高一物理-动量和能量综合试题例析培优
2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。
现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。
已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。
2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。
(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。
求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。
4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。
高中物理-电学中的动量和能量问题专题训练与解析

第2课时电学中的动量和能量问题高考命题点命题轨迹情境图电场和磁场中的动量20183卷21和能量问题18(3)21题电磁感应中的动量和能量问题例1(2019·湖北省4月份调研)如图1,在高度为H的竖直区域内分布着互相垂直的匀强电场和匀强磁场,电场方向水平向左;磁感应强度大小为B,方向垂直纸面向里.在该区域上方的某点A,将质量为m、电荷量为+q的小球,以某一初速度水平抛出,小球恰好在该区域做直线运动.已知重力加速度为g.图1(1)求小球平抛的初速度v0的大小;(2)若电场强度大小为E,求A点距该区域上边界的高度h;(3)若电场强度大小为E,令该小球所带电荷量为-q,以相同的初速度将其水平抛出,小球离开该区域时,速度方向竖直向下,求小球穿越该区域的时间.拓展训练1(2019·云南昭通市上学期期末)真空中存在电场强度为E1的匀强电场(未知),一质量为m、带正电的油滴,电荷量为q,在该电场中竖直向下做匀速直线运动,速度大小为v0,在油滴处于位置A时,将电场强度的大小突然增大到某值,但保持其方向不变,持续一段时间t1后,又突然将电场反向,但保持其大小不变;再持续同样一段时间后,油滴运动到B点,重力加速度大小为g,求:(1)电场强度E1的大小和方向;(2)油滴运动到B点时的速度大小.拓展训练2(2019·江西上饶市重点中学六校第一次联考)如图2所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=2 T.小球1带正电,小球2不带电,静止放置于固定的水平悬空支架上.小球1向右以v1=12m/s的水平速度与小球2正碰,碰后两小球粘在一起在竖直平面内做匀速圆周运动,两小球速度水平向左时离碰撞点的距离为2m.碰后两小球的比荷为4C/kg.(取g=10m/s2)图2(1)电场强度E的大小是多少?(2)两小球的质量之比m2m1是多少?例2(2019·山东泰安市第二轮复习质量检测)如图3所示,间距为L的足够长光滑平行金属导轨固定在同一水平面内,虚线MN右侧区域存在磁感应强度为B、方向竖直向下的匀强磁场.质量均为m、长度均为L、电阻均为R的导体棒a、b,垂直导轨放置且保持与导轨接触良好.开始导体棒b静止于与MN相距为x0处,导体棒a以水平速度v0从MN处进入磁场.不计导轨电阻,忽略因电流变化产生的电磁辐射,运动过程中导体棒a、b没有发生碰撞.求:图3(1)导体棒b中产生的内能;(2)导体棒a、b间的最小距离.拓展训练3(2019·福建龙岩市5月模拟)如图4为电磁驱动与阻尼模型,在水平面上有两根足够长的平行轨道PQ和MN,左端接有阻值为R的定值电阻,其间有垂直轨道平面的磁感应强度为B的匀强磁场,两轨道间距及磁场宽度均为L.质量为m的金属棒ab静置于导轨上,当磁场沿轨道向右运动的速度为v时,棒ab恰好滑动.棒运动过程始终在磁场范围内,并与轨道垂直且接触良好,轨道和棒电阻均不计,最大静摩擦力等于滑动摩擦力.图4(1)判断棒ab刚要滑动时棒中的感应电流方向,并求此时棒所受的摩擦力F f大小;(2)若磁场不动,将棒ab以水平初速度2v运动,经过时间t=mRB2L2停止运动,求棒ab运动位移x及回路中产生的焦耳热Q;(3)若t=0时棒ab静止,而磁场从静止开始以加速度a做匀加速运动,图5中关于棒ab运动的速度-时间图象哪个可能是正确的?