实验基于Simulink配电变压器模型的建立及仿真

合集下载

基于MatLab的电力变压器建模和仿真分析(1)

基于MatLab的电力变压器建模和仿真分析(1)

2.4.2 仿真参数介绍及波形 ................................................................................... 32 2.5 仿真三相变压器 T3 的内部故障 ................................................................... 38 2.5.1 仿真 T3 相间短路(AB 相)的模型如图 .................................................. 38 2.5.2 模型参数介绍及波形 ................................................................................... 38 2.5.3 仿真 T3 匝间短路的模型如图 .................................................................... 42 2.5.4 模型参数介绍及波形 ................................................................................... 42 第三章 变压器仿真波形分析 ............................................................................... 45 3.1 对励磁涌流进行 FFT 分析 ............................................................................. 45 3.2 对外部故障进行 FFT 分析 ............................................................................. 46 3.3 对内部故障进行 FFT 分析 ............................................................................. 47 总结 ......................................................................................................................... 49 参考文献 ................................................................................................................. 50 附录:外文翻译 1 .................................................................................................. 51 外文翻译 2 .............................................................................................................. 56 指导教师评语表 ..................................................................................................... 60

基于MATLAB的变压器仿真 与分析

基于MATLAB的变压器仿真 与分析

于MATLAB_Simulink的变压器建模与仿真基于MATLAB/Simulink的牵引变压器建模与仿真徐(西安铁路局安康供电段新陕西汉中 723000)摘要:针对多种牵引变压器接线方式,建立数学模型,基于Matlab/Simulink仿真软件,建立牵引变压器的仿真模型,并验证数学模型和仿真模型的一致性。

利用所建立仿真模型对不同接线形式牵引变压器在不同条件下对公用电网产生的谐波和负序影响进行仿真试验,对研究各种类型的牵引变压器特性在我国电气化铁路的应用提供条件。

关键词:牵引变压器;数学模型;仿真模型;Matlab/Simulink 中图分类号:U223.6 文献标识码:A 文章编号:1671-7597(2011)0610061-03 牵引变压器按其特性可分为平衡接线和不平衡接线。

其中不平衡接线有单相接线、Vv接线和YNd11接线;平衡接线是试图实现三相两相对称变换而提出的,主要代表方式有Scott,Leblanc、Kubler、Wood-bridge、阻抗匹配接线等。

本次主要总结了常用牵引变压器的特点并建立数学模型,包括每种牵引变压器的原理结构、原次边电气量关系等,基于Matlab/Simulink软件建立牵引变压器仿真模型,并对牵引变压器在不同条件下的负序、谐波特性的进行了研究. 1 牵引变压器数学模型研究 1.1 YNd11接线 YNd11变压器接线原理如下图所示,如果忽略激磁电流及其漏阻抗压降,二次侧绕组ac相与一次侧绕组A相同相,cb相与C相同相。

由于变压器一次侧绕组A,B,C相与电力系统的相序一致,A相滞后C相,对应的二次侧ac也滞后cb相[2]。

其中Z为牵引端口对应变压器漏抗,和β相的端口电压。

1.2 Vv接线 Vv接线牵引变压器接线原理如图2所示。

为二次侧空载相即α相图2 Vv接线牵引变压器设Vv接线变压器一次侧、二次侧绕组匝数分别为可得电流输入输出关系[3]:和,电压输入输出关系如下:图1 YNd11接线牵引变压器设YNd11接线变压器一次侧、二次侧绕组匝数分别为和假设变压器原边中性点接地,可以得出一次侧三相电流。

基于Simulink的简单电力系统仿真【范本模板】

基于Simulink的简单电力系统仿真【范本模板】

实验六 基于Simulink 的简单电力系统仿真实验目的1) 熟悉Simulink 的工作环境;2) 掌握Simulink 电力系统工具箱的使用;3) 掌握在Simulink 的工作环境中建立简单电力系统的仿真模型实验内容输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。

π型等值电路具体元件参数如下:Ω=2.5R ,H L 138.0=,F C C μ967.021==.π型等值电路图1 简单电力系统仿真示意图1) 在Simulink 中建立简单交流单相电力系统模型,并进行仿真,观测负载电流和输电线路末端电压;2) 结合理论知识分析上述观测信号变化的原因;3) 比较不同功率因数,如cos φ=1、cos φ=0。

