奥数一年级.教案 第四讲 等量代换
一年级等量代换

一年级等量代换在数学的世界里,有一个非常重要的概念叫做等量代换。
这是我们在学习加法和减法之后,进一步理解数学的基础之一。
这个概念对于我们理解更复杂的数学概念,如代数和几何,也是至关重要的。
等量代换是指用一种量来代替与其相等的另一种量。
例如,我们可以说10个苹果等于5个橙子。
在这个例子中,我们用10个苹果的重量来代替5个橙子的重量。
这就是等量代换。
在一年级的数学课程中,我们通常会学习如何使用等量代换。
我们会用数字来代替量,比如用10来代替10个苹果,用5来代替5个橙子。
然后我们可以通过简单的算术运算来找出两种量之间的关系。
例如,如果我们有10个苹果和5个橙子,我们可以通过等量代换来找出1个橙子等于多少个苹果。
如果我们设1个橙子等于x个苹果,那么我们可以建立如下方程:10 = 5x,解这个方程可以得到x=2。
所以,1个橙子等于2个苹果。
通过这样的学习,我们可以更好地理解数量的概念,掌握基本的算术运算,提高我们的数学素养。
我们也可以了解到数学在现实生活中的应用,比如在购物和做交易时如何进行数量的比较和转换。
等量代换是数学学习中一个非常基础但非常重要的概念。
通过学习等量代换,我们可以更好地理解数学的基础知识,为以后的学习打下坚实的基础。
在人生中,有些看似复杂的难题,其实可以用简单的等量代换来解答。
今天,我想和大家分享一个我在一年级时学到的重要概念——等量代换。
在一年级的数学课上,我们开始学习用数字来描述世界。
老师让我们认识数字,学习加减法,这都很有趣。
但最让我印象深刻的,是老师给我们讲的一个故事。
老师告诉我们,有一个古老的村庄,村子里的人们非常善良。
每当有外来人来到村子里,村民们都会给他们一些食物。
但这个村子的食物非常特别,它叫做“公平食”。
每份公平食都是用两个苹果和三个橘子做成的。
有一天,一个外来人来到了村子里,他非常饿。
村民们给了他一份公平食。
这个人吃了一半的公平食,发现自己已经饱了。
他看着剩下的食物,想把它们带走。
最新一年级数学上册重难点之等量代换

一年级数学上册重难点之等量代换
《等量代换》,分类,方法,技巧昨天,一位一年级的家长让我给她找几个数学题目,孩子平时考试,其它的题目都完成得很好,计算能力也不错,这周还去参加计算比赛.但是呢,有个题老是弄不好,如下图:
这是一个等量代换的题目,一年级的奥数里面也有这样的题型.
同时,这个题还会出现在试卷后面的较难的题中,属于需要动脑筋的题.
对于一年级的孩子来说,这个数学题目需要一定的理解力.因为涉及到推理能力!等量代换的关键是推理:
1个桃子等于4个苹果,那么右边的式子中,就把桃子换成4个苹果,这个时候,就知道右边是6个苹果啦.
所以答案是6.
这题属于形象化的,还是比较好理解的.例如:
练习1:
练习题来了(4道):。
一年级奥数-数图形+数线段数角+算式谜+等量代换

[ 例1 ] 1个苹果和几个草莓一样重?
[ 例2 ]
1只小狗和几只小鸡一样重?
[ 例3 ]
根据图,想一想,一只猫相当于几只小甲壳虫的重量?
[ 例4 ]
?
根据图,想一想,一颗五角星等于几个圆?
[ 例5 ]
[ 例5 ]
成立。
4 (1)
(2)
6
-
5
+3
1
+
7
58
71
-
7
5
例6:猜一猜,下面算式中的“数学 好”三个字各表示几?
数 9 (1) -2 学
65
数 =( ) 学( )
-1 好
好 =( )
49
2 数 (2) +学 3
71 +5 好 12 7
数 =( ) 学( ) 好 =( )
例7:要使算式成立,字母和汉字分 别代表数字几?
A=( )
A=( )
B=( )
B=( )
例3:在方框中填上合适的数,使算式 成立。
7 (1) -4
31
(2)
8
+3
43
例4:想一想,下面算式中的“快”、 “乐”各代表几?
(1) 快 6
(2)
9快
+ 5乐
- 乐4
83 快 =( )
18 快= ( )
乐= ( )
乐= ( )
例5:在方框中填上合适的数,使算式
有4条 有3条 有2条
有1条
练习题: 1、下图中共有多少条线段?
()
()
()
()
例2、数一数下图中多少个角?
练习:
(8)
(3 )
( 10 )
一年级数学上册重难点之等量代换

一年级数学上册重难点之《等量代换》,分类,方法,技巧
昨天,一位一年级的家长让我给她找几个数学题目,孩子平常考试,其余的题目都达成得
很好,计算能力也不错,这周还去参加计算竞赛。
可是呢,有个题总是弄不好,以下列图:
这是一个等量代换的题目,一年级的奥数里面也有这样的题型。
同时,这个题还会出此刻试卷后边的较难的题中,属于需要动脑筋的题。
关于一年级的孩子来说,这个数学题目需要必定的理解力。
由于波及到推理能力!
等量代换的重点是推理:
4 个苹果,这个时候,就知道1 个桃子等于 4 个苹果,那么右侧的式子中,就把桃子换成
右侧是 6 个苹果啦。
因此答案是 6.
