轴系扭振保护(tsr)的原理,功能与定值原则

合集下载

电厂送出串补技术介绍

电厂送出串补技术介绍

1某电厂二期工程4×600MW 机组输电线路两回,为LGJ-300×6紧凑型线路,经山西忻都开关站接入河北石北变电所,总长度为438公里。

国调中心规定,在不加装串补装置情况下,最大输送功率185万千瓦,不能满足机组满负荷的送出。

为解决送出受限问题,同时节约投资,节约线路走廊,由中国电力工程顾问集团公司研究确定,在输电线路加装串联补偿装置,以确保负荷的送出。

电厂出双回500kV 紧凑型线路至忻都,在锦忻线上加装35%的串补,在忻石线上加装35%的串补,串补均加装在忻州开闭所侧。

送出方案示意见图1。

图1 电厂接入系统电气接线图串联补偿电容使整个电网形成R-L-C回路,此回路将发生次同步谐振。

次同步谐振是电力系统的一种运行状态,在这种状态下,电气系统与汽轮发电机组以低于同步频率的某个或多个网机(电网或电机)联合系统的自然振荡频率交换能量。

由次同步谐振导致的感应发电机效应,可能出现负阻尼使次同步电气振荡不衰减或增强。

当次同步电气振荡频率与机组轴系某阶扭振固有频率互相耦合将产生次同步谐振(SSR)。

经过各方面的详细论证,电厂采用SVC补偿的方式来抑制SSR,同时由TSR系统来提供保护。

23图2 电气系统主接线图图3 电厂SVC配置方案及其控制关系4△ω:汽轮发电机转速偏差信号 UC:35KV母线电压信号(经PT)图3 SSR-DS三相接线示意图SSR-DS的基本原理本装置主要作用就是用于抑制次同步谐振(SSR)。

选取含有原动机扭振模式分量的测量量(发电机转速信号)作为控制器的输入信号,据此控制晶闸管的触发角,改变TCR支路的电流大小,进而微调发电机的输出功率,产生抑制SSR的阻尼转矩,实现抑制SSR的目的。

5以转速偏差信号作为控制器的输入信号时,需将TCR中的无功电流调制成与发电机转子速度偏差反相即错相180°。

这样,当转速增加时,TCR中的感性电流减小,即TCR吸收的无功功率减小,则发电机机端电压上升,发电机送出的电磁功率增加,对恒定的机械输入,电磁功率的增加将导致转子动能的减小,从而最终导致转子速度的降低。

轴系扭转振动ppt课件

轴系扭转振动ppt课件
发电机转子作为一个惯量质点。 垫升风机不能是双进风的还是单进风的,都作为一
个惯量质点。 水力测功器转动惯量应计入附水影响。附水量与水
力测功据所吸收负荷有关,缺乏详细资料则可取为 净惯量的35%。 皮带传动的泵和发电机等设备:轴系通过皮带传动 的泵和发电机等设备,出于皮带刚度很小而且还可 能产生微量的滑移,所以可以认为这部分设备与原 系统的扭振特性无关。
7
二.扭振的计算模型与当量转化
当量转化方法
柴油机曲轴以每一曲轴平面的中心作为单位气缸转 动惯量的集中点。对并列连杆V型机也可以每个气 缸中心线与轴线之交点作为集中点,而将每个曲柄 转化为两个集中点。单位气缸转动惯量由旋转部件 的转动惯量及转化到曲柄销半径处的往复部件的转 动惯量组成。
以有较大质量部件的回转平面中心作为该部件质量 的集中点。
二.扭振的计算模型与当量转化
实际动力装置系统
当量系统(计算模型)
6
二.扭振的计算模型与当量转化
当量系统,就是把复杂的柴油机轴系转化成如图所示的
集中质量—弹性系统。
转化原则:当量系统能代表实际轴系的扭振特性,其自
由振动计算固有频率与实际固有频率基本相同,振型与 实际的基本相似。实测固有频率与计算值相差大于5% 时,应对当量系统进行修正。
3
一.关于“推进轴系扭振”
轴系扭转振动有何危害?
使曲轴、传动轴及凸轮轴产生过大的交变应力,甚至导致疲劳 折损;
使传动齿轮间产生撞击现象,引起齿面点蚀,乃至断齿; 使橡胶联轴器橡胶件撕裂、螺栓折断; 使刚性联轴器出现振动松动,螺栓折断; 发动机零部件磨损加快,地脚螺栓折断; 柴油发电机组输出不允许的电压波动; 引起扭转—纵向耦合振动; 产生继发性激励,激起柴油机机架、齿轮箱的横向振动,并通

