2=4.⊥ 根据抛物线的定义及|F A |=2|FB |,得x 1+2=2(x 2+2),即x 1=2x 2+2,⊥且x 1>0,x 2>0,由⊥⊥解得x 1=4,x 2=1,代入⊥得k 2=89,k >0,⊥k =223.故选D.11.(2020·山东省菏泽市一中模拟)已知抛物线y 2=2px (p >0)的焦点F 与双曲线x 23-y 2=1的右焦点重合,若A 为抛物线在第一象限上的一点,且|AF |=3,则直线AF 的斜率为 .【答案】-22【解析】⊥双曲线x 23-y 2=1的右焦点为(2,0),⊥抛物线方程为y 2=8x .⊥|AF |=3,⊥x A +2=3,得x A =1,代入抛物线方程可得y A =±2 2.⊥点A 在第一象限,⊥A (1,22),⊥直线AF 的斜率为221-2=-2 2.]12.(2020·江西省任弼时中学模拟)若抛物线x 2=4y 上的点A 到焦点的距离为10,则点A 到x 轴的距离是 .【答案】9【解析】根据题意,抛物线x 2=4y 的准线方程为y =-1,点A 到准线的距离为10,故点A 到x 轴的距离是9.]13.(2020·福建省永春一中模拟)已知正三角形AOB (O 为坐标原点)的顶点A ,B 在抛物线y 2=3x 上,则⊥AOB 的边长是 .【答案】63【解析】如图,设⊥AOB 的边长为a ,则A ⎝⎛⎭⎫32a ,12a ,⊥点A 在抛物线y 2=3x 上,⊥14a 2=3×32a ,⊥a =6 3.] 14.(2020·安徽省池州二中模拟)直线y =k (x -1)与抛物线y 2=4x 交于A ,B 两点,若|AB |=163,则k = .【答案】±3【解析】设A (x 1,y 1),B (x 2,y 2),因为直线AB 经过抛物线y 2=4x 的焦点,所以|AB |=x 1+x 2+2=163,所以x 1+x 2=103.联立⎩⎪⎨⎪⎧y 2=4x ,y =k (x -1)得到k 2x 2-(2k 2+4)x +k 2=0,所以x 1+x 2=2k 2+4k 2=103,所以k =± 3.]15.(2020·江苏省淮北中学模拟)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到其准线的距离为4.(1)求抛物线的方程;(2)直线l :y =x +m 与抛物线交于两个不同的点P ,Q ,若OP ⊥OQ ,求实数m 的值. 【解析】(1)已知抛物线y 2=2px (p >0)过点A (2,y 0),且点A 到准线的距离为4, ⊥2+p2=4,⊥p =4,⊥抛物线的方程为y 2=8x .(2)由⎩⎪⎨⎪⎧y =x +m ,y 2=8x 得x 2+(2m -8)x +m 2=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=8-2m ,x 1x 2=m 2,y 1+y 2=x 1+x 2+2m =8,y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2=8m . ⊥OP ⊥OQ ,⊥x 1x 2+y 1y 2=m 2+8m =0, ⊥m =0或m =-8.经检验,当m =0时,直线与抛物线交点中有一点与原点O 重合,不符合题意. 当m =-8时,Δ=(-24)2-4×64>0,符合题意. 综上,实数m 的值为-8.16.(2020·浙江省丽水中学模拟)如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为⊥AGB 的平分线. 【解析】(1)由抛物线定义可得|AF |=2+p2=3,解得p =2.⊥抛物线E 的方程为y 2=4x .(2)证明:⊥点A (2,m )在抛物线E 上,⊥m 2=4×2,解得m =±22,由抛物线的对称性,不妨设A (2,22),由A (2,22),F (1,0), ⊥直线AF 的方程为y =22(x -1),由⎩⎨⎧y =22(x -1),y 2=4x ,得2x 2-5x +2=0,解得x =2或12,⊥B ⎝⎛⎭⎫12,-2. 又G (-1,0),⊥k GA =223,k GB =-223,⊥k GA +k GB =0, ⊥⊥AGF =⊥BGF .⊥GF 为⊥AGB 的平分线.17.(2020·吉林省松原市二中模拟)已知抛物线y 2=2px (p >0)的焦点为F ,A 是抛物线上横坐标为4,且位于x 轴上方的点,A 到抛物线准线的距离等于5,过A 作AB 垂直于y 轴,垂足为B ,OB 的中点为M .(1)求抛物线的方程;(2)若过M 作MN ⊥F A ,垂足为N ,求点N 的坐标.【解析】(1)抛物线y 2=2px (p >0)的准线为x =-p 2,于是4+p 2=5,⊥p =2. ⊥抛物线方程为y 2=4x .(2)⊥点A 的坐标是(4,4),由题意得B (0,4),M (0,2).又⊥F (1,0),⊥k F A =43, ⊥MN ⊥F A ,⊥k MN =-34. ⊥F A 的方程为y =43(x -1), ⊥ MN 的方程为y -2=-34x , ⊥联立⊥⊥,解得x =85,y =45, ⊥点N 的坐标为⎝⎛⎭⎫85,45.。