请分析说明棒各阶段的运动情况.图5拓展训练4(2019·安徽蚌埠市第二次质检)如图6所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=1kg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5T,导轨的间距与导体棒的长度均为L=0.5m,导轨的半径r=0.5m,导体棒的电阻R=1Ω,其余电阻均不计,重力加速度g=10m/s2,不计空气阻力.图6(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16J,求导体棒第一次通过最低点时回路中的电功率.专题强化练(限时45分钟)1.(2019·陕西省第二次质检)如图1所示,一竖直放置的足够大金属板正前方O点固定一正点电荷Q,一表面绝缘的带正电小球(可视为质点且不影响Q的电场)从金属板的上端释放,由静止开始沿金属板下落先后运动到板面的A、B两位置,OB垂直于金属板,已知小球的质量不可忽略,金属板表面粗糙,则小球在运动过程中()图1A.小球可能一直做加速运动B.小球在A、B两点的电势能大小E p B>E p AC.小球在A、B两点的电场强度大小E B<E AD.小球受到合力的冲量一定为02.(2019·贵州省部分重点中学3月联考)如图2所示,正方形区域ABCD中有垂直于纸面向里的匀强磁场,M、N分别为AB、AD边的中点,一带正电的粒子(不计重力)以某一速度从M 点平行于AD边垂直磁场方向射入,并恰好从A点射出.现仅将磁场的磁感应强度大小变为原来的12,下列判断正确的是()图2A.粒子将从D点射出磁场B.粒子在磁场中运动的时间将变为原来的2倍C.磁场的磁感应强度变化前后,粒子在磁场中运动过程的动量变化大小之比为2∶1 D.若其他条件不变,继续减小磁场的磁感应强度,粒子可能从C点射出3.(多选)(2019·江西宜春市第一学期期末)如图3所示,固定的水平放置的平行导轨CD、EH 足够长,在导轨的左端用导线连接一电阻R,导轨间距为L,一质量为M、长为2L的金属棒放在导轨上,在平行于导轨的水平力F作用下以速度v向右匀速运动,运动过程中金属棒与导轨保持垂直,金属棒与导轨间的动摩擦因数为μ,整个装置处于竖直向下的匀强磁场中(图中未画出),磁场的磁感应强度大小为B,导轨单位长度的电阻为r,其余电阻不计,重力加速度为g.若在0时刻水平力的大小为F0,则在0~t时间内,以下说法正确的有()图3A.水平力F对金属棒的冲量大小F0tB.水平力和摩擦力的合力对金属棒的冲量为零C.合力对金属棒做的功为零D.若某时刻通过电阻R的电流为I,则此时水平力F的功率为(BIL+μMg)v 4.(2019·福建福州市期末)如图4所示,竖直平面MN的右侧空间存在着相互垂直水平向左的匀强电场和垂直纸面向里的匀强磁场,MN左侧的绝缘水平面光滑,右侧的绝缘水平面粗糙.质量为m的小物体A静止在MN左侧的水平面上,该小物体带负电,电荷量为-q(q> 0).质量为13的不带电的小物体B以速度v0冲向小物体A并发生弹性正碰,碰撞前后小物体A的电荷量保持不变.图4(1)求碰撞后小物体A的速度大小;(2)若小物体A与水平面间的动摩擦因数为μ,重力加速度为g,磁感应强度为B=3mgq v0,电场强度为E=7μmgq.小物体A从MN开始向右运动距离为L时速度达到最大.求小物体A的最大速度v m和此过程克服摩擦力所做的功W.5.(2019·湖南长沙、望城、浏阳、宁乡四个县市区3月调研)如图5所示,P1P2P3和Q1Q2Q3是相互平行且相距为d的光滑固定金属导轨,P1Q1为不计电阻的直导线且P1Q1⊥Q1Q2.P1P2、Q1Q2的倾角均为θ,P2P3、Q2Q3在同一水平面上,P2Q2⊥P2P3,整个轨道在方向竖直向上、磁感应强度大小为B的匀强磁场中,质量为m、接入电路的电阻为R的金属杆CD从斜轨道上某处静止释放,然后沿水平导轨滑动一段距离后停下.