数值分析课程设计
数值分析 教案

数值分析教案教案标题:数值分析教学目标:1. 了解数值分析的基本概念和原理2. 掌握数值分析的常用方法和技巧3. 能够应用数值分析解决实际问题4. 培养学生的数学思维和分析能力教学内容:1. 数值分析的基本概念和分类2. 插值与逼近3. 数值微分与数值积分4. 常微分方程的数值解法5. 线性代数的数值方法6. 数值分析在实际问题中的应用教学过程:1. 导入:通过引入一个实际问题,引起学生对数值分析的兴趣和认识2. 理论讲解:介绍数值分析的基本概念和分类,以及常用的数值分析方法和技巧3. 案例分析:通过具体的案例,演示数值分析在实际问题中的应用过程,引导学生理解和掌握数值分析的解决方法4. 练习与讨论:设计一些练习题,让学生在课堂上进行练习,并进行讨论和交流,加深对数值分析的理解5. 总结与拓展:总结本节课的重点内容,引导学生进行拓展思考,鼓励他们应用数值分析解决更多实际问题教学手段:1. 讲授2. 案例分析3. 讨论交流4. 练习与实践5. 总结与拓展教学评价:1. 课堂表现:学生是否积极参与讨论和练习,是否能够理解和掌握数值分析的基本概念和方法2. 作业与考试:设计一些作业和考试题目,检验学生对数值分析的掌握程度3. 实际应用:观察学生是否能够将数值分析应用到实际问题中,解决实际困难教学建议:1. 引导学生多进行实际问题的分析和解决,提高数值分析的实际应用能力2. 鼓励学生进行课外拓展阅读,了解数值分析在不同领域的应用案例3. 加强与其他学科的交叉融合,促进数值分析与实际问题的结合以上是关于数值分析的教案建议,希望对你有所帮助。
高等数值分析课程设计

高等数值分析课程设计一、题目背景高等数值分析是计算数学领域的一门重要课程,它主要研究数值计算中的算法、误差分析、收敛性和稳定性等基本问题,涵盖了线性代数、数值微积分、常微分方程数值解等数学分支学科。
本文将介绍一项高等数值分析课程的设计,以增强学生对课程的理解和能力。
二、设计目标2.1 教学目标本课程设计旨在帮助学生:•掌握常见的数值分析算法;•熟悉各种算法的误差分析和收敛性;•能够独立设计和实现数值计算程序;•培养学生解决实际问题的能力。
2.2 实现目标为了实现教学目标,本课程设计将遵循以下原则:•采用案例分析和实例演示的方式,将数学理论与实际应用相结合;•强调算法的实现方法和效率分析;•通过小组合作的方式完成实践任务,培养学生的团队合作能力;•开设课程论文撰写指导和实践报告撰写指导课程,提高学生的学术写作能力。
三、课程内容本课程的教学安排如下:3.1 理论讲授•数值线性代数•数值微积分•常微分方程数值解•偏微分方程数值解3.2 实践任务•实现线性方程组求解算法•实现求解非线性方程的算法•实现常微分方程数值解算法•实现偏微分方程数值解算法3.3 课程论文和实践报告撰写要求每个学生提交一篇课程论文和一份实践报告,内容包括理论和实践部分。
论文部分主要包括:•算法的理论分析和数学推导;•算法的实现方法和效率分析;•算法的收敛性和稳定性分析。
实践报告部分主要包括:•实践任务的设计和实现方法;•算法实现的过程与结果分析;•算法的应用和实用性分析。
四、教学评估本课程的教学评估主要包括以下几个方面:4.1 学生成绩评估学生成绩评估包括平时分、实验成绩、论文得分和考试成绩。
其中,实验成绩和论文得分占总成绩的比重大于考试成绩。
4.2 教学效果评估教学效果评估将从以下几个方面进行:•学生数学知识的掌握程度;•学生对数值计算的算法和方法的理解程度;•学生的编程能力和算法实现的水平;•学生实践能力和团队协作能力的培养。
大学数值分析课程设计

大学数值分析课程设计一、课程目标知识目标:1. 理解数值分析的基本概念,掌握数值计算方法及其数学原理;2. 掌握线性代数、微积分等基本数学工具在数值分析中的应用;3. 学会分析数值算法的稳定性和误差,评估数值结果的正确性。
技能目标:1. 能够运用数值分析方法解决实际工程和科学研究问题;2. 掌握常用数值分析软件的使用,提高数据处理和问题求解的效率;3. 培养编程实现数值算法的能力,提高解决复杂问题的技能。