发动机轴系扭振ppt课件

发动机轴系扭振ppt课件
18
I1 C12 I2 C23 I3 C34 I4 C45 I5 C56 I6 C67 I7
Internally:
19
IRing IHub
Iweb+CW IMJ
ICP,Rot, Recip IMJ
ICP,Rot, Recip IMJ
ICP,Rot, Recip IMJ
ICP,Rot, Recip IMJ
c1,2 (I1 I1I 2
I2)
;
2 e2,3
c1,2 (I2 I2I3
I3)
11
三自由度扭摆系统
第一主振型 单结振动主振型有一个结点。
第二主振型 双结振动主振型有两个结点。 三质量扭振系统的运动是由以 上两种振型合成的结果。
1 1 sin(et 1) 1 sin(et 2 )
IFW
I3 I4 I5 I6 I7 I8 I9 I10 I11 I12
I1 I2
CDamper
CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP CWeb, 1/2MJ, 1/2CP
汽 车发动机 设 计
1
第三章发动机轴系扭振
3.1 基本概念 3.2 发动机轴系扭振分析 3.3 减振措施
2
2.1 基本概念
共振现象 定义:内燃机轴系由钢材或球墨铸铁制成﹐既有弹性﹐又有
惯性﹐并有自身的固有频率。在简谐性扭矩的激励下﹐它会产 生强迫扭转振动﹐当激励扭矩的频率趋近于轴系的固有频率时
﹐扭振振幅急剧增大。缸数越多,曲轴越长这种现象越明显。

直流和串补输电下的次同步振荡监测和保护-北京四方继保自动化股份

直流和串补输电下的次同步振荡监测和保护-北京四方继保自动化股份

扭振相关设备及解决方案
产品概述
序号
1 2 3
技术服务类产品
服务名称
汽轮发电机组轴系扭振模态参数测量实验 汽轮发电机组轴系建模 汽轮发电机组轴系扭振危险截面S-N曲线计算
服务类产品: 汽轮发电机组轴系扭振模态参数测量实验。 机组轴系建模,提供仿真分析使用连续质量模型和简单质量模型。 计算机组轴系扭振危险截面S-N曲线。
汽轮发电机轴系与电力系统功率控制设 备(例如高压直流输电系统、静止无功补 偿系统等)发生相互作用,产生的低于同 步频率的振荡。
采用串联电容补偿的交流输电系统出现扰 动时,由于电气系统的固有频率可能与汽轮 发电机轴系的自然扭振频率形成谐振,汽轮 发电机轴系产生的次同步频率功率交换。
直流和串补输电下SSO监测与保护
直流和串补输电下SSO监测与保护
应用背景
火电机组扭振损坏
1970-12-9 790MW双轴机组 发电机与励磁机间 1971年再次发生类似损坏 US Mohave Power Station
核电机组扭振损坏
Unit-3 2004-10-31 Unit-2 2004-11-02 低发之间 US Dresden Nuclear Power Station
直流和串补输电下SSO监测与保护
EPRI研究结论: 无串联电容及无控制环节换流器的电力系统电气阻尼总是正值 HVDC功率/电流控制可使电气阻尼为负,与大型汽轮发电机组相互 作用(SSTI),引发次同步振荡(SSO)直流和串源自输电下SSO监测与保护应用背景
诱发机组轴系扭振的疲劳损耗
这种标准可由对轮变形程度和轴寿命疲劳损耗等因素来确定,轴系在整个 寿命期间由于严重扰动产生的总寿命损害应在允许的范围内。
应用背景 产品概述 典型案例 相关资质