这题属于形象化的,仍是比较好理解的。
比如:
练习 1:
练习题
来了( 4 道):。
小学奥数专题--等量代换

等量代换例题精讲题型一、看的见的等量代换例1 看下图,右边要站几只小鸟跷跷板才能平衡.解析:1只小兔的重量等于6只鸟的重量,右边要放6只鸟,跷跷板才能保持平衡.变式训练1 下图中第三个盘子应放几个小方块才能保持平衡?解析:1个香蕉的重量=3个方块的重量,右边要放3个方块天平才能保持平衡.变式训练2 下图中0,1,2,3,4,5,6,7,8,9十个兄弟玩跷跷板,8和6先坐在一头,让哪两个兄弟坐在另一头,才能使跷跷板平衡?解析:右边8+6=14,左边只能放9和5,9+5=14.变式训练 3 一个苹果等于()个草莓.解析:一个苹果等于4个草莓.变式训练4 第三个盘子应放几个玻璃球才能保持平衡.解析:第三个盘子应放6个玻璃球才能保持平衡.例2 水果兄弟们也组成了各种不同的图文算式,它们各代表一个数,你能猜出它们各代表几吗?解析:这是一个很基础的题,通过这个题的练习,可让学生初步掌握代换的方法,为后面的学习打下基础.(1)因为,所以,又因为3+3+3=9,所以=3.(2)根据,想12+8=20,那么可以推出,因为4+4=8,所以可以得出一个=4.(3)因为,,这样我们可以得出=5+5+5+5=20.(4)根据得,观察算式,就相当于没加也没减还得0,这样我们就可以得出=25.变式训练1 下面的花朵各表示什么数?解析:=9,=3.变式训练2 有一天,小狗老师要在动物学校挑选队员参加数学竞赛,小松鼠很高兴也跑来了.小狗老师说:“那我就来考考你!你把下面的题做对了就可以参加了.”小松鼠看了半天说:“老师,你写的这是什么?”小狗老师说:“哈哈!看来你要好好学一学图文算式了,欢迎你下次再来.”小朋友们,上面的题你会吗?解析:通过这个故事引入新课,在这里不要求学生能马上做出来,可放在最后来解决.如果学生的能力较强,也可把这两个题作为引入新课的切入点进行讲解.(1)因为,所以=5,又因为,把=5替换,就变成,这样我们就可以得出=10.(2)我们把上下两个算式进行比较,我们发现下面比上面多了一个,得数多了18-14=4,所以我们可以推断出=4,,根据第一个算式我们可以得出;那么=5.变式训练3 下面的符号各代表一个数,相同的符号代表相同的数,它们各代表几呢?解析:根据两个算式来进行推理,通常我们要先根据一个算式的得数推理出其中一个符号表示的数,然后再把这个得数代换到另一个算式里,求出另外一个符号表示的数.具体分析如下:(1)根据●+●=6,想3+3=6,可推出●=3,把●=3替换▲+●=8,可得到新的算式▲+3=8,这样我们就可得出▲=5.(2)根据第二个算式12-■=5,可得■=7;把■=7替换第一个算式◆+■=15的◆+7=15,可以得出◆=8.变式训练4 下面的符号各代表一个数,相同的符号代表相同的数,它们各代表几呢?解析:根据两个算式来进行推理,通常我们要先根据一个算式的得数推理出其中一个符号表示的数,然后再把这个得数代换到另一个算式里,求出另外一个符号表示的数.具体分析如下:(1)根据●+●=6,想3+3=6,可推出●=3,把●=3替换▲+●=8,可得到新的算式▲+3=8,这样我们就可得出▲=5.(2)根据第二个算式12-■=5,可得■=7;把■=7替换第一个算式◆+■=15的◆+7=15,可以得出◆=8.变式训练5 根据下面的算式,你知道、、各代表数字几?解析:根据第三个算式:圆柱体+圆柱体=球,我们可以替换第一个算式中的球可得:正方体+圆柱体+圆柱体=10,我们把这个算式和第二个算式:圆柱体+正方体=8进行比较,发现多了一个圆柱体,而得数多了10-8=2,这样我们就可以得出:圆柱体=2,根据第三个算式就得:球=2+2=4,根据第一个算式得:正方体+4=10,于是可推出:正方体=6.答案:正方体=6,球=4,圆柱体=2.变式训练6 根据下面算式,算出△、○、□各表示几?解析:根据三个算式的等量关系通过等量代换,分别算出△、○、□的得数,△=2、○=3、□=1.变式训练7 下面的图形各表示什么数?解析:(1)○=11,□=2;(2)○=4,△=5;(3)△=6,□=2.变式训练8 求下面图形所表示的数.解析:(1)△=( 9 ),○=( 6 ),☆=( 7 ); (2)△=( 3 ),□=( 4 ).例3 你能根据下面的三个算式,算出●、▲、■各代表什么数吗?解析:根据第一个算式11-4=●,我们可以得出●=7;把●=7代入到第二个算式●-5=▲,可得7-5=▲,这样可以得出▲=2,最后根据第三个算式我们就能得出■=7+2=9.变式训练和是一对好朋友,它们各代表一个数,你知道它们是几吗?解析:从第一个算式可以看出西瓜比菠萝大6,而菠萝加上西瓜又得12,我们把10以内符合要求的数分组列举:10和4,9和3,8和2,7和1,发现只有9+3=12符合要求,所以西瓜=9,菠萝=3.题型二、简单的等量代换例4 1头大象的重量等于头牛的重量,头牛的重量等于匹马的重量,则头大象的重量等于多少匹马的重量?解析:因为头大象的重量=头牛的重量,头牛的重量=匹马的重量,那么头牛的重量=匹马的重量,所以头大象的重量等于匹马的重量.变式训练1 头猪的重量等于8只兔的重量,而1只兔的重量又等于2只公鸡的重量,那么1只猪的重量是几只公鸡的重量?解析:头猪的重量等于只兔子的重量,而只兔子的重量又等于只公鸡的重量.那么只兔子的重量就等于 (只)公鸡的重量,而头猪的重量等于只兔子也就是只公鸡的重量.所以头猪的重量等于只公鸡的重量.变式训练2 已知买个汉堡包的钱可以买个冰激凌,买个冰激凌的钱可以买杯牛奶:求:(1)买杯牛奶的钱可以买几个汉堡包?4l 3114134121121181282816⨯=1816l 16121360(2)买个汉堡包的钱可以买多少杯牛奶?解析:可引导学生读题、审题,找三者之间的数量关系,再通过倍数关系进行求解.可得出: (杯),即买个汉堡包的钱和买杯牛奶的钱一样多.由此可以进行推算.⑴杯牛奶是杯牛奶的倍.所以杯牛奶的钱可以买个汉堡包.⑵60个汉堡包相当于个杯牛奶的钱.(杯)或(杯),所以买个汉堡包的钱可以买杯牛奶.例5 巳知=克,求=?克.解析:从左边的图可得:个白球=个黑球的重量,也就是等于(克),(克),所以每个白球的重量等于克.从右图可得:个正方体=个白球的重量,一个白球的重量等于克,个正方体的重量就是:(克). 