S7-200模拟量接线
S7-200 SMART PLC 输入输出信号接线图

不同型号C P U输入/输出接线图1.C P U S R20接线图图2.C P U S R40接线图图3.C P U C R40接线图图4.C P U S T40接线图图5. C P U S R 60接线图图6. C P U S T 60接线图 数字量输入接线对于大多数输入来讲,都是24V D C 输入,其中S T 40/60 C P U 的 I 0.0-I 0.3 支持 5-24V 输入。
因为S 7-200 S M A R T 的数字量输入点内部为双向二级管,可以接成漏型(图1)或源型(图2),只要每一组接成一样就行。
对于数字量输入电路来说,关键是构成电流回路。
输入点可以分组接不同的电源,这些电源之间没有联系也可以。
数字量输出接线图1. 漏型输入接法 图2. 源型输入接法l 晶体管输出只能接成源型输出(图3),不能接成漏型,即输出为24V 。
l继电器输出是一组共用一个公共端的干节点,可以接交流或直流,电压等级最高到220V 。
例:可以接24V /110V /220V 交直流信号。
但要保证一组输出接同样的电压(一组共用一个公共端,如1L 、2L )。
对于弱小信号,如小于 5V 的信号,需要自己验证其输出的可靠性。
继电器输出点(图4)接直流电源时,公共端接正或负都可以。
对于数字量输出电路来说,关键是构成电流回路。
输出点可以分组接不同的电源,这些电源之间没有联系也可以。
代表24V D C 传感器电源输出模拟量扩展模块接线图1. E M A E 04 与 E M A M 06的模拟量输入接线方法图2. E M A Q 02 与 E M A M 06的模拟量输出接线方法E M A R 02 R T D (热电阻)模块接线图3. 源型输出图4. 继电器输出图3. E M A R 02 R T D 接线R T D 接到传感器的接线方式有2线、3线、4线三种方式(图4)。
图4. R T D 到传感器的接线,4线、3线、2线S B A Q 01 信号板接线图5. S B A Q 01 信号板接线模拟量扩展模块基础技术参数表1.模拟量扩展模块基础技术参数 分辨率与转换精度的区别分辨率是A /D 模拟量转换芯片的转换精度,即用多少位的数值来表示模拟量。
西门子200SMART模拟量模块怎么接线

西门子200SMART模拟量模块怎么接线1.普通模拟量模块接线模拟量类型的模块有三种:普通模拟量模块、RTD模块和TC模块。
普通模拟量模块可以采集标准电流和电压信号。
其中,电流包括:0-20mA、4-20mA 两种信号,电压包括:+/-2.5V、+/-5V、+/-10V三种信号。
注意:S7-200 SMART CPU普通模拟量通道值范围是0~27648或-27648~27648。
普通模拟量模块接线端子分布如下图 1 模拟量模块接线所示,每个模拟量通道都有两个接线端。
图1 模拟量模块接线模拟量电流、电压信号根据模拟量仪表或设备线缆个数分成四线制、三线制、两线制三种类型,不同类型的信号其接线方式不同。
四线制信号指的是模拟量仪表或设备上信号线和电源线加起来有4根线。
仪表或设备有单独的供电电源,除了两个电源线还有两个信号线。
四线制信号的接线方式如下图2模拟量电压/电流四线制接线所示。
图2 模拟量电压/电流四线制接线三线制信号是指仪表或设备上信号线和电源线加起来有3根线,负信号线与供电电源M线为公共线。
三线制信号的接线方式如下图3 模拟量电压/电流三线制接线所示。
图3 模拟量电压/电流三线制接线两线制信号指的是仪表或设备上信号线和电源线加起来只有两个接线端子。
由于S7-200 SMART CPU模拟量模块通道没有供电功能,仪表或设备需要外接24V 直流电源。
两线制信号的接线方式如下图4 模拟量电压/电流两线制接线所示。
图4 模拟量电压/电流两线制接线不使用的模拟量通道要将通道的两个信号端短接,接线方式如下图 5 不使用的通道需要短接所示。
图5 不使用的通道需要短接2. RTD模块接线RTD热电阻温度传感器有两线、三线和四线之分,其中四线传感器测温值是最准确的。
S7-200 SMART EM RTD模块支持两线制、三线制和四线制的RTD传感器信号,可以测量PT100、PT1000、Ni100、Ni1000、Cu100等常见的RTD温度传感器,具体型号请查阅《S7-200 SMART系统手册》。