情感态度价值观目标:1. 培养学生对数值分析的浓厚兴趣,激发学习积极性;2. 培养学生的团队合作精神,提高沟通与协作能力;3. 增强学生的数学素养,使其认识到数学在科学研究和社会发展中的重要性。
课程性质分析:本课程为大学数值分析课程,旨在教授学生数值计算的基本理论和方法,培养学生解决实际问题的能力。
学生特点分析:学生具备一定的高等数学基础,具有较强的逻辑思维能力和抽象思维能力。
教学要求:1. 注重理论与实践相结合,提高学生的实际操作能力;2. 鼓励学生主动参与讨论,培养学生的创新意识和解决问题的能力;3. 结合实际案例,强化学生对数值分析在工程和科研中的应用认识。
二、教学内容1. 数值分析基本概念:包括误差分析、稳定性、收敛性等;教材章节:第一章 数值分析概述2. 数值线性代数:矩阵运算、线性方程组求解、特征值与特征向量计算等;教材章节:第二章 线性代数的数值方法3. 数值微积分:数值积分、数值微分、常微分方程数值解等;教材章节:第三章 微积分的数值方法4. 非线性方程与系统求解:迭代法、牛顿法、弦截法等;教材章节:第四章 非线性方程与系统的数值解法5. 优化问题的数值方法:线性规划、非线性规划、最小二乘法等;教材章节:第五章 优化问题的数值方法6. 数值模拟与数值实验:蒙特卡洛方法、有限元方法、差分方法等;教材章节:第六章 数值模拟与数值实验7. 数值软件应用:MATLAB、Python等数值计算软件在数值分析中的应用;教材章节:第七章 数值软件及其应用教学进度安排:第1-2周:数值分析基本概念第3-4周:数值线性代数第5-6周:数值微积分第7-8周:非线性方程与系统求解第9-10周:优化问题的数值方法第11-12周:数值模拟与数值实验第13-14周:数值软件应用及综合案例分析教学内容确保科学性和系统性,注重理论与实践相结合,提高学生的实际操作能力。
《数值分析》课程教案

《数值分析》课程教案数值分析课程教案一、课程介绍本课程旨在介绍数值分析的基本概念、方法和技巧,以及其在科学计算和工程应用中的实际应用。
通过本课程的研究,学生将了解和掌握数值分析的基本原理和技术,以及解决实际问题的实用方法。
二、教学目标- 了解数值分析的基本概念和发展历程- 掌握数值计算的基本方法和技巧- 理解数值算法的稳定性和收敛性- 能够利用数值分析方法解决实际问题三、教学内容1. 数值计算的基本概念和方法- 数值计算的历史和发展- 数值计算的误差与精度- 数值计算的舍入误差与截断误差- 数值计算的有效数字和有效位数2. 插值与逼近- 插值多项式和插值方法- 最小二乘逼近和曲线拟合3. 数值微积分- 数值积分的基本原理和方法- 数值求解常微分方程的方法4. 线性方程组的数值解法- 直接解法和迭代解法- 线性方程组的稳定性和收敛性5. 非线性方程的数值解法- 迭代法和牛顿法- 非线性方程的稳定性和收敛性6. 数值特征值问题- 特征值和特征向量的基本概念- 幂迭代法和QR方法7. 数值积分与数值微分- 数值积分的基本原理和方法- 数值微分的基本原理和方法四、教学方法1. 理论讲授:通过课堂授课,讲解数值分析的基本概念、原理和方法。
2. 上机实践:通过实际的数值计算和编程实践,巩固和应用所学的数值分析知识。
3. 课堂讨论:组织学生进行课堂讨论,加深对数值分析问题的理解和思考能力。
五、考核方式1. 平时表现:包括课堂参与和作业完成情况。
2. 期中考试:对学生对于数值分析概念、原理和方法的理解程度进行考查。
3. 期末项目:要求学生通过上机实验和编程实践,解决一个实际问题,并进行分析和报告。
六、参考教材1. 《数值分析》(第三版),贾岩. 高等教育出版社,2020年。
2. 《数值计算方法》,李刚. 清华大学出版社,2018年。
以上是《数值分析》课程教案的概要内容。
通过本课程的研究,学生将能够掌握数值分析的基本原理和技术,并应用于实际问题的解决中。
数值分析课程设计

数值分析课程设计一、题目描述在本次数值分析课程设计中,我们需要实现下列内容:给定一个函数f(x),任取一个初值x0,使用牛顿法求出f(x)=0的一个根。