抛物线例题

抛物线例题

2.4 抛物线的相关例题例1 点P 到(1,0)的距离比其到直线x+2=0的距离少1,求点P 的轨迹方程。

例2 已知点A (4,-2),F 为抛物线x y 82=的焦点,点M 在抛物线上移动,当|MA|+|MF|取最小值时,点M 的坐标是-______例3 求分别满足下列条件的抛物线的标准方程,并求对应抛物线的准线。

(1)过点(-3,2)(2)焦点在x-2y-4=0上。

例4 抛物线的顶点在原点,焦点在x 轴上,其上有一点A (4,m ),其到准线的距离为6,则m=______例5 已知圆A :1)2(22=++y x 与定值线l :x=1,且动圆P 与圆A 外切,并与直线l 相切,求动圆圆心P 的轨迹方程。

例6 抛物线的顶点在原点,以x 轴为对称轴,经过焦点且倾斜角为135°的直线,被抛物线所截得的弦长为8,试求抛物线的方程。

例7 已知抛物线x y 62=的弦AB 经过点P (4,2),且OB OA ⊥,O 为坐标原点,求弦AB 的长。

例8 已知抛物线x y 22=,过点Q (2,1)作一条直线交抛物线于A 、B 两点,试求弦AB 的中点的轨迹方程。

例9 设抛物线x y82=上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是_____例10设抛物线x y 82=的焦点为F ,准线为l ,P 为抛物线上一点,l PA ⊥,A为垂足,如果直线AF 的斜率为3-,那么|PF|=_____例11 已知抛物线)0(22>=p px y 的准线为l ,过M (1,0)且斜率为3的直线与l 相交于点A ,与C 的一个交点为B 。

若MB AM=,则p=_____例12 已知过抛物线x y42=的焦点F 的直线交该抛物线于A 、B 两点,|AF|=2,则|BF|=_____。

初三上册数学抛物线练习题

初三上册数学抛物线练习题

初三上册数学抛物线练习题抛物线是数学中的重要概念之一,研究抛物线可以帮助我们更好地理解数学中的曲线和函数。

在初三上册数学课程中,抛物线的相关知识有一定的难度,需要同学们进行充分的练习。

下面将为大家提供一些抛物线的练习题,希望能够对大家的学习有所帮助。

题目一:抛物线的基本形式1. 将抛物线的标准形式 y = ax^2 + bx + c 转化成顶点形式 y = a(x -h)^2 + k。

2. 已知抛物线的顶点为 V(3, -2),求抛物线的标准形式方程。

3. 抛物线的顶点为 V(4, -3),经过点 P(2, 5),求抛物线的方程。

题目二:抛物线的性质及应用1. 抛物线的对称轴是 x = h,如何通过方程的形式确定抛物线的对称轴?2. 已知抛物线的焦点为 F(1, 2),直径所在直线方程为 2x + y - 7 = 0,求抛物线的方程。