图文详解S7-200smart的模拟量输入输出

图⽂详解S7-200smart的模拟量输⼊输出⼀.模拟量模块接线1.普通模拟量模块接线模拟量类型的模块有三种:普通模拟量模块、RTD模块和TC模块。
普通模拟量模块可以采集标准电流和电压信号。
其中,电流包括:0-20mA、4-20mA两种信号,电压包括:+/-2.5V、+/-5V、+/-10V三种信号。
注意:S7-200 SMART CPU普通模拟量通道值范围是0~27648或-27648~27648。
普通模拟量模块接线端⼦分布如下图1 模拟量模块接线所⽰,每个模拟量通道都有两个接线端。
图1 模拟量模块接线模拟量电流、电压信号根据模拟量仪表或设备线缆个数分成四线制、三线制、两线制三种类型,不同类型的信号其接线⽅式不同。
四线制信号指的是模拟量仪表或设备上信号线和电源线加起来有4根线。
仪表或设备有单独的供电电源,除了两个电源线还有两个信号线。
四线制信号的接线⽅式如下图2模拟量电压/电流四线制接线所⽰。
(电话/微信:178********)图2 模拟量电压/电流四线制接线三线制信号是指仪表或设备上信号线和电源线加起来有3根线,负信号线与供电电源M线为公共线。
三线制信号的接线⽅式如下图3 模拟量电压/电流三线制接线所⽰。
图3 模拟量电压/电流三线制接线两线制信号指的是仪表或设备上信号线和电源线加起来只有两个接线端⼦。
由于S7-200 SMART CPU模拟量模块通道没有供电功能,仪表或设备需要外接24V直流电源。
两线制信号的接线⽅式如下图4 模拟量电压/电流两线制接线所⽰。
图4 模拟量电压/电流两线制接线不使⽤的模拟量通道要将通道的两个信号端短接,接线⽅式如下图5 不使⽤的通道需要短接所⽰。
图5 不使⽤的通道需要短接2. RTD模块接线RTD热电阻温度传感器有两线、三线和四线之分,其中四线传感器测温值是最准确的。
S7-200 SMART EM RTD模块⽀持两线制、三线制和四线制的RTD传感器信号,可以测量PT100、PT1000、Ni100、Ni1000、Cu100等常见的RTD温度传感器,具体型号请查阅《S7-200 SMART系统⼿册》。
S7-200系列PLC接线图

S7-200系列PLC 一、CPU技术规范二、CPU电源规范三、CPU数字量输入规范四、CPU数字量输出规范•当一个机械触点接通S7--200 CPU或任意扩展模块的供电时,它发送一个大约50毫秒的“1”信号到数字输出,您需要考虑这一点,尤其是您使用触够响应短脉冲的设备时。
•依据于您的脉冲接收器和电缆,附加的外部负载电阻(至少是额定电流的10%)可以改善脉冲信号的质量并提高噪音防护能力。
•带灯负载的继电器使用寿命将降低75%,除非采取措施将接通浪涌降低到输出的浪涌电流额定值以下。
•灯负载的瓦特额定值是用于额定电压的。
依据正被切换的电压,按比例降低瓦特额定值(例如120VAC--100W)五、CPU224XP模拟量输入规范五、CPU224XP模拟量输出规范注:DC/DC/DC——24VDC电源/24VDC输入/24VDC输出;AC/DC/继电器——100~230VAC电源/24VDC输入/继电器输出;CPU系列号产品图片描述选型型号CPU221DC/DC/DC;6点输入/4点输出6ES7 211-0AA23-0XB0AC/DC/继电器;6点输入/4点输出 6ES7 211-0BA23-0XB0 CPU222DC/DC/DC;8点输入/6点输出6ES7 212-1AB23-0XB0AC/DC/继电器;8点输入/6点输出 6ES7 212-1BB23-0XB0CPU224 DC/DC/DC;14点输入/10点输出6ES7 214-1AD23-0XB0AC/DC/继电器;14点输入/10点输出6ES7 214-1BD23-0XB0CPU224XP DC/DC/DC;14点输入/10点输出;2输入/1输出共3个模拟量I/O点6ES7 214-2AD23-0XB0 AC/DC/继电器;14点输入/10点输出;2输入/1输出共3个模拟量I/O点6ES7 214-2BD23-0XB0CPU226 DC/DC/DC;24点输入/16点晶体管输出6ES7 216-2AD23-0XB0AC/DC/继电器;24点输入/16点输出6ES7 216-2BD23-0XB0CPU226XM