二、算法实现在数值计算中,牛顿法(Newton’s method) 是一种迭代算法,可以快速地求解方程的数值解,对于一般的实数函数,牛顿法可以用来求方程f(x)=0的根。
设x n是f(x)的根的一个近似值,y=f(x n)是对应的函数值,则用f(x)的一阶泰勒展开式$$ f(x) \\approx f(x_n)+f'(x_n)(x-x_n) $$且令上式等于零,得到牛顿迭代公式:$$ x_{n+1}=x_n-\\frac{f(x_n)}{f'(x_n)} $$若x0是f(x)的一个根的初始近似值,则$$ x_{n+1}=x_n-\\frac{f(x_n)}{f'(x_n)}, \\ n=0,1,2,\\cdots $$是迭代序列,如果 $\\lim\\limits_{n\\rightarrow \\infty}x_n=\\alpha$,且 $f(\\alpha)=0$,则 $\\alpha$ 是方程的一个根。
三、实验步骤1.确定初始值x0,计算f(x0)和f′(x0)。
2.按照牛顿法迭代公式计算x n+1。
3.如果满足指定的条件,则停止迭代,并输出x n+1。
4.否则,返回第二步迭代计算x n+2,直至满足指定的条件。
四、实验代码def newton_method(f, df, x0, eps=1e-8, max_iter=1000):'''利用牛顿法求解非线性方程f(x)=0的根。
:param f: 函数:param df: 导函数:param x0: 初值:param eps: 容差:param max_iter: 最大迭代次数:return:近似解'''n =1while True:x1 = x0 - f(x0) / df(x0)if abs(x1 - x0) < eps or n > max_iter:return x1x0 = x1n +=1五、实验结果我们使用上述实现的牛顿法来解决如下问题:$$ f(x) = x^2-3, \\ x_0=2 $$则f′(x)=2x。
数值分析方法课程设计

数值分析方法课程设计背景介绍数值分析是一门研究求解各种数学问题的有效数值计算方法的学科,其应用广泛,如科学计算、工程设计和金融计算等领域。
在数值分析中,许多方法依赖于计算机的计算能力。
此外,数值分析还需要对数学理论和计算机科学两方面的知识有较深的理解。
本课程设计旨在通过实践,帮助学生深入了解数值分析方法及其应用,并提高学生的计算机编程能力。
课程设计目标•熟练掌握数值分析中的基本算法和方法,如插值法、数值积分等•能够将所学算法应用于实际问题,并编写可靠的程序解决问题•加深对计算机编程的理解和掌握,增强编程实践和创新能力•提高对数值分析和计算机科学交叉领域的理解课程内容第一部分:基本算法和方法1.数值微积分基本概念和原理2.插值法及其在实际中的应用3.数值积分的基本方法和理论基础4.常微分方程常用数值解法第二部分:实践应用与编程实现1.利用插值法和数值积分求解实际问题2.实现数值微积分和常微分方程的求解程序3.利用现有的数值分析软件解决实际问题,如 MATLAB 和 Python 等课程设计方案1.向学生介绍数值分析基本算法和方法,并讲解其理论基础和实际应用。
2.向学生提供一些实际问题,引导学生根据所学算法和方法进行求解。
3.给予学生一定的编程实践机会,让他们能够将所学算法实现为程序,并运用到具体的问题中。
4.通过课程作业、仿真实验等形式对学生进行考核和评价,确保学生能够有效掌握所学知识和能力。
评价标准1.学生掌握数值分析基本算法和方法的程度2.学生在实际问题中应用所学算法的能力3.学生编程实践和创新能力的水平4.学生对数值分析和计算机科学交叉领域的理解总结本课程设计旨在培养学生的数值分析和计算机编程实践,通过课程作业和编程实践等形式将理论知识与实际问题相结合,提高学生的实践应用能力。
同时,本课程设计也为学生未来的研究和工作提供了一定的基础。
数值分析课程设计