变式训练 第三个盘子应放几个玻璃球才能保持平衡?解析:⑴个, ⑵个.例6 下面的天平是不平衡的,但除了天平上的砝码,周围已找不到别的砝码了.你能通过移动天平上的砝码,使天平平衡吗?解析:我们可先看看天平两边各有多少克:天平左边:(克).天平右边: (克).显然,天平左边如果减少克,放到天平右边,(克),(克),天平两边就都平衡了,但天平左边没有克的砝码,怎么办?可以用天平左边克的砝码和天平右边克的砝码交换一下,就可以达到要求了.这样天平左边是(克).右边是(克).变式训练1 你能通过移动天平上的砝码,使下面的天平平衡吗?60236⨯=1660610601066060+60+60+60+60+60=360660360⨯=6036060326060120+=120340÷=4014401404160⨯=415551020++=10421118++++=120119-=18+1=19l 54541019++=10521119++++=解析:可引用线段图帮助学生理解多的部分给少的部分多少,可达到一样多,然后再讲解此题.左边=克,右边=克,左边比右边多克.只有从左边拿克到右边,两边的重量才一样多.这样可以把左边克的砝码和右边克的砝码互换一下,左右两边重量都是克,天平平衡.变式训练2 你能通过移动天平上的砝码,使下面的天平平衡吗?解析:把左边的克和右边的克对换.或把左边的克和右边的克对换.例7 只小花猫的重量等于只狗的重量,1只小花猫等于3只鸭的重量,1只狗重千克,只猫与只鸭各重多少千克?解析:抓住突破口,利用倒推逐步推理.只猫等于只狗的重量,只狗重千克,只猫也就重千克,(千克),所以只猫就等于千克.只猫等于只鸭的重量,只猫重千克,只鸭也就重千克.(千克),所以只鸭等于千克.变式训练 1 如果个笔记本的价钱等于块橡皮的价钱,个文具盒的价钱等于块橡皮的价钱.已知个笔记本的价钱是元,那么个文具盒的价钱是多少?解析:由个文具盒等于块橡皮知:个文具盒=块橡皮,又由个笔记本=块橡皮知个笔记本=块橡皮,所以,个文具盒=个笔记本.个笔记本的价钱是元,那么个文具盒的价钱是(元).变式训练2 1串葡萄的重量等于3个梨的重量,2个梨的重量等于80克,串葡萄重多少克?解析:个梨的重量是克,那么个梨的重量就是克,串葡萄的重量等于个梨的重量,串葡萄就是克.例8 如果只兔子可换只羊,只羊可换头猪,头猪可换头牛,那用头牛可换多少只兔子?解析:把题目条件列出来:只兔=只羊,只羊=头猪,头猪=头牛,头牛=几只兔.从这几个式子可得出:头牛=头猪,头猪=只羊,只羊=只兔.因为头牛可换头猪,头猪换只羊,头猪就换(只)羊,只羊可换只兔,只羊可换(只)兔.说明头牛可换只兔.变式训练 只兔子可以换只鹅,只鹅可以换只羊,只兔子重千克,只羊重几千克?解析:只羊重千克.1020838++=1016430++=848434364731911311939933÷=131********÷=11154401314401101521012131326⨯=1280140131403120⨯=20293821202938211413110141344312⨯=110121012120⨯=112010*********例9 1个苹果和1个香蕉的重量是7个小铁块的重量,而1个苹果的重量是4个小铁块的重量,1个香蕉的重量是多少个小铁块的重量?解析:简单的代换,可通过画图对学生进行讲解,利用拓展加强学生的认识.题中告诉我们一个苹果和一个香蕉的重量等于个小正方体的重量.且一个苹果的重量等于个小正方体的重量,通过比较,我们知道一个香蕉的重量就应该是个小正方体的重量.变式训练 1瓶可乐等于1杯茶和1杯奶的重量,2杯奶的重量等于1杯茶的重量,瓶可乐相当于多少杯牛奶的重量?解析:因为瓶可乐=杯茶+杯牛奶,且杯茶=杯牛奶,两式联合起来:瓶可乐=杯牛奶+杯牛奶=杯牛奶.例10 个的重量等于个小的重量,个的重量等于个大和个小的重量和,1个大等于几个小的重量?解析:因为个=个小,那么个=个小,又因为个=个大+个小,所以个大=个小-个小=个小,个大=个小.例11 只鸡的重量等于只小鸭的重量,只鸡的重量等于只小鸭和1只小猪的重量,1只小熊等于只小猪的重量,算一算只小熊的重量与几只小鸭的重量一样重?解析:引导学生,根据条件适当扩大鸡的倍数,使前后数目一致,进行计算.因为只鸡的重量等于只小鸭的重量,所以可以变成只鸭的重量等于1只小鸭和1头小猪的重量;这样我们就可以算出头小猪的重量等于只小鸭的重量.我们又知道只小熊的重量等于头小猪的重量,因为头小猪的重量等于只小鸭的重量,所以只小熊的重量等于只小鸭的重量.变式训练1 只猴子的体重等于只猫的体重,只狗的体重等于只猫的体重.如果只猴子重千克,请问只狗重多少千克?解析:由只狗的体重=只猫的体重,得只狗的体重=只猫的体重.又只猴子的体重=只猫的体重,只狗的体重=只猴子的体重.只猴子重千克,只狗重千克.变式训练2 观察下图,看看谁最重.解析:从第一个图中可以看出只兔子的重量=只兔子+只鸡的重量.从这个等式可推出只兔子=只鸡的重量.说明兔子比鸡重;而第二个图可以看出只鸡=只鸭的重量,从而可推出鸭的重量大于鸡的重量.那么兔子和鸭哪一个更重呢?我们不妨把兔和鸭都转化成相当于几只鸡来比较.刚才我们由第个图看出:只鸭=只鸡,那么只兔等于几只鸡74311111212131322213262222624121231211261512210110133913139131311131321212322232的重量呢?因为只兔=只鸡,所以只兔的重量=只鸡的重量,而只鸭的重量=只鸡的重量.兔和鸭同样都是只,但前者相当于只鸡重,后者相当于只鸡重.显然,这里兔子的重量最重.一旦遇到不好比较的情况,我们可以将它们转化成相当于几个同一种事物,这样就便于比较了.变式训练3 个桃子等于个玻璃球的重量,个桃子和个梨的重量等于个玻璃球的重量,1个梨等于几个玻璃球?解析:个桃子=个玻璃球的重量,个桃子+个梨=个玻璃球的重量,那么个梨=个玻璃球的重量.变式训练4 只鹅可以换千克鱼,而千克鱼可以换个鸡蛋,个鸡蛋可以换个鹅蛋.一只鹅可以换多少个鹅蛋?解析:一只鹅可以换个鹅蛋.变式训练5 个足球等于几个皮球的价钱?解析:个足球等于个皮球的价钱.例12 个西瓜的重量等于个哈密瓜的重量,个哈密瓜的重量等于个苹果的重量,个苹果的重量等于个柿子的重量,那么个西瓜的重量等于几个柿子的重量?解析:因为个苹果的重量等于个柿子的重量,所以个苹果的重量等于个柿子的重量.