8(感性)、cos φ=0。

8(容性)负载条件下的仿真结果实验原理与方法1、系统的仿真电路图实验步骤根据所得建立模型,给定参数,得到仿真结果cosφ=1cosφ=0。

8(感性)cosφ=0.8(容性)实验结果与分析cosφ=1cosφ=0.8(感性)cosφ=0。

8(容性)仿真结果分析(1)在纯阻性负载电路中,电压相位与电流相位相同;与感性负载相比,断路器重新闭合后电流没有额外的直流分量.(2)在感性负载中,电压相位超前电流相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小.(3)在容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变至极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。

(4)当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变。

这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。

总括:L和C对输出波形振荡的频率和幅度影响程度不同,当变化相同幅度时,电容对振荡频率和幅度的影响要比电感的大.感想:Matlab中Simulik通过拖拉建模方式对电路进行仿真,具有快捷、方便、灵活的特点。

基于MatlabSimulink的变压器运行仿真分析

基于MatlabSimulink的变压器运行仿真分析

基于Matlab/Simulink的变压器运行仿真分析作者:田震来源:《科技创新与应用》2019年第26期摘; 要:文章简单介绍了变压器运行原理,在理论基础上,运用Matlab/Simulink中电气系统模块库中的仿真模型,对常见的双绕组三相变压器在空载合闸过程中产生励磁涌流的工况进行仿真建模,并通过模型获得了空载合闸时电流电压变化曲线及其变化规律,研究结果对提高变压器运行的可靠性、减少事故发生率具有一定的指导意义。

关键词:变压器;Matlab;仿真;励磁涌流中图分类号:TM407; ; ; ; 文献标志码:A; ; ; ; ;文章编号:2095-2945(2019)26-0009-03Abstract: In this paper, the principle and mechanism of transformer operation are briefly introduced. On the basis of theory, the simulation model of electrical system module library in Matlab/Simulink is used. In this paper, the simulation modeling of the excitation inrush current produced by the common double-winding three-phase transformer in the process of no-load closing is carried out, and the current and voltage variation curve and its variation law during no-load closing are obtained through the model. The research results have certain guiding significance to improve the reliability of transformer operation and reduce the incidence of accidents.Keywords: transformer; Matlab; simulation; excitation inrush current引言在電力系统运行中,变压器是重要设备之一,能够保证整个系统连续的、可靠的稳定运行,但它也是容易发生电力系统各种事故最多的设备之一,为了更好地研究变压器的结构特点和保护运行方式,对变压器进行仿真显得十分必要。

simulink的电力系统仿真实验原理

simulink的电力系统仿真实验原理

simulink的电力系统仿真实验原理电力系统仿真实验原理:电力系统仿真实验是利用Simulink软件对电力系统进行建模、仿真和分析的过程。

该实验主要包括如下几个步骤:1. 建立电力系统模型:在Simulink环境中,根据实际电力系统的结构和特性,利用各种电力元件如发电机、变压器、传输线路、负荷等构建电力系统模型。

可以根据具体需要设置不同的电路参数和拓扑结构,以便对各种电力系统问题进行仿真分析。

2. 设定仿真参数:根据实验要求,设定仿真的时域范围、仿真步长以及模型的输入和输出要求。

例如,可以设定仿真时间为几百毫秒或几秒钟,仿真步长为毫秒级别,以获取系统各个节点的电压、电流等参数。

3. 添加模型控制器:根据需要,可以在模型中添加各种控制器如PID控制器、调速器等,以实现对电力系统的调节和控制。

控制器的参数可以根据实验要求进行设定和调整,以达到理想的控制效果。

4. 进行仿真实验:单击Simulink软件中的"运行"按钮,系统便开始进行仿真计算。

Simulink根据所设定的仿真参数和模型的输入,采用数值计算方法对电力系统进行仿真计算,并输出各个节点的电压、电流等参数。

仿真的过程也可以通过实时仿真功能进行可视化展示。

5. 分析仿真结果:根据仿真结果,可以对电力系统的运行情况进行分析和评估。

例如,可以分析系统的稳定性、安全性、损耗情况等。

如果仿真结果与实际情况存在差异,可以进一步调整电力系统模型和仿真参数,以提高仿真的准确性。

通过Simulink软件的电力系统仿真实验,可以有效地分析和解决实际电力系统中的问题。

同时,仿真实验也为电力系统的运行和优化提供了可靠的依据,减少了实验成本和风险。

实验十二SIMULINK实现系统的建模及仿真

实验十二SIMULINK实现系统的建模及仿真

实验十二 SIMULINK实现系统的建模与仿真一、实验目的1.熟悉Simulink的操作环境,掌握构建系统模型的方法;2.掌握用Simulink对系统模型的仿真分析方法。