DC/DC/DC;24点输入/16点晶体管输出6ES7 216-2AF22-0XB0AC/DC/继电器;24点输入/16点输出6ES7 216-2BF22-0XB0输入接线形式简图输出接线形式简图一、CPU221模块接线图二、CPU222模块接线图三、CPU224模块接线图四、CPU224XP模块接线图五、CPU226模块接线图S7-200系列PLC 数字量扩展模块技术规范及接线图一、数字量输入扩展模块技术规范二、数字量输出扩展模块技术规范(垂直),每个点10A两个输出并联两个输出并联是的,只有输出在同一个组内否否电缆长度(最大)•屏蔽•非屏蔽500米150米•当一个机械触点接通S7--200 CPU或任意扩展模块的供电时,它发送一个大约50毫秒的“1”信号到数字输出,您需要考虑这一点,尤其是您使用触够响应短脉冲的设备时。
S7-200 SMART PLC接线图

S7-200 SMART PLC接线图一、S7-200 SMART 数字量I/O接线图不同型号CPU输入/输出接线图1. CPU SR20接线图图2. CPU SR40接线图图3. CPU CR40接线图图4. CPU ST40接线图图5. CPU SR60接线图图6. CPU ST60接线图数字量输入接线图7. 漏型输入接法图8. 源型输入接法对于大多数输入来讲,都是24VDC输入,其中ST CPU的I0.0-I0.3 支持5-24V 输入,另外ST20/30 的I0.6、I0.7也支持5-24V输入。
如下表所示:S7-200 SMART的数字量输入点内部为双向二级管,可以接成漏型(图7)或源型(图8),只要每一组接成一样就行。
对于数字量输入电路来说,关键是构成电流回路。
输入点可以分组接不同的电源,这些电源之间没有联系也可以。
数字量输出接线图9. 源型输出图10. 继电器输出晶体管输出只能接成源型输出(图9),不能接成漏型,即输出为24V。
继电器输出是一组共用一个公共端的干节点,可以接交流或直流,电压等级最高到220V。
例:可以接24V/110V/220V交直流信号。
但要保证一组输出接同样的电压(一组共用一个公共端,如1L、2L)。
对于弱小信号,如小于5V 的信号,需要自己验证其输出的可靠性。
继电器输出点(图10)接直流电源时,公共端接正或负都可以。
对于数字量输出电路来说,关键是构成电流回路。
输出点可以分组接不同的电源,这些电源之间没有联系也可以。
1代表24VDC传感器电源输出常问问题1、同一个模块的数字量输入端可以同时接NPN和PNP两种信号的设备吗?不可以,因为NPN和PNP两种类型的信号在DI端形成的回路中对于DI点的电流方向相反,同样地M点的电流方向也相反,如图7和图8,NPN和PNP回路的电流方向不同所示,如果把两种信号接到一个M端,则M端有两种电流流向,这是不正确的。
因此不能在同一个模块的DI输入端同时接NPN和PNP两种信号的设备。
s7-200 smart 模拟量模块用法

当我们在实际的应用中需要对当前的温度或是压力进行采集显示的时候,我们需要用到模拟量模块来对模拟量信号进行采集,在这里我们以S7-200smart PLC的EMAE04模拟输入模块为例来说明如何使用这个模块来采集温度或是压力。
例如:现需要实时监控发电机机组的温度,假设变送器输出的信号为0到10V的电压信号,最大温度值为150。
最小温度值为0度。
要完成正确读取实际的温度值,需要进行以下三步操作:第一、正确的接线第二、正确的硬件组态第三、编写正确的程序1、按照变送器提供的信号输出接线方式进行正确的接线,对于EMAE04模块的信号接入如图所示:若变送器为三线制输出的变送器,则接线时,先把变送器的24V 电源接上,变送器上的信号输出接端0+,0-端子接24V电源负。
2、打开S7-200smart的编程软件,打开其系统块对其进行硬件组态。
如图所示:注意:对于信号类型的选择,通道0的设置对通道1的设置也有效,通道2的设置对通道3 也同样有效。
3、编写转换程序S7-200smartPLC来说其最大的数字量为27648。
我们可以根据其得到的数字量的大小转换成我们实际的温度值。
对其转换程序,我们可以使用S7-200中的scaling模拟量转换库,使用库移植的方法把其移植到S7-200smart的软件中。
其移植方法可以参考前面所介绍的内容。
