【优质文档】中考中的一次函数应用题(答案)

合集下载

中考数学:一次函数的应用题(习题含答案)

中考数学:一次函数的应用题(习题含答案)

解得
k2 = 80, b = 15000,
8.[2018·成都] 为了美化环境,建设宜居成都,我市准备在一个广场上种植甲、乙两种花卉.
经市场调查,甲种花卉的种植费用 y(元)与种植面积 x(m2)之间的函数关系如图 K11-8 所示,
乙种花卉的种植费用为每平方米 100 元. (1)直接写出当 0≤x≤300 和 x>300 时,y 与 x 的函数关系式.
(2)广场上甲、乙两种花卉种植面积共 1200 m2,若甲种花卉的种植面积不少于 200 m2,且不超
过乙种花卉种植面积的 2 倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费
用最少?最少费用为多少元?
解:(1)当 0≤x≤300 时,
设函数关系式为 y=k1x,
由题意知 39000=300k1,
[解析] 由题意得 y=10-2x,
x > 0,

10 − 2x > 0, x + x > 10-2x,
x + 10 − 2x > x,
∴5<x<5
2
∴符合要求的图象是 D
4.[2017·扬州] 同一温度的华氏度数 y(℉)与摄氏度数 x(℃)之间的函数表达式是 y=9x+32.
-40 若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数是
(2)广场上甲、乙两种花卉种植面积共 1200 m2,若甲种花卉的种植面积不少于 200 m2,且不超
过乙种花卉种植面积的 2 倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费
运动,乙从点 B 出发,向终点 A 运动.已知线段 AB 长为 90 cm,甲的速度为 2.5 cm/s.设运动时

一次函数应用题带答案

一次函数应用题带答案

一次函数应用题带答案1、函数,那么当时,、2、假设函数是的正比例函数,那么 =、3、函数的图像与轴的交点坐标为、4、一次函数的图像是由函数的图像向上平移2个单位而得到的,那么该一次函数的解析式为、5、函数中,值随的增加而减小,那么的取值范围为、6、一次函数的图像与坐标轴的交点为、那么一次函数的解析式为、7、点P既在直线上,又在直线上,那么P点的坐标为、8、假设一次函数的图像经过,且随的增加而减小,请你写一个符合上述条件的函数解析式:、1、一次函数的图像一定经过点()A、(2,—5)B、(1,0)C、(—2,3)D、(0,—1)2、函数中自变量的取值范围()A、 B、 C、 D、3、函数,当时,值相等,那么的值是()A、1B、2C、3D、44、一次函数的图像与两坐标轴所围成的三角形面积为()A、6B、3C、9D、4、55、当时,函数的图像大致是()6、把函数的图像沿着轴向下平移一个单位,得到的函数关系式是()A、 B、 C、 D、7、点A 和点B 都在直线上,那么与的大小关系为()A、 B、 C、 D、不能确定8、邮购一种图书,每册定价20元,另加书价的5%作邮资,购书册,需付款y(元)与的函数解析式为()A、 B、C、 D、9、如所示,分别表示甲乙两名运发动在自行车比赛中所走的路程S和时间t的函数关系,那么他们的速度关系是()A、甲比乙快B、乙比甲快C、甲乙同速D、不能确定10、在中,当时,y=—1,那么当时,y=()A、—2B、C、D、21、拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量2、一次函数,求:(1)m为何值时,函数图像交y轴于正半轴?(2)m为何值时,函数图像与y轴的交点在轴的下方?(3)m为何值时,图像经过原点?3、用图像法求下面一元二次方程组的近似解。

中考中的一次函数应用题(答案)

中考中的一次函数应用题(答案)

中考中的一次函数应用题求解(答案)1 试题概述一次函数应用题,因其综合了一元一次方程、一元一次不等式、二元一次方程组等内容,能实现数与形有机地结合,能体现分类讨论、对应、极端值等数学思想与方法,并且容易与现实生活中的重大事件联系起来以体现数学的应用价值,近年来一直是中考命题的热点。

此外,由于中考考查二次函数内容时,大多是以二次函数与几何相结合的压轴题形式出现,而反比例函数应用题命题的范围又相对狭窄,因此一次函数应用题就一直是中考试题中最频繁出现的考点。

