一阶二阶自控原理实验报告

合集下载

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、学习在电子模拟机上建立典型环节系统模型的方法。

3、学习阶跃响应的测试方法。

二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。

记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC机一台。

3、数字万用表一块。

4、导线若干。

五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。

2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

分组:成绩:__ _______北京航空航天大学自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试学院专业方向班级学号学生姓名指导教师2014年11月目录一、实验目的 (1)二、实验内容 (1)三、实验原理 (1)四、实验设备 (2)五、实验步骤 (2)六、实验数据 (3)1.一阶系统实验数据及图形 (3)2.二阶系统实验数据及图形 (4)七、结论和误差分析 (6)结论: (6)误差分析: (7)八、收获与体会 (7)附录 (7)实验时间2014.11.1 同组同学 无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间Ts 。

三、实验原理1.一阶系统实验原理系统传递函数为:()()()1C S Ks R S TS φ==+模拟运算电路如图1所示:图1212R R Uo(s)K ==Ui(s)CSR +1Ts+1在实验中始终取R2=R1,则K=1,T=R2*C 取不同的时间常数T ,T=0.25s ,T=0.5s ,T=1s记录不同的时间常数下阶跃响应曲线,测量并记录其过渡时间Ts(Ts=3T)2.二阶系统实验原理其传递函数为:222()()()(2)nn nC SSR S S SωζωωΦ==++令1nω=弧度/秒,二阶系统模拟线路下图2所示:图2取R2*C1=1,R3*C2=1,则R4/R3=R4*C2=1/(2*ζ)及ζ=1/(2*R4*C2)理论值:3(0.05)sntζω≈∆=,%σ21100%eπζ--=⨯四、实验设备1. HHMN-1 型电子模拟机一台2. PC 机一台3. 数字式万用表一块。

自动控制原理实验报告

自动控制原理实验报告

实验一典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为,1,2时,输入幅值为的正向阶跃信号,理论上依次输出幅值为,,的反向阶跃信号。

实验中,输出信号依次为幅值为,,的反向阶跃信号,相对误差分别为1.8%,2.2%,0.2%.在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:〔1〕T=0.1(0.033)时,C=1μf(0.33μf),利用MATLAB ,模拟阶跃信号输入下的输出信号如图:与实验测得波形比较可知,实际与理论值较为吻合,理论上时的波形斜率近似为时的三倍,实际上为,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:K = R f /R 1,T = R f C,(1) 保持K = R f /R 1= 1不变,观测秒,秒〔既R 1 = 100K,C = 1μf ,μf 〕时的输出波形。

利用matlab 仿真得到理论波形如下:时t s 〔5%〕理论值为300ms,实际测得t s =400ms 相对误差为:〔400-300〕/300=33.3%,读数误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近。

时t s 〔5%〕理论值为30ms,实际测得t s =40ms 相对误差为:〔40-30〕/30=33.3% 由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值,相对误差为〔〕/2.28=7%与理论值较为接近(2) 保持T = R f s 不变,分别观测K = 1,2时的输出波形。

K=1时波形即为〔1〕中时波形K=2时,利用matlab 仿真得到如下结果:t s 〔5%〕理论值为300ms,实际测得t s =400ms相对误差为:〔400-300〕/300=33.3% 读数误差较大K 理论值为2,实验值, 相对误差为〔〕/2=5.7%if i o R RU U -=1TS K)s (R )s (C +-=与理论值较为接近。

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告

《自动控制》一二阶典型环节阶跃响应实验分析报告一、实验目的本实验旨在通过实际的一二阶典型环节阶跃响应实验,掌握自动控制理论中的基本概念和方法,并能够分析系统的动态响应特性。

二、实验原理1.一阶惯性环节:一阶惯性环节是工程实际中常见的系统模型,其传递函数为G(s)=K/(Ts+1),其中K为传递函数的增益,T为时间常数。

2.二阶惯性环节:二阶惯性环节是另一类常见的系统模型,其传递函数为G(s)=K/((Ts+1)(αTs+1)),其中K为传递函数的增益,T为时间常数,α为阻尼系数。

3.阶跃响应:阶跃响应是指给定一个单位阶跃输入,观察系统的输出过程。

根据系统的阶数不同,其响应形式也不同。

实验仪器:电动力控制实验台,控制箱,计算机等。

三、实验步骤1.将实验台上的一阶惯性环节模型接入控制箱和计算机,并调整增益和时间常数的初始值。

2.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

3.根据记录的数据,绘制一阶惯性环节的阶跃响应图像。

4.类似地,将实验台上的二阶惯性环节模型接入控制箱和计算机,并调整增益、时间常数和阻尼系数的初始值。

5.发送一个单位阶跃信号给控制器,观察实验台上的输出响应,并记录时间和输出值。

6.根据记录的数据,绘制二阶惯性环节的阶跃响应图像。

四、实验结果与分析1.一阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,随着时间的增加,输出逐渐趋于稳定。