Input :表示需要转换的数字量,即采样所的数字量Ish:换算对象的高限,即最大模拟量所对应的数字量值(27648)Isl: 换算对象的低限,即最小模拟量所对应的数字量值(0)Osh:换算结果的高限,即测量范围最大值Osl:换算结果的底限,即测量范围最小值。
VD100:换算结果所存储的值。
S7-200模拟量模块的使用教程

S7-200模拟量编程本文以EM235为例讲解S7-200模拟量编程,主要包括以下内容:1、模拟量扩展模块接线图及模块设置2、模拟量扩展模块的寻址3、模拟量值和A/D转换值的转换4、编程实例模拟量扩展模块接线图及模块设置EM235是最常用的模拟量扩展模块,它实现了4路模拟量输入和1路模拟量输出功能。
下面以EM235为例讲解模拟量扩展模块接线图,如图1。
图1图1演示了模拟量扩展模块的接线方法,对于电压信号,按正、负极直接接入X+和X-;对于电流信号,将RX和X+短接后接入电流输入信号的“+”端;未连接传感器的通道要将X+和X-短接。
对于某一模块,只能将输入端同时设置为一种量程和格式,即相同的输入量程和分辨率。
(后面将详细介绍)EM235的常用技术参数:模拟量输入特性模拟量输入点数4输入范围电压(单极性)0~10V0~5V0~1V0~500mV0~100mV0~50mV电压(双极性)±10V±5V±2.5V±1V±500mV±250mV±100mV±50mV±25mV电流0~20mA数据字格式双极性全量程范围-32000~+32000单极性全量程范围0~32000分辨率12位A/D转换器模拟量输出特性模拟量输出点数1信号范围电压输出±10V电流输出0~20mA数据字格式电压-32000~+32000电流0~32000分辨率电流电压12位电流11位下表说明如何用DIP开关设置EM235扩展模块,开关1到6可选择输入模拟量的单/双极性、增益和衰减。
时,模拟量输入为单极性输入,SW6为OFF时,模拟量输入为双极性输入。
SW4和SW5决定输入模拟量的增益选择,而SW1,SW2,SW3共同决定了模拟量的衰减选择。
6个DIP开关决定了所有的输入设置。
也就是说开关的设置应用于整个模块,开关设置也只有在重新上电后才能生效。
S7-200smart-PLC模拟量输入模块使用说明

S7-200smart-PLC模拟量输入模块使用说明1. 简介S7-200smart-PLC模拟量输入模块是一种数字信号转模拟信号的设备,可将其它设备发出的模拟量信号转化为PLC可读取的数字信号。
本模块广泛应用于工业生产中,可用于温度、压力、风速等物理量的检测和控制。
2. 特点S7-200smart-PLC模拟量输入模块具有如下特点:•通道数可选:根据需求,可选择4通道、6通道或8通道。
•精度高:采用16位高精度AD转换器。
•抗干扰能力强:采用隔离式设计,具有较强的抗干扰能力。
•通信速度快:通信速率可达1.5Mbps。
3. 硬件连接3.1 电源连接将模块的电源正、负极连通24V直流电源即可。
3.2 信号输入连接将模块的信号输入连接上相应的传感器即可。
其中,八个通道的引脚分别为:•CH1: 1号、2号•CH2: 3号、4号•CH3: 5号、6号•CH4: 7号、8号•CH5: 9号、10号•CH6: 11号、12号•CH7: 13号、14号•CH8: 15号、16号需要注意的是,不同的传感器信号输入时,需要匹配相应的信号输入范围。
如果输入的传感器信号超过所选通道的电压/电流量程,则不会被正确读取。
3.3 PLC连接将模块与PLC进行连接即可。
口与PLC相连的方式包含以下两种:•自带插头与PLC主机开关相连•模块采用梳式插头,与插座相连4. 编程配置在编程之前,需要在Step 7 micro/WIN中进行模块参数的配置。
步骤如下:1.打开微型PLC编程软件Step 7 micro/WIN,选择S7-200smart PLC 模板项目文件。
2.连接PLC和计算机,将PLC与计算机相连。
3.点击。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S7-200模拟量模块系列
模拟信号是指在一定范围内连续的信号(如电压、电流),这个“一定范围”可
以理解为模拟量的有效量程。
在使用S7-200模拟量时,需要注意信号量程范围,拨码开关设置,模块规范接线,指示灯状态等信息。
本文中,我们按照S7-200模拟量模块类型进行分类介绍:
⌝AI 模拟量输入模块⌝ 1.