一次函数应用题考查的最主要考点集中在三个方面:⑴学生对数形结合的认识和理解;⑵将实际问题转化为一次函数的能力,即数学建模能力;⑶分类讨论、极端值、对应关系、有序性的数学思想方法的考查。

⑷对一次函数与方程、不等式关系的理解与转化能力。

一次函数试题的命题形式多样,从近几年的中考题来看,可以大致归为以下几类:⑴方案设计问题(物资调运、方案比较);⑵分段函数问题(分段价格、几何动点);⑶由形求式(单个函数图象、多个函数图象)。

⑷一次函数多种变量及其最值问题。

2.1方案设计问题⑴物资调运例1.(2008年重庆第27题)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。

根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨。

(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。

其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。

则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?解析:本题题干文字长,数量关系复杂,但只要弄懂了题意,并结合表格将数量关系进行整理,解决起来并不难。

一次函数应用题精编(附答案)

一次函数应用题精编(附答案)

一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x 之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自20XX年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)

中考数学《一次函数》专题训练(附带答案)一、单选题1.已知一次函数y =(1﹣a )x+2a+1的图象经过第二象限,则a 的值可以是( )A .﹣2B .﹣1C .0D .12.如图,直线y =k 1x +b 1和直线y =k 2x +b 2相交于点M(23,−2),则关于x ,y 的方程组{y =k 1x +b 1y =k 2x +b 2,的解为( )A .{x =23,y =−2 B .{x =−2,y =23C .{x =23,y =2D .{x =−2,y =−233.若一次函数y=(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是 ( )A .k >3B .0<k≤3C .0≤k <3D .0<k <34.如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是( )A .y=x+5B .y=x+10C .y=﹣x+5D .y=﹣x+105.设min{x ,y}表示x ,y 两个数中的最小值,例如min{0,2}=0,min{12,8}=8,则关于x 的函数y=min{2x ,x+2}可以表示为( ) A .y={2x(x <2)x +2(x ≥2)B .y={x +2(x <2)2x(x ≥2)C .y=2xD .y=x+26.已知一次函数y=kx ﹣1,若y 随x 的增大而增大,则该函数的图象不经过( )A.第一象限B.第二象限C.第三象限D.第四象限7.已知k≠0,在同一坐标系中,函数y=k(x+1)与y= k x的图象大致为如图所示中的()A.B.C.D.8.下列函数中,当x>0时,y随x的增大而增大的是()A.y=-x+1B.y=x2-1C.y=1x D.y=-x2+19.下列y关于x的函数中,是正比例函数的为()A.y=x2B.y=2x C.y=x2D.y=x+1210.如图,在平面直角坐标系中,O为坐标原点,直线y=−x+4√2与x轴交于B点,与y轴交于A点,点C,D在线段AB上,且CD=2AC=2BD,若点P在坐标轴上,则满足PC+PD=7的点P的个数是()A.4B.3C.2D.111.已知在一次函数y=﹣1.5x+3的图象上,有三点(﹣3,y1)、(﹣1,y2)、(2,y3),则y1,y2,y3的大小关系为()A.y1>y2>y3B.y1>y3>y2C.y2>y1>y3D.无法确定12.一次函数y=(k-3)x|k|-2+2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题13.已知一次函数 y =(k +1)x −b ,若y 随x 的增大而减小,则k 的取值范围是 . 14.如图,一次函数与反比例函数的图象分别是直线 AB 和双曲线.