根据实验数据,可以计算出一阶惯性环节的增益K和时间常数T的估计值。

2.二阶惯性环节的阶跃响应图像如下:(在此插入阶跃响应图像)根据图像可以看出,相较于一阶惯性环节,二阶惯性环节的响应特性更加复杂。

根据实验数据,可以计算出二阶惯性环节的增益K、时间常数T和阻尼系数α的估计值。

五、实验结论通过本实验,我们成功地进行了一二阶典型环节阶跃响应实验,并获得了实际的响应数据。

通过对实验数据的分析,我们得到了一阶惯性环节和二阶惯性环节的估计参数值。

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

自动控制原理实验报告实验一-一、二阶系统的电子模拟及时域响应的动态测试

分组:成绩:__ _______北京航空航天大学自动控制原理实验报告实验一一、二阶系统的电子模拟及时域响应的动态测试学院专业方向班级学号学生姓名指导教师2014年11月目录一、实验目的 (1)二、实验内容 (1)三、实验原理 (1)四、实验设备 (2)五、实验步骤 (2)六、实验数据 (3)1.一阶系统实验数据及图形 (3)2.二阶系统实验数据及图形 (4)七、结论和误差分析 (6)结论: (6)误差分析: (7)八、收获与体会 (7)附录 (7)实验时间2014.11.1 同组同学 无一、实验目的1.了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2.学习在电子模拟机上建立典型环节系统模型的方法。

3.学习阶跃响应的测试方法。

二、实验内容1.建立一阶系统的电子模型,观测并记录在不同时间常数T 时的阶跃响应曲线,并测定其过渡过程时间Ts 。

2.建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的阶跃响应曲线,并测定其超调量σ%及过渡过程时间Ts 。

三、实验原理1.一阶系统实验原理系统传递函数为:()()()1C S Ks R S TS φ==+模拟运算电路如图1所示:图1212R R Uo(s)K ==Ui(s)CSR +1Ts+1在实验中始终取R2=R1,则K=1,T=R2*C 取不同的时间常数T ,T=0.25s ,T=0.5s ,T=1s记录不同的时间常数下阶跃响应曲线,测量并记录其过渡时间Ts (Ts=3T )2.二阶系统实验原理 其传递函数为:222()()()(2)n n n C S S R S S S ωζωωΦ==++令1n ω=弧度/秒,二阶系统模拟线路下图2所示:图2取R2*C1=1,R3*C2=1,则R4/R3=R4*C2=1/(2*ζ)及ζ=1/(2*R4*C2)理论值:3(0.05)s nt ζω≈∆=,%σ100%e =⨯四、实验设备1. HHMN-1 型电子模拟机一台2. PC 机一台3. 数字式万用表一块。

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告班级自动化1204姓名焦雍堡学号12212153组员黄寅峰学号:12212124任课老师苗宇实验一经典环节及其阶跃响应1.各个环节的模拟电路图及其阶跃响应曲线(1)比例环节(2)惯性环节(3)积分环节(4)微分环节(5)比例微分环节2.由阶跃响应曲线计算出传递函数(1)惯性环节K=R2/R1=200K/100K=2 T=R2C=0.2G(S)=-2/(0.2S+1)由图可得,输入1000mv的阶跃信号,输出信号稳定在-2000mv 与理论值相符。

(2)积分环节T=RC=0.1G(S)=1/TS=10/s由图可得,R(S)=100/S,C(S)=1000/2S,与理论值相符。

实验二二阶系统阶跃响应1.画出二阶系统的模拟电路图,讨论经典二阶系统性能指标与ξ,nω的关系。

(1)R2=0,ξ=0,nω=10 rad/s(2)R2=50K,ξ=0.25,nω=10 rad/s(3)R2=100K,ξ=0.5,nω=10 rad/s(4)R2=150K,ξ=0.75,nω=10 rad/s(5)R2=200K,ξ=1,nω=10 rad/s(6)R2=400K,ξ=2,nω=10 rad/s(7)ξ=0.5,nω=100 rad/s2.不同ξ,n ω条件下的Mp 和ts 值。