摘要实验一 拉格朗日插及数值求解1.1实验目的了解Lagranger 差值的基本原理和方法通过实例掌握用MATLAB 求插值的方法根据实际计算理论,利用Lagranger 插值多项式计算1.2实验原理i i n y x L =)((∏≠=-n i i j jx x 0.(i x l i=0,1,...n )称为n 1.3%UNTITLED Summary of this function goes here% Detailed explanation goes heren=length(x0);m=length(x);for i=1:mz=x(i);s=0.0;for k=1:nli=1.0;for j=1:nif j~=kli=li*(z-x0(j))/(x0(k)-x0(j));endends=li*y0(k)+s;endend1.4(1(2)输入:2.11.了解LU分解法解线性方程组的基本原理;2.熟悉计算方法的技巧和过程,能用LU分解法解实际问题;3.用matlab实现LU分解。
2.2实验原理1.若一个线性方程组系数矩阵为n阶方阵A且各阶顺序主子式均不为0则A的LU分解存在且唯一。
将高斯消去法改写为紧凑形式,可以直接从矩阵A的元素得到计算L,U元素的递推公式,而不需任何中间步骤,这就是所谓直接三角分解法。
一旦实现了矩阵A的LU分解,那么求解Ax=b的问题就等价于求解两个三角形方程组:Ly=b,求y;Ux=y,求x。
2.在满足1的条件下课推导得出以下公式(23.L对角4.(1(2(3(n2.3[n,m]=size(A);if n~=merror('The rows and columns of matrix A must be equal!');return;endfor ii=1:nfor i=1:iifor j=1:iiAA(i,j)=A(i,j);endendif (det(AA)==0)error('The matrix can not be divided by LU!') return;endAfor i=2:nfor j=1:i-1d(i)=d(i)-L(i,j)*y(j);endy(i)=d(i);endx(n)=y(n)/U(n,n);for i=(n-1):-1:1for j=n:-1:i+1y(i)=y(i)-U(i,j)*x(j);endx(i)=y(i)/U(i,i);end2.4实验案例及结果分析在3.11. 2. 3.3.2(1)置n=1,精度要求ε,n (2)计算[])()(21)0(1b f a f h T +=(3)置n n h h 212=,并计算(4)置m=n ,n=2n ,k=1。
数值分析课程设计(最终版)

数值分析课程设计(最终版)本⽂主要通过Matlab 软件,对数值分析中的LU 分解法、最⼩⼆乘法、复化Simpon 积分、Runge-Kutta ⽅法进⾏编程,并利⽤这些⽅法在MATLAB 中对⼀些问题进⾏求解,并得出结论。
实验⼀线性⽅程组数值解法中,本⽂选取LU 分解法,并选取数据于《数值分析》教材第5章第153页例5进⾏实验。
所谓LU 分解法就是将⾼斯消去法改写为紧凑形式,可以直接从矩阵A 的元素得到计算L 、U 元素的递推公式,⽽不需要任何步骤。
⽤此⽅法得到L 、U 矩阵,从⽽计算Y 、X 。
实验⼆插值法和数据拟合中,本⽂选取最⼩⼆乘拟合⽅法进⾏实验,数据来源于我们课堂学习该章节时的课件中的多项式拟合例⼦进⾏实验。
最⼩⼆乘拟合是⼀种数学上的近似和优化,利⽤已知的数据得出⼀条直线或者曲线,使之在坐标系上与已知数据之间的距离的平⽅和最⼩。
利⽤excel 的⾃带函数可以较为⽅便的拟合线性的数据分析。
实验三数值积分中,本⽂选取复化Simpon 积分⽅法进⾏实验,通过将复化Simpson 公式编译成MATLAB 语⾔求积分∫e ;x dx 10完成实验过程的同时,也对复化Simpon 积分章节的知识进⾏了巩固。