又因为个哈密瓜的重量等于个苹果的重量,所以个哈密瓜的重量等于个柿子的重量.而个西瓜的重量等于个哈密瓜的重量,因此个西瓜的重量=个柿子的重量.变式训练1 2只兔子的重量等于6只小鸡的重量,只袋鼠的重量相当于只兔子的重量,那么只袋鼠的重量相当于多少只小鸡的重量?解析:只兔相当于只小鸡的重量,那么只兔相当于只小鸡的重量.只袋鼠的重量相当于只兔子的重量,所以只袋鼠相当于只小鸡的重量.,即只袋鼠相当于只小鸡的重量.变式训练2 一只小猴重4千克,一只小猴的重量等于两只小兔的重量,两只小兔的重量等于4只小猫的重量.一只小兔和一只小猫的重量共多少千克?解析:一只小猴的重量等于两只兔子的重量,这样可以求出一只兔子的重量.而两只兔子的重量等于4只小猫的重量,可以求出一只小猫的重量.最后一只小兔和一只小猫的总重量就求出来了.一只兔子的重量:(千克,)一只小猫的重量:(千克),一只小兔和12242324315111115111111156-=18450103301151218231238121811212112224⨯=34126412343121234÷=14422÷=441÷=一只小猫的总重量:(千克)题型三、利用对比分析、和差倍分、整体看问题的思想解题例13 ★+■=24,■+●=30,●+★=36.■=_________ ●=________ ★=_______. 解析:,所以■表示的数为:,●表示的数为:,★表示的数为:.变式训练 图书室里的故事书与科技书共有720本,又知故事书比科技书多160本,这两种图书各有多少本?解析:题目中给出了两个未知量“故事书”和“科技书”的数量关系,即已知故事书与科技书共有720本和故事书与科技书本数之差,属于典型应用题中的“和差问题”,一般用消去法来解.消去科技书本数后,可先求出故事书的本数. 列式:(本)……故事书,(本)……科技书.也可以先求出科技书的本数.例14 学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元.问水瓶和茶杯的单价各是多少元?解析:引导学生学会审题,找出两次购买的相同点及差异,让学生思考解决.我们用数量关系式来比较对应的未知数量的情况:比较上面两个等式,我们可以看出,134元和118元的差正好是4个茶杯的价钱.利用这一条件,把3个水瓶的价钱消去,先求出每个茶杯的价钱,再求出每个水瓶的价钱.每个茶杯的价钱:(元)每个水瓶的价钱:(元)或(元)变式训练1 奶奶去买水果,如果她买4千克梨和5千克荔枝,需要花掉58元;如果她买6千克梨和5千克荔枝,需要花掉62元.问1千克梨和1千克荔枝各多少元? 解析: 我们可以把两次的情况进行比较:4千克梨的价钱千克荔枝的价钱(元) ⑴ 6千克梨的价钱千克荔枝的价钱(元) ⑵比较⑴和⑵式,发现两式中荔枝的千克数相等.⑵式比⑴式多了千克梨,213+=(243036)245++÷=45369-=452421-=453015-=7201602880++-故事书本数科技书本数本故事书本数科技书本数本倍故事书本数本(720160)2440+÷=440160280-=320134316118416+=+==个水瓶的价钱个茶杯的价钱元-个水瓶的价钱个茶杯的价钱元个茶杯的价钱元(134118)(2016)-÷-164=÷4=(134420)318-⨯÷=(118416)318-⨯÷=5+58=5+62=642-=也就是元,说明1千克梨的价钱为元.那么1千克荔枝的价钱也就好求了.(元),(元)或(元)变式训练2 小芳在文具店买了5枝彩色铅笔和6个练习本,共用去17元.小花买了同样的铅笔8枝和6个练习本,共用去20元.一枝彩色铅笔和一个练习本的价格各是多少? 解析:从题设条件进行比较,小芳和小花都买了6个练习本(同样多),只是买的彩色铅笔枝数不同,引起付款多少不同.因此我们可以采用消去法先消去购买练习本的钱数而只剩下买彩色铅笔的钱数,从而先求出彩笔的单价.列式:(元)……一枝彩笔价格,(元)……一个练习本的价格.例15 李老师第一次买回5个篮球和3个排球,用去318元.第二次又买回7个篮球和6个排球,用去510元.问:一个篮球和一个排球的价格各是多少元?解析:可引导学生读题、审题,找出此题与例7的不同之处,并转化成例7的模型.此题有篮球单价与排球单价两个未知数量,而从题里所给条件分析,两次购买篮球与排球的数量各不相同,不能直接用消去法消去哪一个未知数,所以解题关键是使篮球或排球中的某一对未知数变换得相同,则可消去其中一个.通过比较,第一次购买的排球为3个;第二次购买的排球为6个,恰为第一次的2倍.若将第一次购买的排球、篮球各扩大2倍,付的钱也扩大2倍,则能使购买的排球个数与第二次购买的排球个数相同,从而设法消去排球这个未知数量,先求出每个篮球的价格,再求每一个排球的价格.列式:(元)……篮球的单价.(元)……排球的单价.变式训练1 学校要买足球和排球.买3个足球和4个排球共需190元,如果买6个足球和2个排球需要230元.一个足球和一个排球各需要多少元?解析: 我们可以把两次情况进行比较;3个足球的价钱个排球的价钱(元)⑴ 6个足球的价钱个排球的价钱(元) ⑵我们发现两组条件不管相加还是相减,都不可能求出足球和排球的单价,因为这里62584-=422÷=(6258)(64)2-÷-=(5824)510-⨯÷=(6226)510-⨯÷=86205617303-枝彩色铅笔个练习本共价元枝彩色铅笔个练习本共价元枝彩色铅笔个练习本共价元(2017)(85)1-÷-=(2018)62-⨯÷=533182106636⨯个篮球个排球元个篮球个排球元106636765103126-个篮球个排球元个篮球个排球元个篮球元(3182510)(527)⨯-÷⨯-126342=÷=(318425)3-⨯÷108336=÷=4+190=2+230=没有一个相同的条件可减去.再观察,我们发现,如果把⑴式扩大2倍,可以得到6个足球和8个排球共380元,即⑴:6个足球的价钱个排球的价钱元 ⑶⑶⑵,可知6个排球的价钱元.容易得出排球和足球的价钱各是多少. 排球:(元),足球:(元)变式训练2 3头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天共吃青草165千克.问一头牛和一只羊每天各吃青草多少千克?解析: 3头牛吃草的重量只羊吃草的重量千克 ⑴5头牛吃草的重量只羊吃草的重量千克 ⑵如果把⑴式扩大5倍,⑵式扩大3倍,那么两个式子中牛的数量就一样多了.