直线 AB 与双曲线的一个交点为点 C ,CD ⊥x 轴于点 D ,OD =2OB =4OA =4 ,则此反比例函数的解析式为 .15.一次函数 y 1=k 1x +b 1 与 y 2=k 2x +b 2 的图象如图,则不等式组 {k 1x +b 1≤0k 2x +b 2>0 的解为 .16.若点 (m,n) 若在直线 y =3x −2 上,则代数式2n -6m+1的值是 .17.已知一次函数y =﹣x ﹣(a ﹣2)中,当a 时,该函数的图象与y 轴的交点坐标在x 轴的下方.18.已知一次函数 y =ax +|a −1| 的图象经过点(0,3),且函数y 的值随x 的增大而减小,则a 的值为 .三、综合题19.甲、乙两车分别从相距480千米的 A 、 B 两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途经 C 地,甲车到达 C 地停留1小时,因有事按原路原速返回 A 地.乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两车距各自出发地的路程 y (千米)与甲车出发后所用的时间 x (时)的函数图象如图所示.(1)求t的值;(2)求甲车距它出发地的路程y与x之间的函数关系式;(3)求两车相距120千米时乙车行驶的时间.20.根据对某市相关的市场物价调研,预计进入夏季后的某一段时间,某批发市场内的甲种蔬菜的销售利润y1(千元)与进货量x(吨)之间的函数y1=kx的图象如图①所示,乙种蔬菜的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx的图象如图②所示.(1)分别求出y1、y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种蔬菜共10吨,设乙种蔬菜的进货量为t吨.①写出这两种蔬菜所获得的销售利润之和W(千元)与t(吨)之间的函数关系式.并求当这两种蔬菜各进多少吨时获得的销售利润之和最大,最大利润是多少元?②为了获得两种蔬菜的利润之和不少于8400元,则乙种蔬菜进货量应在什么范围内合适?21.已知一次函数y=-2x-2.(1)画出函数的图象;(2)求图象与x轴,y轴的交点A,B的坐标;(3)求A,B两点之间的距离;(4)求△AOB的面积;(5)当x为何值时,y≥0(利用图象解答)?22.在平面直角坐标系中,一次函数y=x+3的图象与x轴交于点A,二次函数y=x2+mx+n的图象经过点A.(1)当m=4时,求n的值;(2)设m=﹣2,当﹣3≤x≤0时,求二次函数y=x2+mx+n的最小值;(3)当﹣3≤x≤0时,若二次函数﹣3≤x≤0时的最小值为﹣4,求m、n的值.23.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y(cm)与燃烧时间x(min)的关系如图所示.(1)求点P的坐标,并说明其实际意义;(2)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.24.冰墩墩是2022年北京冬季奥运会的吉样物.冬奥会来临之际,冰墩墩玩偶非常畅销.小张在某网店选中A,B两款冰墩墩玩偶,决定用900元(全部用完)从该网店进货并销售.两款玩偶的进货价和销售价如下表:A款玩偶B款玩偶进货价(元/个)2520销售价(元/个)3325(1)求y与x之间的函数表达式;(2)如果小张购进A款玩偶20个,那么这次进货全部售完,能盈利多少元?参考答案1.【答案】C 2.【答案】A 3.【答案】A 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】D 8.【答案】B 9.【答案】C 10.【答案】A 11.【答案】A 12.【答案】C 13.【答案】k <−1 14.【答案】y =−4x15.【答案】x≤-4 16.【答案】-3 17.【答案】>2 18.【答案】-219.