⌝ 2. AO模拟量输出模块
3. AI/AO模拟量输入输出模块
4. 常见问题分析
首先,请参见“S7-200模拟量全系列总览表”,初步了解S7-200模拟量系列的基本信息,具体内容请参见下文详细说明:
AI 模拟量输入模块
A. 普通模拟量输入模块:
如果,传感器输出的模拟量是电压或电流信号(如±10V或0~20mA),可以选用普通的模拟量输入模块,通过拨码开关设置来选择输入信号量程。
注意:按照规范接线,
尽量依据模块上的通道顺序使用(A->D),且未接信号的通道应短接。
具体请参看
《S7-200可编程控制器系统手册》的附录A-模拟量模块介绍。
4AI EM231模块:
首先,模拟量输入模块可以通过设置拨码开关来选择信号量程。
开关的设置应用于
整个模块,一个模块只能设置为一种测量范围,且开关设置只有在重新上电后才能
生效。
也就是说,拨码设置一经确定后,这4个通道的量程也就确定了。
如下表所示:
注:表中0~5V和0~20mA(4~20mA)的拨码开关设置是一样的,也就是说,当拨码
开关设置为这种时,输入通道的信号量程,可以是0~5V,也可以是0~20mA。
♣
8AI EM231模块:
8AI的EM231模块,第0->5通道只能用做电压输入,只有第6、7两通道可以用做电流输入,使用拨码开关1、2对其进行设置:当sw1=ON,通道6用做电流输入;sw2=ON 时,通道7用做电流输入。
反之,若选择为OFF,对应通道则为电压输入。
注:当第6、7道选择为电流输入时,第0->5通道只能输入0-5V的电压。
B. 测温模拟量输入模块(热电偶TC;热电阻RTD):
如果,传感器是热电阻或热电偶,直接输出信号接模拟量输入,需要选择特殊的测
温模块。
测温模块分为热电阻模块EM231RTD和热电偶模块EM231TC。
注意:不同的信
号应该连接至相对应的模块,如:热电阻信号应该使用EM231RTD,而不能使用
EM231TC。
且同一模块的输入类型应该一致,如:Pt1000和Pt100不能同时应用在一个热电阻模块上。
热电偶模块TC:
EM231 TC支持J、K、E、N、S、T和R型热电偶,不支持B型热电偶。
通过拨码设置,模块可以实现冷端补偿,但仍然需要补偿导线进行热电偶的自由端补偿。
另外,
♣该模块具有断线检测功能,未用通道应当短接,或者并联到旁边的实际接线通道上。
热电阻模块RTD:
热电阻的阻值能够随着温度的变化而变化,且阻值与温度具有一定的数学关系,这
种关系是电阻变化率α。
RTD模块的拨码开关设置与α有关,如下图所示,就算同是
Pt100,α值不同时拨码开关的设置也不同。
在选择热电阻时,请尽量弄清楚α参数,按
照对应的拨码去设置。
具体请参看《S7-200可编程控制器系统手册》的附录A-热电偶和
热电阻扩展模块介绍。
EM231 RTD模块具有断线检测功能,未用通道不能悬空,接法方式如下:
(1)请将一个电阻按照与已用通道相同的接线方式连接到空的通道,注意:电阻的阻
值必须和RTD的标称值相同;
(2)将已经接好的那一路热电阻的所有引线,一一对应连接到空的通道上。
因为热电阻分2线制、3线制、4线制,所以RTD模块与热电阻的接线有3种方式,如图所示。
其中,精度最高的是4线连接,精度最低的是2线连接。
提示:
(1). 在STEP7 Micor/WIN软件中(S7-200的编程软件),对于模拟量输入通道设有软件滤波功能,如图所示,具体请参见《S7-200 • LOGO• SITOP 参考》->系统块-模拟量滤
波。
但是,在系统块中设置模拟量通道滤波时,RTD和TC模块占用的模拟量通道,应
禁止滤波功能。
(2)EM231 TC和RTD模块上,均有24V电源指示灯和SF故障指示灯。
如图所示:(a)若24V电源指示灯=OFF,则说明该模块没有24V工作电源;(b)若SF红灯闪烁,原因可能是:模块内部软件检测出外接断线,或者输入超出范围。
注:具体请参见:《S7-200 • LOGO• SITOP 参考》->EM231 RTD/EM231 TC。
AO模拟量输出模块
S7-200的扩展模块里,分别有2路、4路的模拟量输出模块EM232。
根据接线方式