实验四常微分⽅程数值解,本⽂选取Runge-Kutta ⽅法进⾏实验,通过实验了解Runge-Kutta 法的收敛性与稳定性同时学会了学会⽤Matlab 编程实现Runge-Kutta 法解常微分⽅程,并在实验的过程中意识到尽管我们熟知的四种⽅法,事实上,在求解微分⽅程初值问题,四阶法是单步长中最优秀的⽅法,通常都是⽤该⽅法求解的实际问题,计算效果⽐较理想的。
实验五数值⽅法实际应⽤,本⽂采⽤最⼩⼆乘法拟合我国2001年到2015年的⼈⼝增长模型,并预测2020年我国⼈⼝数量。
关键词:Matlab ;LU 分解法;最⼩⼆乘法;复化Simpon 积分;Runge-Kutta⼀.LU分解法 (1)1.1实验⽬的 (1)1.2基本原理 (1)1.3实验内容 (2)1.4数据来源 (3)1.5实验结论 (3)⼆.Lagrange插值 (4)2.1实验⽬的 (4)2.2基本原理 (5)2.3实验内容 (5)2.4数据来源 (6)2.5实验结论 (6)三.复化simpon积分 (7)3.1实验⽬的 (7)3.2基本原理 (7)3.3实验内容 (7)3.4数据来源 (8)3.5实验结论 (8)四.Runge-Kutta⽅法 (9)4.1实验⽬的 (9)4.2基本原理 (9)4.3实验内容 (10)4.4数据来源 (11)4.5实验结论 (11)五.数值⽅法实际应⽤ (11)5.1实验⽬的 (11)5.2基本原理 (12)5.3实验内容 (12)5.4数据来源 (13)5.5实验结论 (13)总结 (16)参考⽂献 (17)⼀.LU 分解法1.1实验⽬的[1] 了解LU 分解法的基本原理和⽅法;[2] 通过实例掌握⽤MATLAB 求线性⽅程组数值解的⽅法; [3] 编程实现LU 分解1.2基本原理对于矩阵A ,若存在⼀个单位下三⾓矩阵L 和⼀个上三⾓U ,使得A =LU (1.1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计报告课程名称课题名称专业班级学号姓名指导教师年月日湖南工程学院课程设计任务书课程名称数值分析课题专业班级学生姓名学号指导老师审批任务书下达日期2009 年 5 月 4 日任务完成日期2009 年 5 月18日一、设计内容与设计要求1.设计内容:对课程《计算方法》中的常见算法进行综合设计或应用(具体课题题目见后面的供选题目)。
2.设计要求:●课程设计报告正文内容a.问题的描述及算法设计;b.算法的流程图(要求画出模块图);c.算法的理论依据及其推导;d.相关的数值结果(通过程序调试),;e.数值计算结果的分析;f.附件(所有程序的原代码,要求对程序写出必要的注释)。
●书写格式a.要求用A4纸打印成册b.正文格式:一级标题用3号黑体,二级标题用四号宋体加粗,正文用小四号宋体;行距为22。
c.正文的内容:正文总字数要求在3000字左右(不含程序原代码)。
d.封面格式如下页。
●考核方式指导老师负责验收程序的运行结果,并结合学生的工作态度、实际动手能力、创新精神和设计报告等进行综合考评,并按优秀、良好、中等、及格和不及格五个等级给出每位同学的课程设计成绩。
具体考核标准包含以下几个部分:a.平时出勤(占10%)b.系统需求分析、功能设计、数据结构设计及程序总体结构合理与否(占10%)c.程序能否完整、准确地运行,个人能否独立、熟练地调试程序(占40%)d.设计报告(占30%)注意:不得抄袭他人的报告(或给他人抄袭),一旦发现,成绩为零分。
e.独立完成情况(占10%)。
●课程验收要求a.判定算法设计的合理性,运行相关程序,获得正确的数值结果。
b.回答有关问题。
c.提交课程设计报告。
d.提交软盘(源程序、设计报告文档)。
e.依内容的创新程度,完善程序情况及对程序讲解情况打分。
三、进度安排1、班级:信息与计算科学:0601、0602、06032、主讲教师:聂存云3、辅导教师:聂存云上机时间安排:第 12 周星期一 8时:30分——11时:30分星期三 8时:30分——11时:30分星期五 8时:30分——11时:30分第 13 周星期三 8时:30分——11时:30分星期五 8时:30分——11时:30分数理系课程设计评分表教师签名:日期:《计算方法》课程设计供选课题1. 线性代数系统的求解设计(供5人选:学号1-5)一、设计问题:数值求解下面的微分方程。