【答案】(1)由函数图象得:乙车的速度为:60÷1=60(千米/小时),甲车从A 地出发至返回A 地的时间为:(480−60)÷60=420÷60=7(小时) ∴t =(7−1)÷2=3 即t 的值是3;(2)当0≤x≤3时,设y 与x 的函数关系式为y =kx , 则360=3k ,解得k =120∴当0≤x≤3时,y 与x 的函数关系式为:y =120x 当3<x≤4时,y =360当4<x≤7,设y 与x 的函数关系式为:y =ax +b 则 {4a +b =3607a +b =0 解得: {a =−120b =840∴当4<x≤7,y与x的函数关系式为:y=−120x+840由上可得,y与x的函数关系式为:y={120x(0≤x≤3) 360(3<x≤4)−120x+840(4<x≤7)(3)设乙车行驶的时间为m小时时,两车相距120千米,乙车的速度为60千米/小时,甲车的速度为360÷3=120(千米/小时)甲乙第一次相遇前,60+(60+120)×(m−1)+120=480,得m=8 3甲乙第一次相遇之后,60+(60+120)×(m−1)=480+120,得m=4甲车返回A地的过程中,当m=5时,两车相距5×60-(480-360)=180(千米)∴(120−60)×(m−5)=180−120得m=6答:两车相距120千米时乙车行驶的时间是83小时、4小时或6小时.20.【答案】(1)解:由题意得,设y1=kx5k=3∴k=0.6∴y1=0.6x根据题意得,设y2=ax2+bx+c,由图知,抛物线经过点(0,0)、(1,2)、(5,6),代入得{c=0a+b+c=2 25a+5b+c=6∴{a=−0.2b=2.2c=0∴y2=−0.2x2+2.2x;(2)解:①设乙种蔬菜的进货量为t吨,w=y1+y2=0.6(10−t)+(−0.2t2+2.2t)=−0.2t2+1.6t+6=−0.2(t−4)2+9.2当t=4,利润之和最大W最大=9200(元)答:当乙种蔬菜进货4吨,甲种蔬菜进货6吨,利润之和最大,最大9200元.②w=y1+y2=−0.2t2+1.6t+6当w≥8.4时,即−0.2t2+1.6t+6≥8.4∴−0.2t2+1.6t−2.4≥0令−0.2t2+1.6t−2.4=0t2−8t−12=0(t−2)(t−6)=0解得t1=2,t2=6因为抛物线开口向下,所以2≤t≤6答:乙种蔬菜进货量为2吨到6吨范围内.21.【答案】(1)解:列表:x……-10……y……0-2……(2)解:由(1)可得该图象与x轴,y轴的交点坐标分别为A(-1,0),B(0,-2).(3)解:A,B两点之间的距离为√OA2+OB2=√12+22=√5(4)解:S△AOB= 12OA·OB=12×1×2= 1(5)解:由(1)中图象可得,当x≤-1时,y≥0.22.【答案】(1)解:当y=x+3=0时,x=﹣3∴点A 的坐标为(﹣3,0).∵二次函数y=x 2+mx+n 的图象经过点A ∴0=9﹣3m+n ,即n=3m ﹣9 ∴当m=4时,n=3m ﹣9=3.(2)解:抛物线的对称轴为直线x=﹣ m 2当m=﹣2时,对称轴为x=1,n=3m ﹣9=﹣15 ∴当﹣3≤x≤0时,y 随x 的增大而减小∴当x=0时,二次函数y=x 2+mx+n 的最小值为﹣15.(3)解:①当对称轴﹣ m2 ≤﹣3,即m≥6时,如图1所示.在﹣3≤x≤0中,y=x 2+mx+n 的最小值为0,∴此情况不合题意;②当﹣3<﹣ m2 <0,即0<m <6时,如图2,有 {4n−m 24=49−3m +n =0解得: {m =2n =−3 或 {m =10n =21(舍去)∴m=2、n=﹣3;③当﹣ m2 ≥0,即m≤0时,如图3有 {n =−49−3m +n =0 ,解得: {m =53n =−4(舍去).综上所述:m=2,n=﹣3. 23.【答案】(1)解:设乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=kx+b ,得:{b =4050k +b =0 ,解得: {k =−0.8b =40,即乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式为y=﹣0.8x+40,将x=20代入得y=24,故P (20,24)该点表示的实际意义是点燃20分钟后,两支蜡烛剩下的长度都是24cm ; (2)解:设甲蜡烛剩下的长度y 甲与x 之间的函数表达式为y 甲=mx+n ,得: {48=n 24=20m +n,解得: {m =−1.2n =48 ,∴y 甲与x 之间的函数表达式为y 甲=﹣1.2x+48.∵甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍,∴﹣1.2x+48=1.1(﹣0.8x+40),解得:x=12.5. 答:点燃12.5分钟,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍24.【答案】(1)解:由题意,得25x +20y =900∴y =−54x +45;(2)解:当x =20时,则y =−54×20+45=20∴这次进货全部售完,能盈利=20(33−25)+20(25−20)=260(元) 答:这次进货全部售完,能盈利260元.。