2.,掌握Simulink中子程序模块的建立与封装技术,对简单系统所给的教学模型能转化为系统仿真模型并进行仿真分析。

内容:根据试验指导书要求对所给实例:1.熟悉Simulink 的集成环境,掌握构建系统模型的方法;2.掌握Simulink 对系统模型的仿真分析方法。

内容:1.利用传递函数建立仿真模型,然后进行仿真分析;2.分别采用数值法、符号法和Simulink 仿真求解定积分。

目的:1.掌握利用Simulink仿真模块实现信号微积分运算和信号叠加的方法;2.熟悉触发电路和整流电路模型的构建方法和应用技巧。

内容:1.建立信号合并和微积分运算的仿真模型,设置相关仿真参数,将仿真结果送至示波器显示;2.设计触发方式分别为上升沿和下降沿的触发电路;3.设计全波和半波整流电路,并利用频谱分析议比较经两种整流电路处理后的信号谐波分量。

目的:1.掌握噪声的概念。

2.了解Simulink 建模的一般步骤和方法。

3.掌握Scope的使用。

内容:1.利用Simulink 建模;2.使用Scope参看信号,并绘图;3.使用Spectrum 噪声频谱,并绘图。

进行Simulink 仿真。

二、实验原理1.基本的三维绘图指令plot3完整调用格式为plot3(X,Y ,Z,’s ’,’PropertyName',PropertyValue,...)。

在三维空间绘出X 、Y 、Z 三者之间的关系曲线;字符串’s ’指定线型及数据点型,也可设定点线的颜色;PropertyName 属性名和PropertyValue 属性值对线和点进行更丰富的设置。

2.三维曲面绘图指令surf完整调用格式为surf(X,Y ,Z,c,'PropertyName',PropertyValue),X 、Y 、Z 构成曲面上的坐标点。

实验四-SIMULINK仿真模型的建立及仿真

实验四-SIMULINK仿真模型的建立及仿真

实验四 SIMULINK仿真模型的建立及仿真(一)一、实验目的:1、熟悉SIMULINK模型文件的操作。

2、熟悉SIMULINK建模的有关库及示波器的使用。

3、熟悉Simulink仿真模型的建立。

4、掌握用不同的输入、不同的算法、不同的仿真时间的系统仿真。

二、实验内容:1、设计SIMULINK仿真模型。

2、建立SIMULINK结构图仿真模型。

3、了解各模块参数的设定。

4、了解示波器的使用方法。

5、了解参数、算法、仿真时间的设定方法。

例7.1-1 已知质量m=1kg,阻尼b=2N.s/m。

弹簧系数k=100N/m,且质量块的初始位移x(0)=0.05m,其初始速度x’(0)=0m/s,要求创建该系统的SIMULINK 模型,并进行仿真运行。

步骤:1、打开SIMULINK模块库,在MATLAB工作界面的工具条单击SIMULINK图标,或在MATLAB指令窗口中运行simulink,就可引出如图一所示的SIMULINK模块浏览器。

图一:SIMULINK模块浏览器2、新建模型窗,单击SIMULINK模块库浏览器工具条山的新建图标,引出如图二所示的空白模型窗。

图二:已经复制进库模块的新建模型窗3、从模块库复制所需模块到新建模型窗,分别在模块子库中找到所需模块,然后拖进空白模型窗中,如图二。

4、新建模型窗中的模型再复制:按住Ctrl键,用鼠标“点亮并拖拉”积分模块到适当位置,便完成了积分模块的再复制。

5、模块间信号线的连接,使光标靠近模块输出口;待光标变为“单线十字叉”时,按下鼠标左键;移动十字叉,拖出一根“虚连线”;光标与另一个模块输入口靠近到一定程度,单十字变为双十字;放开鼠标左键,“虚连线”变变为带箭头的信号连线。

如图三所示:图三:已构建完成的新模型窗6、根据理论数学模型设置模块参数:①设置增益模块<Gain>参数,双击模型窗重的增益模块<Gain>,引出如图四所示的参数设置窗,把<Gain>增益栏中默认数字改为2,单击[OK]键,完成设置;图四:参数已经修改为2的<Gain>增益模块设置窗②参照以上方法把<Gain1>增益模块的增益系数改为100;③修改求和模块输入口的代数符号,双击求和模块,引出如图五所示的参数设置窗,把符号栏中的默认符号(++)修改成所需的代数符号(--),单击[OK]键,完成设置;图五:改变输入口符号的求和模块参数设置窗④对积分模块<Integrator1>的初始状态进行设置:双击积分模块<Integrator1>,引出如图六所示的参数设置窗,把初始条件Initial condition 栏中的默认0初始修改为题目给定的0.05,单击[OK]键,完成设置。