杆CD始终垂直导轨并与导轨保持良好接触,导轨电阻和空气阻力均不计,重力加速度大小为g,轨道倾斜段和水平段平滑连接且都足够长,求:图5(1)杆CD达到的最大速度大小;(2)杆CD在距P2Q2距离L处释放,滑到P2Q2处恰达到最大速度,则沿倾斜导轨下滑的时间Δt1及在水平轨道上滑行的最大距离s.6.(2019·湖南衡阳市第一次联考)如图6所示,ab、ef是固定在绝缘水平桌面上的平行光滑金属导轨,导轨足够长,导轨间距为d.在导轨ab、ef间放置一个阻值为R的金属导体棒PQ,其质量为m、长度恰好为d.另一质量为3m、长为d的金属棒MN也恰好能和导轨良好接触,起初金属棒MN静止于PQ棒右侧某位置,整个装置处于方向垂直桌面向下、磁感应强度大小为B的匀强磁场中.现有一质量为m、带电荷量为q的光滑绝缘小球在桌面上从O点(O 为导轨上的一点)以与导轨ef成60°角的方向斜向右方进入磁场,随后小球垂直地打在金属棒MN的中点,小球与金属棒MN的碰撞过程中无机械能损失,不计导轨间电场的影响,不计导轨和金属棒MN的电阻,两棒运动过程中不相碰,求:图6(1)小球在O点射入磁场时的初速度v0的大小;(2)金属棒PQ上产生的热量E和通过的电荷量Q;(3)在整个过程中金属棒MN比金属棒PQ多滑动的距离;(4)请通过计算说明小球不会与MN棒发生第二次碰撞.。
动量与能量部分习题分析与解答共23页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
13、遵守纪律的风气的培养,只有领 导者本 身在这 方面以 身作则 才能收 到成效 。—— 马卡连 柯 14、劳动者的组织性、纪律性、坚毅 精神以 及同全 世界劳 动者的 团结一 致,是 取得最 后胜利 的保证 。—— 列宁 摘自名言网
15、机会是不守纪律的。量与能量部分习题分析与解 答
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
高中物理-动量和能量专题训练与解析(一)

动量和能量专题限时训练1建议用时40分钟,实际用时________1.如图,长度x =5m 的粗糙水平面PQ 的左端固定一竖直挡板,右端Q 处与水平传送带平滑连接,传送带以一定速率v 逆时针转动,其上表面QM 间距离为L =4m ,MN 无限长,M 端与传送带平滑连接.物块A 和B 可视为质点,A 的质量m =1.5kg,B 的质量M =5.5kg.开始A 静止在P 处,B 静止在Q 处,现给A 一个向右的初速度v 0=8m/s ,A 运动一段时间后与B 发生弹性碰撞,设A 、B 与传送带和水平面PQ 、MN 间的动摩擦因数均为μ=0.15,A 与挡板的碰撞也无机械能损失.取重力加速度g =10m/s 2,求:(1)A 、B 碰撞后瞬间的速度大小;(2)若传送带的速率为v =4m/s ,试判断A 、B 能否再相遇,若能相遇,求出相遇的位置;若不能相遇,求它们最终相距多远.解析:(1)设A 与B 碰撞前的速度为v A ,由P 到Q 过程,由动能定理得:-μmgx =12mv 2A -12mv 20①A 与B 碰撞前后动量守恒,有mv A =mv A ′+Mv B ′②由能量守恒定律得:12mv 2A =12mv A ′2+12Mv B ′2③联立①②③式得v A ′=-4m/s ,v B ′=3m/s碰后A 、B 的速度大小分别为4m/s 、3m/s(2)设A 碰撞后运动的路程为s A ,由动能定理得:-μmgs A =0-12mv A ′2④s A =163m 所以A 与挡板碰撞后再运动s A ′=s A -x =13m ⑤设B 碰撞后向右运动的距离为s B ,则-μMgs B =0-12Mv B ′2⑥解得s B =3m<L ⑦故物块B 碰后不能滑上MN ,当速度减为0后,B 将在传送带的作用下反向加速运动,B 再次到达Q 处时的速度大小为3m/s.在水平面PQ 上,B 再运动s B ′=s B =3m 停止,s B ′+s A ′<5m ,所以A 、B 不能再次相遇.最终A 、B 的距离s AB =x -s A ′-s B ′=53m.答案:(1)4m/s 3m/s (2)不能相遇53m 2.如图所示,质量为6m 、长为L 的薄木板AB 放在光滑的平台上,木板B 端与台面右边缘齐平.B 端上放有质量为3m 且可视为质点的滑块C ,C 与木板之间的动摩擦因数为μ=13,质量为m 的小球用长为L 的细绳悬挂在平台右边缘正上方的O 点,细绳竖直时小球恰好与C 接触.