实际测量值: n ωξMpTs (ms )10 rad/s 0 无 无穷 10 rad/s 0.25 41.1% 1098 10 rad/s 0.5 15.9% 665 10 rad/s 0.75 17.3% 333 10 rad/s 1 0 - 10 rad/s 2 0 - 100 rad/s0.515.3%73当ξ=0时,系统处于零阻尼状态,等幅振荡;当0<ξ<1时,系统处于欠阻尼状态,在相同自然角频率的情况下,通过改变ξ可以减小系统的响应时间并减少超调量,且在0.5<ξ<0.75存在最佳阻尼比。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

成绩
北京航空航天大学
自动控制原理实验报告
学院自动化科学与电气工程学院
专业方向电气工程及其自动化
班级120311
学号12031019
学生姓名毕森森
指导教师
自动控制与测试教学实验中心
实验一一、二阶系统的电子模拟及时域响应的动态测试
实验时间2014.10.28 实验编号29 同组同学无
一、实验目的
1. 了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2. 学习在电子模拟机上建立典型环节系统模型的方法。

3. 学习阶跃响应的测试方法。

二、实验内容
1. 建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2. 建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理
1.一阶系统:系统传递函数为:
模拟运算电路如图1- 1所示:
图 1- 1
由图 1-1得
在实验当中始终取R
2= R
1
,则K=1,T= R
2
C,取时间常数T分别为: 0.25、
0.5、1。

2.二阶系统:
其传递函数为:
令=1弧度/秒,则系统结构如图1-2所示:
图1-2
根据结构图,建立的二阶系统模拟线路如图1-3所示:
图1-3
取R 2C 1=1 ,R 3C 2 =1,则及ζ取不同的值ζ=0.25 , ζ=0.5 , ζ=1
四、实验设备
HHMN-1电子模拟机一台、PC 机一台、数字式万用表一块
五、实验步骤
1. 确定已断开电子模拟机的电源,按照实验说明书的条件和要求,根据计算的电阻电容值,搭接模拟线路;
2. 将系统输入端 与D/A1相连,将系统输出端 与A/D1相;
3. 检查线路正确后,模拟机可通电;
4. 双击桌面的“自控原理实验”图标后进入实验软件系统。

5. 在系统菜单中选择“项目”——“典型环节实验”;在弹出的对话框中阶跃信号幅值选1伏,单击按钮“硬件参数设置”,弹出“典型环节参数设置”对话框,采用默认值即可。

6. 单击“确定”,进行实验。

完成后检查实验结果,填表记录实验数据,抓图记录实验曲线。

六、实验结果
1、一阶系统。

012345678910
0.5
1
1.5
2
2.5

6- 2
图6- 3
图6- 4 2、二阶系统
0246
8101214161820
0.5
1
1.5
2
2.5
3
图6- 9 ξ=0.25
02468101214161820
0.5
1
1.5
2
2.5
图6- 10 ξ=0.5
02468101214161820
0.5
1
1.5
2
2.5
图6- 11 ξ=0.707
02468101214161820
0.5
1
1.5
2
2.5
图6- 12 ξ=1
七、结果分析
1、一阶系统实验结论: (1)、一阶系统单位阶跃响应是单调上升的曲线,其上升速度由时间常数τ唯一确定,τ越小,过渡过程的时间越短,τ越大,过渡过程时间越长。

(2)、由于,一阶系统的单位阶跃相应没有稳态误差,在图中表示为曲线最终与预期值重合。

2、二阶系统结论 (1)、平稳性:由响应曲线和超调量可以看出,阻尼比越大,超调量越小,阶跃响应的振荡倾向越弱,平稳性越好。

阻尼比越小,振荡倾向越强,平稳性越差。

(2)、快速性:由阶跃响应曲线和调节时间可以看出,过大,例如,值接近于1,系统响应迟钝,调节时间长,快速性差;过小,虽然相应的起始速度较快,但因为震荡强烈,衰减缓慢,调节时间亦长,快速性也不好。

由表中调节时间可以看出,当时,调节时间最小,快速性最好,为最佳阻尼比。

(3)、从图中可以看出,瞬态分量随着时间的增长减少。

对于实验中的二阶欠阻尼和临界阻尼情况,单位阶跃响应稳态误差为0.
八、收获、体会及建议
通过这次自控实验,我学习了解掌握了一阶和二阶的阶跃响应,形象化了对
自控原理的了解,有助于对自控原理的学习,还初步了解了MATLAB的强大的功能,激励促进我对MATLAB的进一步的学习。

总之自控实验使我受益匪浅,但也有一些小差错,由于对原理没有熟悉了解和对MATLAB的陌生,实验的不甚理想,总的来说,还算顺利。

相关文档
最新文档