这样就得到:⑴:15头牛吃草的重量只羊吃草的重量千克⑶ ⑵:15头牛吃草的重量只羊吃草的重量千克⑷ ⑷⑶:5只羊吃草的重量千克1只羊吃草的重量千克1头牛每天吃草的重量:(千克)例16 李宁的妈妈去菜市场买菜,买了斤土豆和斤柿子椒,共花了元角.己知斤土豆的价钱与斤柿子椒的价钱相等.那么斤土豆和斤柿子椒各多少钱?解析:可引导学生读题、审题,让学生自己思考解答.老师可以画图进行分析,已知条件为:斤土豆+斤柿子椒=元角.斤土豆=斤柿子椒.从第一个式子不能算出斤土豆、斤柿子椒的价钱.若把土豆转化成柿子椒或把柿子椒转化成土豆的价钱就可求该种菜的价钱了.由第二个式子知斤土豆=斤柿子椒,则斤土豆应等于斤柿子椒的价钱.即:斤土豆+斤柿子椒=元角,斤土豆=斤柿子椒.斤柿子椒+斤柿子椒=元角,斤柿子椒=元角.元角等于角,角买了斤柿子椒,所以斤柿子椒的价钱为:(角)= 元角.斤柿子椒的价钱为: (角)=(元).斤土豆的价钱为:(元).所以斤土豆的价钱为元,斤柿子椒的价钱为元角.变式训练 3米绵绸的价格与6米花布的价格相等.王云买了6米绵绸和18米花布,共花费了120元.棉绸和花布的单价各是多少?2⨯8+380=-150=150625÷=(190254)330-⨯÷=8+93=15+165=5⨯40+465=3⨯45+495=-30=6=(9368)3-⨯÷453=÷15=6513532116513532113264651356445135913513513513591135915÷=15415460⨯=61661÷=11115解析:由题意可知3米棉绸与6米花布的价格相等,由此可推知1米棉绸与2米花布的价格相等.因此可用花布的价格去替换棉绸的价格,而使棉绸价格转变为花布的价格.消去棉绸价格这个未知数量可以先求出花布的单价,进而求出棉绸的单价.(元)……每米花布的单价 (元)……每米棉绸的单价.例17 学校买2张桌子和3把椅子共用90元钱,每张桌子的价钱是每把椅子价钱的3倍.每张桌子多少钱?解析: 引导学生读题、审题,让学生自己思考解答,教师集体订正.2张桌子的价钱把椅子的价钱(元) ⑴1张桌子的价钱把椅子的价钱 ⑵将⑵代入⑴式,消去桌子这个未知量,问题就可以解决.()把椅子的价钱把椅子的价钱(元)把椅子的价钱(元)1把椅子的价钱(元)1张桌子的价钱(元)变式训练 红、黄、蓝三个纸盒里共有彩票56张,其中红色纸盒里的彩票是黄色纸盒里彩票张数的2倍,蓝色纸盒里的彩票是红色纸盒里彩票张数的2倍.红、黄、蓝三个纸盒里各有多少张彩票?解析:以黄色纸盒里的彩票张数为1倍数.红纸盒里的彩票张数是这样的2倍.蓝纸盒是红纸盒里彩票张数的2倍,也就是黄纸盒里彩票张数的4倍.一共是倍.这样就可以消去两个未知量而先求出黄纸盒里彩票的张数,再分别求出红色和蓝色盒子里彩票的张数.(张)……黄盒里的彩票张数,(张)……红盒里的彩票张数,(张)……蓝盒里的彩票张数.例18 甲、乙两人共储蓄32元,乙、丙两人共储蓄30元,甲、丙两人共储蓄22元.三人各储蓄多少元?解析:可先让学生自己去思考,教师巡视指正.此题要求三个未知数,甲储蓄多少元?乙储蓄多少元?丙储蓄多少元?关系较为复杂,为了化繁为简,采用消去法来解.首先用加减消去法消去乙和丙,只剩下甲,然后求出甲储蓄多少元,再求乙、丙各储蓄多少元. 解法1:由2倍甲储蓄为24元,可求出甲储蓄多少元.列表:(元)……甲储蓄款.(元)……乙储蓄款,120(2618)÷⨯+120304=÷=428⨯=3+90=3=32⨯3+90=990=10=10330=⨯=(124)++56(124)÷++567=÷8=8216⨯=8432⨯=()甲乙→32元+甲丙→22元2甲乙丙→54元-乙丙→30元2甲→24元(322230)2+-÷24212=÷=321220-=(元)……丙储蓄款.此题也可用另一种方法求解.解法2:甲乙乙丙+甲丙(元),即2倍的(甲乙丙)等于84元.甲乙丙(元).(元)……丙储蓄款,(元)……甲储蓄款,(元)……乙储蓄款.变式训练 已知个排球和个足球共重千克.个排球和个篮球共重千克.个足球和个篮球共重千克.求每一种球各重多少千克?解析:由(千克)知:个排球+个足球+个篮球=千克,那么有个排球+个足球+个篮球=千克.(千克)……篮球的重量, (千克)……足球的重量(千克)……排球的重量题型四、利用生活中的逻辑推理解题例19 有两只大小相同的杯子,各加入了不等量的水,一多一少.李林将这两只杯子里各滴入了一滴墨水,使两只杯子里的水变黑了,请问,哪只杯子里的水更黑些?如果把较多的那杯水再倒掉一些,使两只杯子中的水一样多,这时,是否两只杯子的水一样黑? 解析:因为两杯水不一样多,但同时加入的墨水是同样的.那么水少的那杯加入一滴墨水后颜色更黑一些.杯子中的水变的一样多,也不会改变杯中水的颜色的深浅.所以,即使把较多的那杯水倒掉一些,两杯水同样多了,两只杯子的水仍不一样黑.例20 已知同样大小的木块比冰块轻,铁块比冰块重,铜块与木块的重量之和与冰块与铁块的重量之和同样多,四种物品谁最重?解析:因为铜块与木块的重量之和与铁块与冰块的重量之和同样多,木块又比冰块轻,所以铜块就比铁块重.又因为铁块比冰块重,当然也比木块重,所以铜块最重.铜块重量>铁块重量>冰块重量>木块重量例21 池塘里的莲花繁殖得特别快,每天增多倍.到第天的时候长了半个池塘,那么第几天能长满整个池塘呢?解析:天还是天呢?有的同学认为天长了半个池塘,当然天长满整个池塘了.其实不然,因为池塘的莲花每天增多倍,所以在长满全池塘的前一天就是半个池塘.天长302010-=+32223084=++=++++84242=÷=423210-=423012-=422220-=1151161175+6+7=18222181119954-=963-= 972-=11516301530115。
一年级数学上册重难点之等量代换

一年级数学上册重难点之
《等量代换》,分类,方法,技巧
昨天,一位一年级的家长让我给她找几个数学题目,孩子平时考试,其它的题目都完成得很好,计算能力也不错,这周还去参加计算比赛。
但是呢,有个题老是
弄不好,如下图:
这是一个等量代换的题目,一年级的奥数里面也有这样的题型。
同时,这个题还会出现在试卷后面的较难的题中,属于需要动脑筋的题。
对于一年级的孩子来说,这个数学题目需要一定的理解力。
因为涉及到推理能力!