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案

初三数学一次函数练习题和答案1. 某超市每天固定开销为200元,每卖出一个商品,能够获得5元的利润。

设售出商品的数量为x个,利润为y元,则利润与售出商品的数量之间的关系可以表示为以下的一次函数:y = 5x - 2002. 一辆汽车以每小时60公里的速度行驶,行驶x小时后所走的距离可以表示为以下的一次函数:y = 60x3. 小明妈妈提醒小明,每晚洗碗时间不得超过30分钟。

设小明每晚洗碗时间为x分钟,洗完碗后剩余时间为y分钟,则剩余时间与洗碗时间之间的关系可以表示为以下的一次函数:y = 30 - x4. 一包含有n个人的旅行团,每人缴纳团费250元,另外还需要支付每人40元的交通费。

设团费总支出为y元,旅行团的人数为x人,则团费总支出与旅行团的人数之间的关系可以表示为以下的一次函数: y = 250x + 405. 某商店推出打折活动,折扣力度为8折,原价为x元的商品,在活动期间的售价为y元。

则售价与原价之间的关系可以表示为以下的一次函数:y = 0.8x6. 一个数增加了7倍后变成了48,设原数为x,增加后的数为y,则原数与增加后的数之间的关系可以表示为以下的一次函数: y = 7x7. 一块面积为x平方米的正方形花坛,边长可以表示为以下的一次函数:y = √x8. 一个图形的周长与边长之间的关系为一次函数。

设该图形的周长为y,边长为x,则周长与边长之间的关系可以表示为以下的一次函数: y = Kx以上是一些关于一次函数的练习题和答案,通过这些题目的练习,可以帮助同学们巩固和深入理解一次函数的概念和性质。

希望同学们能够通过大量的练习,熟练掌握一次函数的相关知识,提高数学解题能力。

在真实的应用中,一次函数是非常常见的数学模型,掌握一次函数的概念和运用对数学学习和实际生活都非常有帮助。

祝同学们在数学学习中取得更好的成绩!。

一次函数图像应用题(带解析版答案)

一次函数图像应用题(带解析版答案)

一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费()A.0.4元 B.0.45 元C.约0.47元D.0.5元2.如图,函数y=kx(k≠0)和y=ax+4(a≠0)的图象相交于点A(2,3),则不等式kx>ax+4的解集为()A.x>3 B.x<3 C.x>2 D.x<2 3.如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5 B.x>﹣2 C.x>﹣3 D.x<﹣24.甲、乙两汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个B.1个 C.2个 D.3个【解答】①由函数图象,得a=120÷3=40故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象,得,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时t的值为5.25小时,故弄③正确,④当t=3时,甲车行的路程为120km,乙车行的路程为80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选:A.5.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.则下列结论:(1)a=40,m=1;(2)乙的速度是80km/h;(3)甲比乙迟h到达B地;(4)乙车行驶小时或小时,两车恰好相距50km.正确的个数是()A.1 B.2 C.3 D.4【解答】(1)由题意,得m=1.5﹣0.5=1.120÷(3.5﹣0.5)=40(km/h),则a=40,故(1)正确;(2)120÷(3.5﹣2)=80km/h(千米/小时),故(2)正确;(3)设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得解得:∴y=40x﹣20,根据图形得知:甲、乙两车中先到达B地的是乙车,把y=260代入y=40x﹣20得,x=7,∵乙车的行驶速度80km/h,∴乙车行驶260km需要260÷80=3.25h,∴7﹣(2+3.25)=h,∴甲比乙迟h到达B地,故(3)正确;(4)当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得解得:∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=.当40x﹣20+50=80x﹣160时,解得:x=.∴﹣2=,﹣2=.所以乙车行驶或小时,两车恰好相距50km,故(4)错误.故选(C)二.填空题(共3小题)6.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x 轴的垂线交一次函数的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n 的坐标是(n+,).【解答】由已知得A1,A2,A3,…的坐标为:(1,0),(2,0),(3,0),…,又得作x轴的垂线交一次函数y=x的图象于点B1,B2,B3,…的坐标分别为(1,),(2,1),(3,),….由此可推出A n,B n,A n+1,B n+1四点的坐标为(n,0),(n ,),(n+1,0),(n+1,).所以得直线A n B n+1和A n+1B n的直线方程分别为解得故答案为:(n+,).7. 下图是护士统计一病人的体温变化图,这位病人中午12时的体温约为℃.8.某高速铁路即将在2019年底通车,通车后,重庆到贵阳、广州等地的时间将大大缩短.5月初,铁路局组织甲、乙两种列车在该铁路上进行试验运行,现两种列车同时从重庆出发,以各自速度匀速向A地行驶,乙列车到达A地后停止,甲列车到达A地停留20分钟后,再按原路以另一速度匀速返回重庆,已知两种列车分别距A地的路程y(km)与时间x(h)之间的函数图象如图所示.当乙列车到达A地时,则甲列车距离重庆km.【解答】设乙列车的速度为xkm/h,甲列车以ykm/h的速度向A地行驶,到达A 地停留20分钟后,以zkm/h的速度返回重庆,则根据3小时后,乙列车距离A地的路程为240,而甲列车到达A地,可得3x+240=3y,①根据甲列车到达A地停留20分钟后,再返回重庆并与乙列车相遇的时刻为4小时,可得x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得x=120,y=200,z=180,∴重庆到A地的路程为3×200=600(km),∴乙列车到达A地的时间为600÷120=5(h),∴当乙列车到达A地时,甲列车距离重庆的路程为600﹣(5﹣3﹣)×180=300(km),故答案为:300.三.解答题(共10小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在2h以内(含2h)的部分,每0.5h计费1元(不足0.5h按0.5h计算);骑行时长超出2h的部分,每小时计费4元(不足1h按1h计算).根据此收费标准,解决下列问题:(1)连续骑行5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费24元,求其连续骑行时长的范围.【解答】(1)当x=5时,y=2×2+4×(5﹣2)=16,∴应付16元;(2)y=4(x﹣2)+2×2=4x﹣4;故答案为:y=4x﹣4;(3)当y=24,24=4x﹣4,x=7,∴连续骑行时长的范围是:6<x≤7.10.如图,“十一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1,y2关于x的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据(2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设y1=k1x+80,把点(1,95)代入,可得:95=k1+80,解得k1=15,∴y1=15x+80(x≥0);设y2=k2x,把(1,30)代入,可得30=k2,即k2=30,∴y2=30x(x≥0);(2)当y1=y2时,15x+80=30x,解得x=;答:当租车时间为小时时,两种方案所需费用相同;(3)由(2)知:当y1=y2时,x=;当y1>y2时,15x+80>30x,解得x<;当y1<y2时,15x+80<30x,解得x>;∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出A、B、C三种上网的收费方式:收费方式月使用费/元包时上网时间/小时超时费/(元/分钟)A30250.05B50500.05C120不限时(1)假设月上网时间为x小时,分别直接写出方式A、B、C三种上网方式的收费金额分别为y1、y2、y3与x的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式A:y=30 (0≤x≤25),y=30+3x (x>25);收费方式B:y=50 (0≤x≤50),y=50+3x (x>50);收费方式C:y=120 (0≤x);(2)函数图象如图:(3)由图象可知,上网方式C更合算。