-u’’=f(x)u(0)=u(1)=0 (1)二、设计内容与方案(1)对上述问题进行离散,得到相应的线性系统(2)采用高斯消去(追赶法)和一种迭代方法(Jacobi或Gausiseidd)求解线性方程组(3)利用Matlab描绘u(x)的图像(对数值解结果)(4)针对(1)并进行一定理论分析问题(1) 对应的每一个精确解,可供一人进行课程设计。
1人u=x2(x-1)21人u=sin(пx)1人u=xsin(пx)1人u=x3(x-1)21人u= x2sin(пx)2. 二维椭圆问题的离散求解(供4人选:学号6-9)一、设计问题:y数值求解下面的微分方程。
-u xx-u yy=f(x,y)1u|аη=0设精确解为u=sin(пx)*sin(пy) ①(2人)u=x2(x-1)2 ②(2人)二、设计内容与方案①区域划分②节点排序(自然排序)③得到离散的线性代数方程组④采用Gauss-Seidel迭代法求解3.非线性问题的求解设计(供4人选:学号10-13)一、设计问题⑴ x2-3x+2-e x=012-x22=0 x2+xy+y=3⑵(3)1x22-x13-1=0 x2-4x+3=0x(0)=(1,1)T二、设计内容与方案⑴设计各种线性收敛的迭代方法求解,然后采用Stiffensen加速方法计算⑵用牛顿迭代方法求解(ⅰ),并与1的结果进行比较。
⑶采用牛顿法迭代求解(ⅱ)⑷采用f(x k)+f’(x k)(x-x k)+(f“(x k)/2!)*(x-x k)2=0方法求解三、设计要求1、每一种方法均必须输出设计的结果2、给出算法流程3、算法描述注:设计题目为(1)(2)为一组(2人);(1)(3)为一组(2人)每组中的内容(1)(2)(3) 和(1)(2)(4)各供1人4.初值问题的数值求解设计(供4人选:学号14-17)一、设计问题(1) (2 )y’= -50y+50x2+2x y’=-1/x2-y/x,0≤x≤1 1≤x≤2 y(0)=1/3 y(1)=1准确解为y(x)=(1/3)*e-50x+x2二、设计内容与方案①采用Euler方法求解②采用改进的Euler方法求解③采用梯形公式法求解④四阶Runge-Kutta方法求解三、设计要求1、得到各剖分节点处的精确解、近似解、误差2、进行一定的理论分析每一问题可供2人,分别为(1)(2)(3) 供1人;(1)(2)(4) 供1人5.Runge现象及其修正方法设计(供2人选:学号18-19)一、内容:插值被插值函数 (供不同同学选择)①f(x)=1/(1+x2) x∈[-5,5]②f(x)=1/(1+5x2) x∈[-1,1]二、要求⑴采用Lagrange插值:将[-5,5]分成10等分Δx=X i=-5+(i-1)h, i=1、2....、n得到L10(x),验证Range现象,利用Matlab绘出插值函数L10(x)d的图像⑵采用分段线性插值:将[-5,5]分成10等分,Δx=(5-(-5))/10=1在第i个子区间上有:[x i-1,x i]L’i(x)= - 计算函数值L1i(0.5);利用Matlab绘图分段线性插值函数的图像⑶从理论上给出(2)的插值误差估计结果6. 对称矩阵的条件数的求解设计(供4人选:学号20-23)一、求矩阵A的二条件数问题1 A=问题2 A=二、设计内容:1 采用幂法求出A的.2 采用反幂法求出A的.3计算A的条件数ⅡAⅡ2*ⅡA-1Ⅱ2=cond2(A)=/.(精度要求为10-6)三、设计要求1、求出ⅡAⅡ2。
2、并进行一定的理论分析。
每个问题可供2人设计内容1,3 供1人;设计内容2 供1人7. 数值积分方法的加速和自适应算法设计(供10人选::学号24-33)一、设计内容1、数值积分加速收敛方法。
2、自适应选取求积步长二、设计问题x21、I=x dx2、I=3、-1dx4、I= 其中令=15、I=三、设计方案1、简单梯形/Simpson公式求积2、复化梯形/Simpson公式求积3、对复化梯形公式的结果,进行Romberg算法得到数值积分的加速4、对复化梯形公式(3点)根据给定的精度ξ=10-6,设计自适应选取积分步长5、采用高斯公式求积6、从理论上给出2、3中的误差估计,并列出相应的精确值、近似值、误差。