等量代换的关键是推理:
1个桃子等于4个苹果,那么右边的式子中,就把桃子换成4个苹果,这个时候,就知道右边是6个苹果啦。
所以答案是 6.
这题属于形象化的,还是比较好理解的。
例如:练习1:
练习题来了(4道):。
等量代换ppt课件课件

THANKS
感谢观看
代数式中的等量代换技巧
掌握代数式中的等量代换技巧,如合并同类项、提取公因式、分式的通分等,能够提高代数运算的效率和准确性。
复杂图形中的等量代换
图形中的等量代换
在几何图形中,可以通过等量代换来 证明某些性质或关系。例如,在三角 形中,可以通过等量代换证明某些边 或角的关系。
图形中的等量代换技巧
掌握图形中的等量代换技巧,如利用 相似三角形的性质、利用平行四边形 的性质等,能够提高几何证明的效率 和准确性。
数表达式在替换后仍然相等。
图形中的等量代换
在几何图形中,等量代换通常是指通过替换图形中的某些部分,使其变为另一个等 面积或等周长的图形。
例如,在三角形中,可以通过等量代换将一个边替换为与其相邻的两段相等的小段, 从而形成一个新的三角形。
在进行图形中的等量代换时,需要注意保持图形的整体性质不变,如面积、周长等。
03
等量代换的方法与技巧
代数表达式中的等量代换方法
01
代数表达式中的等量代换
在代数表达式中,如果两个量相等,可以用一个量代替另一个量,从而
简化表达式。例如,在方程中,如果两个未知数相等,可以互相替换。
02 03
具体操作
在代数表达式中,如果两个量相等,可以将其中一个量用另一个量表示, 从而简化表达式。例如,如果$a = b$,则可以将$a$替换为$b$或将 $b$替换为$a$。
生活中的等量代换
在生活中,我们经常需要将一种物品或事物等价地替换成另一种物品或事物。例如,在购 物时,我们可以用一种物品的价格来估算另一种物品的价格。
具体操作
在生活中,如果两种物品或事物的价格相等或相似,可以用一种物品的价格来估算另一种 物品的价格。例如,在购物时,如果知道苹果的价格,可以用苹果的价格来估算梨的价格 。
最新小学奥数 等量代换学生版

最新小学奥数等量代换模块一、简单的等量代换【例1】1头大象的重量等于4头牛的重量,l头牛的重量等于3匹马的重量,则1头大象的重量等于多少匹马的重量?【巩固】已知买1个汉堡包的钱可以买2个冰激凌,买1个冰激凌的钱可以买3杯牛奶:求:(1)买60杯牛奶的钱可以买几个汉堡包?(2)买60个汉堡包的钱可以买多少杯牛奶?【例2】巳知=60克,求=?克.【巩固】你能通过移动天平上的砝码,使下面的天平平衡吗?【例3】3只小花猫的重量等于1只狗的重量,1只小花猫等于3只鸭的重量,1只狗重9千克,1只猫与1只鸭各重多少千克?【巩固】如果1个笔记本的价钱等于5块橡皮的价钱,4个文具盒的价钱等于40块橡皮的价钱.已知1个笔记本的价钱是3元,那么1个文具盒的价钱是多少?【巩固】1串葡萄的重量等于3个梨的重量,2个梨的重量等于80克,1串葡萄重多少克?【例4】如果20只兔子可换2只羊,9只羊可换3头猪,8头猪可换2头牛,那用1头牛可换多少只兔子?【巩固】10只兔子可以换3只鹅,6只鹅可以换1只羊,1只兔子重1千克,1只羊重几千克?【例5】1个苹果和1个香蕉的重量是7个小铁块的重量,而1个苹果的重量是4个小铁块的重量,1个香蕉的重量是多少个小铁块的重量?【巩固】1瓶可乐等于1杯茶和1杯奶的重量,2杯奶的重量等于1杯茶的重量,1瓶可乐相当于多少杯牛奶的重量?【例6】1只鸡的重量等于2只小鸭的重量,3只鸡的重量等于1只小鸭和1只小猪的重量,1只小熊等于2只小猪的重量,算一算1只小熊的重量与几只小鸭的重量一样重?【巩固】1只猴子的体重等于3只猫的体重,3只狗的体重等于9只猫的体重.如果1只猴子重3千克,请问1只狗重多少千克?【巩固】1只鹅可以换8千克鱼,而4千克鱼可以换50个鸡蛋,10个鸡蛋可以换3个鹅蛋.一只鹅可以换多少个鹅蛋?【例7】1个西瓜的重量等于2个哈密瓜的重量,1个哈密瓜的重量等于8个苹果的重量,2个苹果的重量等于3个柿子的重量,那么1个西瓜的重量等于几个柿子的重量?【巩固】2只兔子的重量等于6只小鸡的重量,3只袋鼠的重量相当于4只兔子的重量,那么1只袋鼠的重量相当于多少只小鸡的重量?【巩固】一只小猴重4千克,一只小猴的重量等于两只小兔的重量,两只小兔的重量等于4只小猫的重量.一只小兔和一只小猫的重量共多少千克?模块二、利用对比分析、和差倍分、整体看问题的思想解题【例8】(2008年第八届“春蕾杯”小学数学邀请赛初赛)★+■=24,■+●=30,●+★=36.■=_________●=________ ★=_______.【巩固】图书室里的故事书与科技书共有720本,又知故事书比科技书多160本,这两种图书各有多少本?【例9】学校第一次买了3个水瓶和20个茶杯,共用去134元;第二次又买了同样的3个水瓶和16个茶杯,共用去118元.问水瓶和茶杯的单价各是多少元?【巩固】小芳在文具店买了5枝彩色铅笔和6个练习本,共用去17元.小花买了同样的铅笔8枝和6个练习本,共用去20元.一枝彩色铅笔和一个练习本的价格各是多少?