(完整版)一次函数应用题及答案

(完整版)一次函数应用题及答案

(完整版)一次函数应用题及答案一次函数应用题(讲义)一、知识点睛1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函数图象与_实际场景____________对应起来;2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;3.结合实际场景解释所求结果.二、精讲精练1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:(1)直接写出快、慢两车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的函数图象如图中折线所示,该加油站截止至13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)求出线段BC 所对应的函数关系式.3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示槽中水的深度与注水时间之间的关系,线段DE 表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?元/件)(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).甲槽4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于灾情严重,政府部门决定对药品供应方提供价格稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.图1图25.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式.(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.轴、点、线;实际场景2.函数图象二、精讲精练1.(1)快车速度为120km/h,慢车速度为80km/h ,A,B两站间的距离为1200km;(2)PQ:y=-40x+1320 (11≤x≤15);QH:y=-120x+2520(15<x≤21);(3)x=5,7,583时,两车相距200千米.2.(1)x=4;(2)y=1.1x(5≤x≤10).3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2DE:y=-2x+12联立32212 y xy x=+=-+?解得:28 xy=?=?∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.(3)84立方厘米;(4)60平方厘米.4.(1)该药品的稳定价格为36(元/件),稳定需求量为34(万件);(2)当药品每件价格在大于36小于70时,该药品的需求量低于供应量;(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.5.(1)99418821059y x x=-+≤≤();(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考中的一次函数应用题求解(答案)
1 试题概述
一次函数应用题,因其综合了一元一次方程、一元一次不等式、二元一次方程组等内容,能实现数与
形有机地结合,能体现分类讨论、对应、极端值等数学思想与方法,并且容易与现实生活中的重大事件联
系起来以体现数学的应用价值,近年来一直是中考命题的热点。

此外,由于中考考查二次函数内容时,大
多是以二次函数与几何相结合的压轴题形式出现,而反比例函数应用题命题的范围又相对狭窄,因此一次
函数应用题就一直是中考试题中最频繁出现的考点。