第七章船舶推进轴系的扭转振动与控制

第七章船舶推进轴系的扭转振动与控制


e12
2 n
I
1
A1
2

e23
2 n
I i Ai

i 1

Ak

k 1
Ak 1 ek 1,k
2 n
I i Ai

i 1


0
n
m 1
A Ast
2)
m0
n

3) 1
n
n
m 1

此时阻尼对放大系数的影响最大

4) 2 m 1
n

2 n

1 Ie
增大I或e可使n 下降



时共振
n
tg 1 2n

2 n
2
2
小结: 1)系统自振频率仅与结构有关 n 1/(I e)
1 2 n1
A(1) 1

A(2) 1

A(n1) 1
高速机一般只考虑
1, 2, 3
k

A(1) k
sin(1t


1
)

A(2) k
sin(
2t


2
)



A(n1) k
s
in(
n1t
n1 )
取第一质量作为分离体
S1 U12 0
A
h
h
1
(
2 n
2)2

4n 2
2

2 n
[1 ( n
)2 ]2

n2
4

2 n

(

第三节 轴系的扭转振动分析

第三节 轴系的扭转振动分析
第三节
轴系的扭转振动
船舶推进轴系是一个既有扭转弹性、又 有回转质量的扭转振动系统。轴系扭转振 动为边旋转边做周向来回振动,不可避免。 规范要求:功率大于 220KW的柴油机推进系 统、额定功率大于 110KW的柴油机发电系统 要进行扭振计算并提交审查及实船测量, 如计算及测试超过规定必须采取避振和减 振措施
五 轴系扭转振动的减振措施
一、船舶轴系扭转振动许用应力和许用扭矩 1转速比r=共振转速/标定转速=nc /ne 2持续运转工况0r1.0 3危险临界转速 1)扭振应力或扭矩超过持续运转的许用值时的共振转 速 2)防止措施: (1)设转速禁区;(2)禁区内不应 持续运转,允许快速超越;(3)转速表用红色标明, 并在操纵台前设示告牌 4常用转速r=0.8-1.05范围内不允许存在转速禁区。 在r=0.9-1.03范围内应尽可能不用减小振幅的方 法来消除转速禁区
4封缸运行时的扭振特点 1)封缸运行类型 (1)单缸停油,运动件未拆除 (2)损坏运动件拆除 2)相应扭振特点 (1)运动件未拆除较常见,使扭振振幅和扭振应 力增大,即扭振恶化 (2)运动件拆除对扭振影响最严重,使转动惯量 减小,固有频率、固有振型发生变化,扭振振 幅、应力增大 5现代船用大型柴油机的扭振特点 使轴系扭转振动加剧,中间轴产生过大的扭 振振幅和扭振附加应力
1)由强制振动φ1与有阻尼自由扭振φ2两种 简谐振动合成,经过一定时间后φ2消失, 只剩下强制振动φ1 2)强制振动φ1是由激振力矩Mt激起的,且其 圆频率与激振力矩圆频率相同,即皆为同一 个ω 3)A1的大小主要取决于扭摆的自振圆频率ωe 与阻尼比n。在无阻尼(n→0)情况下,若 ωe=ω,则振动振幅A1→∞;在有阻尼情 况下,若ωe=ω,则A1不会无限大,但也 为最大值,称系统共振

600MW火力发电汽轮机轴系保护与谐波抑制装置共同作用机理下的机组稳定性研究

600MW火力发电汽轮机轴系保护与谐波抑制装置共同作用机理下的机组稳定性研究

600MW火力发电汽轮机轴系保护与谐波抑制装置共同作用机理下的机组稳定性研究摘要:汽轮机轴系断裂事故是汽轮机事故中最严重的事故,它不但会造成主设备严重损坏,而且还极易引发火灾和人员伤亡。