【例10】李老师第一次买回5个篮球和3个排球,用去318元.第二次又买回7个篮球和6个排球,用去510元.问:一个篮球和一个排球的价格各是多少元?【巩固】学校要买足球和排球.买3个足球和4个排球共需190元,如果买6个足球和2个排球需要230元.一个足球和一个排球各需要多少元?【巩固】3头牛和8只羊每天共吃青草93千克,5头牛和15只羊每天共吃青草165千克.问一头牛和一只羊每天各吃青草多少千克?【例11】李宁的妈妈去菜市场买菜,买了6斤土豆和5斤柿子椒,共花了13元5角.己知3斤土豆的价钱与2斤柿子椒的价钱相等.那么1斤土豆和1斤柿子椒各多少钱?【巩固】3米绵绸的价格与6米花布的价格相等.王云买了6米绵绸和18米花布,共花费了120元.棉绸和花布的单价各是多少?【例12】学校买2张桌子和3把椅子共用90元钱,每张桌子的价钱是每把椅子价钱的3倍.每张桌子多少钱?【巩固】红、黄、蓝三个纸盒里共有彩票56张,其中红色纸盒里的彩票是黄色纸盒里彩票张数的2倍,蓝色纸盒里的彩票是红色纸盒里彩票张数的2倍.红、黄、蓝三个纸盒里各有多少张彩票?【例13】甲、乙两人共储蓄32元,乙、丙两人共储蓄30元,甲、丙两人共储蓄22元.三人各储蓄多少元?模块三、利用生活中的逻辑推理解题【例14】有两只大小相同的杯子,各加入了不等量的水,一多一少.李林将这两只杯子里各滴入了一滴墨水,使两只杯子里的水变黑了,请问,哪只杯子里的水更黑些?如果把较多的那杯水再倒掉一些,使两只杯子中的水一样多,这时,是否两只杯子的水一样黑?巩固:已知同样大小的木块比冰块轻,铁块比冰块重,铜块与木块的重量之和与冰块与铁块的重量之和同样多,四种物品谁最重?【例15】池塘里的莲花繁殖得特别快,每天增多1倍.到第15天的时候长了半个池塘,那么第几天能长满整个池塘呢?巩固:小华要称1粒米的重量,天平自带的砝码只有1克,2克,4克,8克,16克,32克,64克各一个.⑴1粒米远远没有1克,小华该怎么办? ⑵小华要称100克的米,天平应放哪几个砝码?【例16】第一只茶壶能装10大杯水,第二只茶壶可以装15小杯水.已知5大杯水与9小杯水同样多,哪个茶壶大?【巩固】如图,第一只壶里的茶只有一半,小华倒出了5大杯,第二只壶里的茶是一满壶,小明倒出了15小杯.已知3小杯的茶与2大杯的茶同样多,现在问你哪个壶大?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本节课主要内容:
1、复习巩固秋季所学的等量代换问题,进一步掌握等量代换的方法,对于一年级孩子来说这
是一个难点,需要进一步加强.
2、通过等量代换的思想来学习图文算式,通过对数字的分析,填出适当的数字,培养学生的
逆向思维和发散思维,提高学生分析问题的能力和推理、判断的能力.
1、教学点为各位老师提供本节课挂图.
【教学思路】课前复习我们秋季所学的等量代换的知识,可以帮助我们学习今天的图文算式.等量代换是
一个难点,老师要引导学生来进行推理.
(1)1只小兔的重量等于6只鸟的重量,右边要放6只鸟,跷跷板才能保持平衡.
(2)1个香蕉的重量=3个方块的重量,右边要放3个方块天平才能保持平衡. (3)右边8+6=14,左边只能放9和5,9+5=14.
1.看下图,右边要站几只小鸟跷跷板才能平衡
.
2.下图中第三个盘子应放几个小方块才能保持平衡
?
3.下图中0,1,2,3,4,5,6,7,8,9十个兄弟玩跷跷板,8和6先坐在一头,让哪两个兄弟坐在另一头,才能使跷跷板平衡?
【教学思路】通过这个故事引入新课,在这里不要求学生能马上做出来,可放在最后来解决.如果学生的能力较强,也可把这两个题作为引入新课的切入点进行讲解.
(1)因为
,所以=5,又因为
,把=5替换,就变
成
,这样我们就可以得出
=10.
(2)我们把上下两个算式进行比较,我们发现下面比上面多了一个,得数多了18-14=4
,
所以我们可以推断出=4,,根据第一个算式我们可以得出
;
那么
=5.
小朋友,在上面的算式里,不但有数字,而且还有图形和图片,这些图形和
图片都表示一个数,这样的算式就是图文算式.解答这类题目,只要我们经过认真的分析、推理、逐步弄
清图形与数之间的关系,就能正确解答了.今天我们就一起来研究这有趣的图文算式吧!
有一天,小狗老师要在动物学校挑选队员参加数学竞赛,小松鼠很高兴也跑来了.小狗老师说:“那我就来考考你!你把下面的题做对了就可以参加了
.”
小松鼠看了半天说:“老师,你写的这是什么?”小狗老师说:“哈哈!看来你要好好学一学图文算式了,欢迎你下次再来.”小朋友们,上面的题你会吗?
哈哈!水果兄弟们也组成了各种不同的图文算式,它们各代表一个数,你能猜出它们各代表
几吗?
【教学思路】这是一个很基础的题,通过这个题的练习,可让学生初步掌握代换的方法,为后面的学习打下基础.
(1)因为,所以,又因为3+3+3=9,所以
=3.
(2)根据,想12+8=20,那么可以推出,因为4+4=8,
所以可以得出一个=4.
(3)因为,,这样我们可以得出=5+5+5+5=20.