(M-V或M-I)选择输出信号类型,电压:±10V,电流:0~20mA(4~20mA)。
AI/AO模拟量输入输出模块
(A)CPU模块本体集成的2路AI和1路AO
S7-200只有CPU 224XP和CPU224XPsi,本体集成有模拟量通道。
其中,2路AI是:电压信号±10V,1路AO是:电压信号0~10V;或者电流信号0~20mA(4~20mA),输出信号
类型可以通过硬件接线来选择。
(B) EM235模拟量输入输出模块
EM235模块有4路AI和1路AO。
通过拨码开关设置来选择4路AI通道的输入信号量程,如下表所示,这个模块可以测量毫伏级(mV)的信号;1路AO是:电压信号
±10V;或电流信号0~20mA(4~20mA),可以根据硬件接线方式(M-V或M-I)选择输出
信号类型。
注:模块上的电位计是用来调节输入信号和转换数值的放大关系,在模块出厂时已经
设置好了,如无需要,请不要随意更改。
常见问题分析
A.模拟量输入与数字量的对应关系:
模拟量信号(0~10V,0~5V或0~20mA)在S7-200 CPU内部用0~32000的数值表示(注:4~20mA对应6400~32000),这两者之间有一定的数学关系,如图所示:
B.模拟量模块的硬件接线介绍
(1)CPU 224 XP集成有2路电压输入,接线方法见a:分别为A+和M、B+和M,此时只能输入±10V 电压信号。
CPU 224XP还集成有1路模拟量输出信号。
电流输出如图b,将负载接在I和M端子之间;电压输出如图c,将负载接在V和M端子之间。
(2)模拟量输入的接线方式
以4AI EM231模块为例,分别介绍电压、电流型输入信号的接线方式,如图所示。
注意:此接线图是一个示意图,表述的是不同的接线方式,并不是指该模块只有A通道
可以接入电压,B通道必须悬空,C和D通道只能接入电流。
当您的信号为电压输入时可以参考接线方法a,以此类推。
方式a. 电压输入方式:信号正接A+;信号负接A-;
方式b. 未用通道接法(不要悬空):未用通道需短接,如B+和B-短接;
方式c. 电流输入方式(四线制):信号正接C+,同时C+与RC短接;
信号负接C-,同时C-和模块的M端短接。
方式d. 电流输入方式(两线制):信号线接D+,同时D+与RD短接;
电源M端接D-,同时和模块的M端短接。
注:具体请参见:《S7-200 • LOGO• SITOP 参考》->模拟量模块接线。
(3)电流型信号输入接线方式
电流型信号的接线方式,分为四线制、三线制、二线制接法。
这里讨论的“几线制”,是以传感器或仪表变送器是否需要外供电源来区别的,而并不是指EM231模块需要几根信号线,或该变送器的信号线输出。
a.四线制-电流型信号的接法:
四线制信号是指信号设备本身外接供电电源,同时有信号+、信号-两根信号线输出。
供电电源可有220VAC或24VDC,接线如图所示:
b. 三线制-电流型信号的接法:
三线制信号是指信号设备本身外接供电电源,只有一根信号线输出,该信号线与电源线共用公共端,通常情况是共负端的。
接线如图所示:
注:若设备的24VDC供电电源与EM231模块的供电电源不是同一个电源,那么,需要将模块的M端与该通道的负端引脚短接(如,M和C-短接)。
这是为了使模块与测量通道工作在同一的参考电压,也就是等电位。
下面的二线制接法同理。
c. 二线制-电流型信号的接法:
二线制信号是指信号设备本身只有两根外接线,设备的工作电源由信号线提供,即其中一根线接电源,另一根线是信号输出。
接线如图所示:
C.224XP本体集成的AI,能否接电流信号0~20mA?
首先,这两路模拟量输入通道可以接收±10V的电压信号,不能直接接收电流信
号。
若使用该通道接收电流信号,会有一定的风险,可能导致测量的不准确或模块的损
坏等等。
具体说明请点击查看
D.如何对S7-200 的CPU224XP 和扩展模块EM 231, EM 232 及EM 235 的模拟量值进行比例换算?
S7-200模拟量输入通道所采集的信号,是以0~32000中的数值表示,存储在AIW中。
也就是说,这个数值与实际的物理量之间,存在一定的比例换算关系。