在国内外众多已发生的轴系断裂事故表明,有些事故是由于汽轮机严重超速,有些是由于扭振、螺栓材质及装配工艺而发生疲劳断裂。

电网为了实现远距离电力系统互联,提高输电能力,实现大功率的中、远距离输电,我国的特高压输电线路已逐步建成。

特高压输电线路中的大容量机组、长距离输电需要电网采用可控串补(TCSC)技术提高输电能力。

输电线路中串联电容补偿、直流输电、电力系统稳定器的加装,可控硅控制系统、发电机励磁系统、汽轮机电液调节系统的反馈作用等,均有可能诱发机组产生次同步振荡现象。

解决次同步谐振带来的危害,对各火电厂而言,显得更加的迫切。

可控串联电容补偿(TCSC)、附加励磁阻尼控制(SEDC)、机端附加阻尼控制(GTSDC)等方法虽然可对次同步谐振产生抑制效果,但并不能准确评估每次抑制后,对汽轮机轴系产生的影响。

这些抑制手段与汽轮发电机组轴系扭振控制保护装置(TSR)互相配合,可有效解决这一问题。

关键词:疲劳断裂;特高压;次同步振荡;TCSC;SEDC;GTSDC;TSR;抑制。

Abstract:Steam turbine shafting fracture accident is the most serious accident insteam turbine accidents. It not only causes serious damage to main equipment, but also easily leads to fire and casualties. Many shafting fracture accidents at home and abroad show that some accidents are caused by severe overspeed of steam turbine, and some are caused by fatigue fracture due to torsional vibration, bolt material and assembly process.In order to realize the interconnection of long distance power systems, improve the transmission capacity, and realize the medium andlong distance transmission of high power, China's ultra-high voltage transmission lines have been gradually built. Large capacity units and long distance transmission in UHV transmission lines need to use thyristor controlled series compensation (TCSC) technology to improve transmission capacity. The installation of series capacitor compensation, DC transmission and power system stabilizer in transmission lines, as well as the feedback effect of silicon controlled rectifier control system, generator excitation system and turbine electro-hydraulic control system, may induce sub synchronous oscillation of units.It is more urgent for thermal power plants to solve the harm of subsynchronous resonance. Although methods such as thyristorcontrolled series capacitor compensation (TCSC), additional excitation damping control (SEDC) and generator terminal additional damping control (GTSDC) can suppress subsynchronous resonance, they cannot accurately evaluate the impact on turbine shafting after each suppression. These suppression measures can effectively solve this problem by cooperating with the turbine generator shaft torsional vibration control and protection device (TSR).Key words: Fatigue fracture;UHV;Subsynchronous oscillation;TCSC;SEDC;GTSDC; TSR;inhibition.一、概述随着电网中单机容量的不断增大,功率密度亦相应增加,轴系长度加长和轴系截面积相对下降,整个轴系不可再视为转动刚体,而是由多跨转子组成的弹性质量系统。

内燃机构造与设计--5-4扭振

内燃机构造与设计--5-4扭振

实际发动机曲轴系统扭振的激振力矩主要是输出的单缸扭矩M,M是一个周期函 数,而周期函数是由无限个简谐分量组成,每一个简谐分量都可能引起共 振,所以曲轴系统的扭振可能有很多共振工况。当其中某一阶谐量的频率与 曲轴的固有频率相等时,则曲轴就将与此简谐激振力矩发生共振,振幅大大 增加。发生共振时,曲轴一方面在平均扭矩的作用下正常旋转,另一方面按 某一主振型反复扭振。
4.1 有关扭转振动的一些基本概念
4.1.2 单自由度扭摆的自由振动
4.1.2.1 无阻尼自由振动
4.发动机轴系的扭转振动
单自由度扭摆——由一根有弹性无质量(转动惯量)的扭杆和一个有
质量无弹性的圆盘组成。
扭摆的状态只用一个坐标——圆盘偏离其
平衡位置的角位移θ即可充分地表示出来。
圆盘的转动惯量为I。 扭杆的抗扭刚度为k=GJp/l。