3. 一架火箭垂直发射,其运动轨迹形如抛物线。

已知火箭从地面起飞经过点 A(0, 0),最高点为 B(2, 3),点 P 在抛物线上且 x 坐标为 4,求点 P 的纵坐标。

题目三:抛物线的图像与变化1. 已知抛物线的焦点为 F(2, -1),直径所在直线为 x + y - 4 = 0,求抛物线的方程。

2. 如果抛物线的开口向上,顶点在 x 轴上,且焦点为 (0, 4),求抛物线的方程。

3. 抛物线 y = k(x - a)(x - b) 所表示的图像开口向上还是向下?这里 a、b 和 k 均为常数。

题目四:抛物线的解析式1. 已知抛物线的顶点为 V(h, k),过点 P(x1, y1),求抛物线的解析式。

2. 已知抛物线经过两点 A(1, 2) 和 B(3, 4),求抛物线的解析式。

3. 抛物线的顶点为 V(0, 0),过点 P(-3, 4),求抛物线的解析式。

以上就是一些初三上册数学抛物线练习题,希望能够帮助同学们更好地理解和掌握抛物线的相关知识。

通过反复练习和解答这些题目,相信大家能够在数学学习中取得更好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

33、(2009年广州市)如图13,二次函数)0(2<++=p q px x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C (0,-1),ΔABC 的面积为45。

(1)求该二次函数的关系式;
(2)过y 轴上的一点M (0,m )作y 轴上午垂线,若该垂线与ΔABC 的外
接圆有公共点,求m 的取值范围;
(3)在该二次函数的图象上是否存在点D ,使四边形ABCD 为直角梯形?
若存在,求出点D 的坐标;若不存在,请说明理由。

34、(2009年广西钦州)如图,已知抛物线y =
34
x 2+bx +c 与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线y =34t
x -3与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且0<t <1. (1)填空:点C 的坐标是_▲_,b =_▲_,c =_▲_;
(2)求线段QH 的长(用含t 的式子表示);
(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.
A B x
y
O Q H
P C
35、(2009年广西梧州)如图(9)-1,抛物线经过A (1-,0),C (3,2-)两点,与轴交于点D ,与轴交于另一点B .
(1)求此抛物线的解析式;
(2)若直线将四边形ABCD 面积二等分,求的值;
(3)如图(9)-2,过点E (1,1)作EF ⊥轴于点F ,将△AEF 绕平面内某点旋转180°得△MNQ (点M 、N 、Q 分别与点A 、E 、F 对应),使点M 、N 在抛物线上,作MG ⊥轴于点G ,若线段MG ︰AG =1︰2,求点M ,N 的坐标.
36. (2009年甘肃定西)如图14(1),抛物线2
2y x x k =-+与x 轴交于A 、B 两点,与y 轴交于点C (0,3-).[图14(2)、图14(3)为解答备用图]
(1)k =
,点A 的坐标为 ,点B 的坐标为 ;
(2)设抛物线22y x x k =-+的顶点为M ,求四边形ABMC 的面积;
(3)在x 轴下方的抛物线上是否存在一点D ,使四边形ABDC 的面积最大?若存在,请求出点D 的坐标;若不存在,请说明理由;
(4)在抛物线22y x x k =-+上求点Q ,使△BCQ 是以BC 为直角边的直角三角形.
2
3y ax ax b =-+y x )0(1≠+=k kx y k x x E
F M N G
O B
A x
y
Q
D O B A x y C y=kx +1
38、1.(2009
年湖北十堰市)如图①,
已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.
(1) 求抛物线的解析式;
(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.
39、(2009年广东省)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,
当M点在BC上运动时,保持AM和MN垂直,
(1)证明:Rt Rt
ABM MCN
△∽△;
(2)设BM x
=,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN面积最大,并求出最大面积;
(3)当M点运动到什么位置时Rt Rt
ABM AMN
△∽△,求此时x的值.
3
2+
+
=bx
ax
y x
x
D
M
A
B C
N。

相关文档
最新文档