一次函数应用题考查的最主要考点集中在三个方面:⑴学生对数形结合的认识和理解;⑵将实际问题
转化为一次函数的能力,即数学建模能力;⑶分类讨论、极端值、对应关系、有序性的数学思想方法的考
查。

⑷对一次函数与方程、不等式关系的理解与转化能力。

一次函数试题的命题形式多样,从近几年的中考题来看,可以大致归为以下几类:⑴方案设计问题(物资调运、方案比较);⑵分段函数问题(分段价格、几何动点);⑶由形求式(单个函数图象、多个函数
图象)。

⑷一次函数多种变量及其最值问题。

2.1方案设计问题
⑴物资调运
例1.(20XX年重庆第27题)为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨,、100吨、80吨,需要全部运往四川重灾地区的D、E两县。

根据灾区的情况,这批赈灾物资运往D县的数
量比运往E县的数量的2倍少20吨。

(1)求这批赈灾物资运往D、E两县的数量各是多少?
(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。

其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨。

则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具
体的运送方案;
(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:
A地B地C地
运往D县的费用(元/吨)220 200 200
运往E县的费用(元/吨)250 220 210
为即使将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?
解析:本题题干文字长,数量关系复杂,但只要弄懂了题意,并结合表格将数量关系进
行整理,解决起来并不难。

⑴直接用一元一次方程求解。

运往D县的数量比运往E县的数量的2倍少20吨,设运往E县m吨,则运往D县(2m-20)吨,则m+(2m-20)=280,m=100,2m-20=180。

(亦可用二元一次方程组求解)
⑵由⑴中结论,并结合题设条件,由A地运往D的赈灾物资为x吨,可将相应数量关系列表如下:
A地(100吨)B(100吨)C(80吨)
60(200元/吨)D县(180吨)x(220元/吨)180-60-x
=120-x(200元/吨)
E县(100吨)100-x(250/吨元)100-20-(100-x)
20(210元/吨)
=x-20(220元/吨)
表格说明:①A、B、C、D、E各地后括号中的数字为调运量或需求量;
②表格中含x的式子或数字,表示对应地点调运数量;
③表格中其他括号中的数字,表示对应的调运费用。

确定调运方案,需看问题中的限制条件:①B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍。

②B地运往E县的赈灾物资数量不超过25吨。

故:
解得∴40<x≤45 ∵x为整数
∴x的取值为41,42,43,44,45 则这批救灾物资的运送方案有五种。

方案一:A县救灾物资运往D县41吨,运往E县59吨;
B县救灾物资运往D县79吨,运往E县21吨。

(其余方案略)
⑶设运送这批赈灾物资的总费用为y,由⑵中表格可知:
y=220x+250(100-x)+200(120-x)+220(x-20)+200×60+210×20
=-10x+60800
∵y随x增大而减小,且40<x≤45,x为整数,
∴当x=41时,y有最大值。

该公司承担运送这批赈灾物资的总费用最多是:y=-10×41+60800=60390(元)
求解物资调运问题的一般策略:
⑴用表格设置未知数,同时在表格中标记相关数量;
⑵根据表格中量的关系写函数式
⑶依题意正确确定自变量的取值范围(一般通过不等式、不等式组确定);
⑷根据函数式及自变量的取值范围,结合一次函数的性质,按题设要求确定调运方案。

物资调运问题应用广泛,包括调水、调运物资、分配物资等多种类型。

⑵方案比较
例2.(20XX年盐城)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y (元)。

现有两种购买方案:
方案一:若单位赞助广告费10000元,则该单位所购买门票的价格为每张60元;(总费用=广告赞助费+门票费)
方案二:购买方式如图2所示。

解答下列问题:
⑴方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式
为,当x>100时,y与x的函数关系式为。

⑵如果购买本场足球赛门票超过100张,你将选择哪一种方案,使总费用最省?请说明理由。

⑶甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?
解析:这是一个两种方案的比较问题。

方案比较通常与不等式联系紧密。

比较优惠条件,即通过比较
函数值的大小,确定自变量的区间。

⑴中方案一的函数关系式,直接依题意写出:y1=60x+10000(x≥0);方案二的函数关系由图象给出,用待定系数法求解。

当0≤x≤100时,图象为过原点的线段,函数式为正比例函数,可求得y2=100x(0≤。

相关文档
最新文档