设计方案中的梯形公式, Simpson 公式各供1人,每个设计题1人1. ⎩⎨⎧==<<=+-1)1(,0)0(10'''u u x f bu au实验中,考虑如下情形 (i) a=1 和 b=0,(ii) a=1 和 b=1 , (iii) a=1 和 b=-1 ,(iv) ⎩⎨⎧≤<≤≤=15.025.001x x a a=1 和 b=0 .取f=0.2.dx x f ba⎰)(实验中可取a=0,b=1, x e x f =)( 分别利用如下方法,验算相应的精度: (i)复化梯形(ii) 复化辛普生公式(iii) 对复化梯形构造自适应算法(iv) 对复化辛普生公式构造自适应算法(v)对于二重、三重积分情形考虑复化中矩形公式,⎰⎰⎰⎰⎰ΩΩdxdy z y x g dxdy y x f ),,(,),(。
3.(i ) ⎪⎩⎪⎨⎧==<<=-1)1(,0)0(10)('u u x fdx du a dx d其中 a(x)=1.0(ii ) ⎪⎩⎪⎨⎧==<<=-1)1(,0)0(10)(u u x f dx du a dx d其中⎩⎨⎧≤≤<≤=15.05.05.001)(x x x a(iii ) ⎪⎩⎪⎨⎧==<<=-1)1(,0)0(10)(u u x f dx du a dx d其中x x a =)(.(iv ) ⎪⎩⎪⎨⎧==<<=-1)1(,0)0(10)(u u x f dx du a dx d其中⎩⎨⎧≤≤<≤=15.01005.00)(x x x x a4.利用(i) 向前Euler 方法 求解 1)0(,10,1'=≤≤+-=y x y y (ii) 向后Euler 方法 求解 1)0(,10,2'=≤≤+-=y x x y y (iii) 改进的Euler 方法 求解 1)0(,10,1'=≤≤++-=y x x y y (iv)考虑如下迭代方法(二阶R-K 方法)求解1)0(,10,1'=≤≤++-=y x x y y),(),21,21(,11221k k k k k k y x hf k k y h x hf k k y y =++=+=+5.求解0)(=x f 的根(1) 简单迭代方法 xe x xf --=)(,5.00=x加速技术1: )(11k k k k x x x x --=-+ω,)6.01/(6.0+=ω 加速技术2:Aitken 2∆加速))()/(()(:11111+-+++-----=k k k k k k k k x x x x x x x x(2) 单点和双点弦截法,尝试加速因子ω,20102)(23-++=x x x x f(3) 二分法 2)2/(sin )(x x x f -=在[1.5,2]的根。
(4) 牛顿法 20102)(23-++=x x x x f修正的牛顿法 x x x x f +-=232)()()('1k k k k x f x mf x x -=+ m 为重根数。
6、情形(i )⎩⎨⎧=<<=∆-otherwiseu y x fu ,01,0情形(ii )⎩⎨⎧=<<=--otherwiseu y x fu u yy xx ,01,0ε采用五点差分格式(两种) 含网格剖分(两种以上)、形成离散格式、数值求解、数值结果分析。
7.考虑区域]1,0[]1,0[⨯=Ω的网格剖分技术与局部加密技术。
(给出矩形区域、圆形区域、正规和扭曲、局部加密)8.对问题⎩⎨⎧=<<=∆-otherwiseu y x f u ,01,0若(i )u 为调和函数,验算如下格式为六阶格式。
(ii )u 为一般函数,验算如下格式为二阶格式。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--------1414204141(见专业英语书P50) (iii) u 为一般函数,验算如下格式为二阶格式。