实验六 基于Simulink的简单电力系统仿真

实验六  基于Simulink的简单电力系统仿真
图1
三、
图2
电路参数:
电RL1串联支路:
LRC负载支路:
四、仿真结果
(1)阻感性负载时
图3
(2)纯阻性负载
图4
(3)纯容性负载
图5
(4)阻容性负载
图6
五、结果分析
1、当断路器断开时,线路断路,电流突变为0,但电压行波仍在进行,因此在末端能够测量到连续的电压波形,但断路器断开对电压波形造成了影响,产生了畸变,对于阻容性负载,畸变增大。这是由于能量是通过电磁场传递的,线路断开时电压继续向前传递。
六、实验感想
通过这次实验,练习了在simulink的工作环境中建立简单电力系统的仿真模型的方法。经过两次练习,对Simulink仿真环境的操作逐渐熟练,达到了实验的预期目的。
Simulink仿真环境功能很强大,是一个不错的仿真平台,我们应该认真学习,利用它丰富的资源和强大的功能实现各种复杂电力系统的仿真与分析。
实验六基于Simulink的简单电力系统仿真
一、实验目的:
1)熟悉Simulink的工作环境;
2)掌握Simulink电力系统工具箱的使用;
3)掌握在Simulink的工作环境中建立简单电力系统的仿真模型。
二、实验内容
输电线路电路参数建模时采用电力系统分析中常用的π型等值电路,搭建如图1所示的一个简单交流单相电力系统,在仿真进行中,负载通过断路器切除并再次投入。π型等值电路具体元件参数如下: , , 。
2、在阻感性负载中,电压的相位超前电流的相位;断路器重新闭合时,交变的电流瞬间增加了一个直流分量,随后逐渐减小。
3、在纯阻性负载中,电压相位与电流相位相同;与阻感性负载相比,断路器重新闭合后电流没有额外的直流分量。
4、在纯容性和阻容性负载中,电压相位滞后于电流相位;断路器重新闭合时,电流瞬间突变得极大;与感性负载和纯阻性负载相比,断路器断开时的末端电压由于有电容放电作用,电压波形畸变很小。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验2:基于Simulink配电变压器模型的建立及仿真在电力系统Simulink 仿真环境下,本文提出了一种新的变压器模块参数设置方法。

在一定假设条件下,采用等效电路法,求取10kV 配变参数,搭建配变模型,并设计出变压器空载和短路试验仿真系统,对配变模型进行仿真。

通过对仿真结果的分析,证明了本方法的正确性和有效性。

配电变压器模型的建立
Simulink 环境下应用上述方法建立S91000/10kV 配电变压器模型, 设置模块参数。

变压器铭牌参数如下:1000 KVA n S , Y / D 1 1 联结, U H / U L = 1 0 / 0 . 4 , P0,空载电流百分比I 0 %, P k 10 .3 kW,短路电压百分比U k %。

由式(1)~(5)求得, R H*R L * , L H * L L * R H , XH代入方程组(6),由MathCad[ 3 ] 求解如图3 所示。

从中可以看出Rm104, Xm104。

折算至高压侧标么值为R m * , X m * 。

仿真分析
为了验证所计算参数的正确性, 进行配电变压器空载试验和短路试验仿真。

图4 所示是基于MATLAB/Simulink 的变压器空载试验仿真系统。

该实验在变压器高压侧施加额定电压, 低压侧开路。

从图中显示模块可以看出空载损耗为1. 682kW,近似于实际技术参数1. 7 kW。

空载仿真图
空载电流如下
空载电压如下
短路试验仿真全图
短路电压如下图
短路电流如下图
由于变压器本身复杂的电磁关系及Simul ink 中变压器模块参数不能直接由铭牌数据获取,从而为仿真参数设置带来了一定困难, 为此, 本文提出了在假设
条件的前提下, 采用基于等效电路的方法, 求取配变的仿真参数,建立了配电变
压器模型。

通过搭建变压器空载和短路仿真实验系统, 对配变模型进行仿真分析, 与实际铭牌数据进行比较,取得了理想的运行结果。

证明了假设前提的正确性和本方法的有效性,也为进一步的电力系统仿真分析打了良好的基础。

相关文档
最新文档