(4)根据得,观察算式,就相当于没加也没减还得0,这样我们就可以得出=25.
下面的符号各代表一个数,相同的符号代表相同的数,它们各代表几呢?
【教学思路】根据两个算式来进行推理,通常我们要先根据一个算式的得数推理出其中一个符号表示的数,然后再把这个得数代换到另一个算式里,求出另外一个符号表示的数.具体分析如下:
(1)根据●+●=6,想3+3=6,可推出●=3,把●=3替换▲+●=8,可得到新的算式▲+3=8,
这样我们就可得出▲=5.
(2)根据第二个算式12-★-★=2,想12-5-5=2,那么★=5,那★=5替换第一个算式▲+
★=11得▲+5=11,这样可得出▲=6.
下面这些由美丽花朵组成的算式,你能猜出这些花朵都表示什么数吗?
【教学思路】在这道题中我们不能直接计算出结果,必须通过代换来进行推倒,具体分析如下:(1)因为,根据,第一个算式可以转换成
,想4+4+4=12,于是我们就可以得出=4,
=4+4=8.
(2)因为,根据,第一个算式可以转换成
,我们发现抵消得0,这样=8,
=8+8=16.
下面和各表示几呢?
【教学思路】这道题是通过比较上下两个算式来推理其中一个表示几的,具体分析如下:
首先我们来比较这两个算式,为了便于比较我们可以把第二个算式变成右上图所示,这样
进行对比我们发现上面的算式比下面的算式多加了一个,而得数多了19-16=3,因此我
们就可以得出=3,把=3代入到第二个算式中可得:,
想10+6=5,5+5=10,那么=5.
想想做做
下面的符号各表示几?
【教学思路】比较上下两个算式,上面比下面多了2个△,而结果多了4,说明△+△=4,这样就可以得出△=2,把△=2代入到第一个算式中2+2+2+☆+☆=14,想6+8=14,所以可以推出☆=4.
你能根据下面的算式,算出每个图形各表示几吗?
【教学思路】通过观察第一个算式和第二个算式,我们可以得出,△=○+○+○,又因为△=6,○+○+
○=6,这样就可以得出○=2;□=○+○+○+○+○+○,所以□=2+2+2+2+2+2=12.
根据下面的算式,你知道
、
、
各代表数字几?
【教学思路】根据第三个算式:圆柱体+圆柱体=球,我们可以替换第一个算式中的球可得:正方体+圆柱
体+圆柱体=10,我们把这个算式和第二个算式:圆柱体+正方体=8进行比较,发现多了一个圆柱体,而得数多了10-8=2,这样我们就可以得出:圆柱体=2,根据第三个算式就得:球=2+2=4,根据第一个算式得:正方体+4=10,于是可推出:正方体=6.答案:正方体=6,球=4,圆柱体=2.
【教学思路】从第一个算式可以看出西瓜比菠萝大6,而菠萝加上西瓜又得12,我们把10以内符合要求
的数分组列举:10和4,9和3,8和2,7和1,发现只有9+3=12符合要求,所以西瓜=9,菠萝=3.
附加题
(老师可根据自己的课堂进度灵活处理讲义内容,附加题仅供老师参考使用.)
一只小猴重8千克,1只小狗重多少千克
?
【教学思路】这道题的推理我们要从大到小,一只小猴重8千克,根据第一个算式我们知道1只小猴的
重量=2只小兔的重量,这样就可知道1只小兔是4千克;根据第二个算式可得1只小兔的重量=2只小狗的重量,1只小兔重4千克,那么1只小狗就重2千克.还可以这样想1只小猴的重量=2只小兔的重量,而1只小兔的重量=2只小狗的重量,那么2只小兔的重量=4只小狗的重量,所以最后得出1只小猴的重量=4只小狗的重量,1只小猴重8千克,想2+2+2+2=8,所以一只小狗的重量是2千克.
拓展与提高
和是一对好朋友,它们各代表一个数,你知道它们是几吗?
你能根据下面的三个算式,算出●、▲、■各代表什么数吗?
【教学思路】根据第一个算式11-4=●,我们可以得出●=7;把●=7代入到第二个算式●-5=▲,可得7-5=▲,这样可以得出▲=2,最后根据第三个算式我们就能得出■=7+2=9.
根据下面算式,算出△、○、□各表示几?
【教学思路】根据三个算式的等量关系通过等量代换,分别算出△、○、□的得数,△=2、○=3、□=1.
1.一个苹果等于()个草莓.
【答案】一个苹果等于4个草莓.
2. 第三个盘子应放几个玻璃球才能保持平衡.
【答案】第三个盘子应放6个玻璃球才能保持平衡.
3.下面的图形各表示什么数?
【答案】(1)○=11,□=2;(2)○=4,△=5;(3)△=6,□=2.
4. 求下面图形所表示的数.
【答案】(1)△=( 9 ),○=( 6 ),☆=( 7 );(2)△=( 3 ),□=( 4 ).
5.下面的花朵各表示什么数?
【答案】=9,=3.
6.算一算下面的水果各表示几?
【答案】=9;=2.
天天练勇夺小冠军——小鹿跳格
一只小鹿从起点向前跳了5个格,接着向后跳了4个格;然后又向前跳了6个格,再向后跳了10个格,最后停下.这时小鹿停在起点的前面还是后面?距起点几
个格?
【教学思路】这道题可以通过画图来分析,最后可以看出小鹿在起点的后面,距起点3格.
招聘大堂经理
大象开了一家服装店,要招聘一名业务经理,负责服装店的财务和进货工作.
小鹿、小猴和小熊前来应聘.大象出了一道考题:一家商场开展优惠酬宾活动,凡购物满100元(不足100元部分不计),回赠现金35元.现有260元,最多能买到多少元的物品?
“最多能买到330元的物品,小鹿抢先说道,”因为用260元购物,获得回赠的70元又可以买回70元的物品,一共可以买330元的物品.”大象经理摇摇头.
小猴接着说:“我认为最多可以买到365元的物品.先购物200元,然后余下的60元与回赠的70元合在一起购买130元的物品,最后再将回赠的35元购物,一共可以购买365元的物品.”大象经理仍摇摇头.
最后,小熊开了腔:“我认为最多能买到400元的物品.先向别人借140元钱,凑成400元,购物后再将商场回赠的140元还给别人,这样就可以买到400元的物品.
大象经理听完这番话,高兴地把大堂经理的聘书递给了小熊:“行,明天你就到服装店来上班吧.”。