危害:扭振会使机件中产生附加应变和应力,磨损增大,严重时曲轴、齿 轮的齿等零件会断裂,机械噪音增大,发动机平衡性恶化使机体振动加剧
等不良后果。
4.1 有关扭转振动的一些基本概念

• •
4.发动机轴系的扭转振动
产生的原因:
内因:曲轴系统是一个多质量的弹性体,具有一定的惯性、弹性。 外因:在曲轴系统上作用着一个大小、方向都周期性变化的激振力矩。
4.2 发动机轴系的扭振分析及减振措施
弹性参数的换算——扭转刚度k或柔度e
4.发动机轴系的扭转振动
轴段的扭转刚度:作用在直轴段两端的扭矩与扭转角度的比值。
l k M G / dx 0 J ( x) Δφ p
G——材料的剪切弹性模数,Jp(x)——x截面处的极惯性矩,l——轴段的自由扭 转长度。 轴段的柔度:轴段在单位力矩作用下的扭转变形。 e Δ φ 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴系扭振保护(tsr)的原理,功能与定值原则轴系扭振保护(Torsional Shaft Oscillation Protection, TSR)是一种用于保护旋转轴系免受扭振损坏的控制技术。

在大型机械设备
和发动机中使用轴系扭振保护可以防止扭振引起的破坏性振动和损坏,提高设备的可靠性和寿命。

轴系扭振保护的原理是通过检测旋转轴系的扭振状态,当扭振振
幅超过预设值时,通过控制系统采取相应的措施,如减小负载、改变
转速或调整阻尼,以降低扭振的振幅和危害。

轴系扭振保护的主要功能是保护旋转轴系免受扭振损坏。

扭振会
引起轴系的振动增大,导致轴系元件受到过大的应力,甚至造成脱位
或断裂,严重损坏设备。

通过实时监测和控制扭振振幅,轴系扭振保
护可以阻止扭振振幅继续增大,从而保护设备免受损坏。

轴系扭振保护的定值原则是根据设备的特性和预期工作条件,设
定适当的扭振振幅上限。

通常,扭振振幅上限会根据实际情况进行工
程计算或试验确定。

定值原则的目的是使系统在正常工作状态下不受
扭振干扰,同时在扭振超过上限时能够及时启动保护措施,保护设备。

从技术上讲,轴系扭振保护需要实时监测旋转轴系的扭振状况。

常见的监测方法包括测量旋转轴系的扭振振幅、相位、频率等参数。

这些监测数据可以通过各种传感器和信号处理技术获取,并送到控制系统进行处理。

控制系统会根据扭振监测数据进行实时计算和判断,判断扭振是否超过设定的上限。

当扭振超过上限时,控制系统会触发相应的保护措施。

常见的保护措施包括调整负载、改变转速、调整阻尼等。

例如,如果扭振振幅超过预设值,控制系统可以通过改变负载来降低扭振振幅。

这可以通过调整机械传动装置或控制电机的负载来实现。

如果调整负载无法降低扭振振幅,控制系统还可以考虑改变转速或调整阻尼等其他措施。

此外,轴系扭振保护还可以与其他保护系统和监测系统相结合,形成完整的设备保护系统。

例如,可以与温度监测系统结合,根据扭振和温度数据判断设备的工作状态,并采取相应的保护措施。

总结起来,轴系扭振保护是一种用于保护旋转轴系免受扭振损坏的控制技术。

通过实时监测扭振状况,并采取相应的保护措施,可以有效地保护设备,并提高其可靠性和寿命。

轴系扭振保护的定值原则
是根据设备的特性和预期工作条件,设定适当的扭振振幅上限。

为了保证保护系统的可靠性,通常还需要与其他保护系统和监测系统相结合,形成完整的设备保护系统。

相关文档
最新文档