现将小球向右拉至细绳水平并由静止释放,小球运动到最低点时细绳恰好断裂,小球与C 碰撞后反弹速率为碰前的一半.(1)求细绳能够承受的最大拉力;(2)若要使小球落在释放点的正下方P 点,平台高度应为多大;(3)通过计算判断C 能否从木板上掉下来.解析:(1)设小球运动到最低点的速率为v 0,小球向下摆动过程,由动能定理mgL =12mv 20得,v 0=2gL 小球在圆周最低点时拉力最大,由牛顿第二定律得:F T -mg =m v 20R解得:F T =3mg由牛顿第三定律可知,小球对细绳的拉力:F T ′=F T即细绳能够承受的最大拉力为:F T ′=3mg (2)小球碰撞后做平抛运动:竖直位移h =12gt 2水平分位移:L =v 02t 解得:h =L(3)小球与滑块C C 组成的系统动量守恒,设C 碰后速率为v 1,依题意有mv 0=m -v 023mv 1假设木板足够长,在C 与木板相对滑动直到相对静止过程中,设两者最终共同速率为v 2,由动量守恒得:3mv 1=(3m +6m )v 2由能量守恒得:12·3mv 21=12(3m +6m )v 22+μ·3mgs 联立解得:s =L 2由s <L 知,滑块C 不会从木板上掉下来.答案:(1)3mg (2)h =L (3)不能3.光滑水平面上有一质量m 车=1.0kg 的平板小车,车上静置A 、B 两物块。
动量和能量的综合问题-解析版

专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。
素养培优6 电磁感应中动力学、能量和动量的综合-2025版二轮复习物理

素养培优6电磁感应中动力学、能量和动量的综合动力学与能量观点在电磁感应中的应用1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
【典例1】(多选)(2024·吉林高考9题)如图,两条“”形的光滑平行金属导轨固定在绝缘水平面上,间距为L ,左、右两导轨面与水平面夹角均为30°,均处于竖直向上的匀强磁场中,磁感应强度大小分别为2B 和B 。
将有一定阻值的导体棒ab 、cd 放置在导轨上,同时由静止释放,两棒在下滑过程中始终与导轨垂直并接触良好。
ab 、cd 的质量分别为2m 和m ,长度均为L 。
导轨足够长且电阻不计,重力加速度大小为g ,两棒在下滑过程中()A .回路中的电流方向为abcdaB .abC .ab 与cd 加速度大小之比始终为2∶1D .两棒产生的电动势始终相等尝试解答【典例2】(2024·江苏震泽中学模拟)如图所示的是水平平行光滑导轨M 、N 和P 、Q ,M 、N 的间距为L ,P 、Q 的间距为2L 。
M 、N 上放有一导体棒ab ,ab 与导轨垂直,质量为m ,电阻为R 。
P 、Q 上放有一导体棒cd ,cd 也与导轨垂直,质量为2m ,电阻为2R 。
导轨电阻不计。
匀强磁场竖直穿过导轨平面,磁感应强度大小为B 。
初始两导体棒静止,设在极短时间内给ab 一个水平向左的速度v 0,使ab 向左运动,最后ab 和cd 的运动都达到稳定状态。
求:(1)刚开始运动的瞬间,ab 和cd 的加速度大小和方向;(2)稳定后ab 和cd 的速度大小;(3)整个过程中ab 产生的热量。
尝试解答动量观点在电磁感应中的应用角度1动量定理在电磁感应中的应用在导体单杆切割磁感线做变加速运动时,若运用牛顿运动定律和能量观点不能解决问题,可运用动量定理巧妙解决问题。
高中物理复习能量和动量经典习题例题含答案

专题研究二能量和动量清大师德教育研究院物理教研中心李相关知识链接恒力做功 W=FsCOS B咼考考点解功能量(重力做功、电场力做功)变力做功(弹力、机车牵引力、摩擦力、分子力做功等)考题重力做功W G=—△ E p 弹力做功 W FI=— A E pi 分子力做功WF2=—A E P2 电场力做功W F3=— A E p3动量台匕冃匕动能20KK上海4 ” 势能(重力势能动弹上海£ 性势能、子势能)20KK上海21动能定理工 W= A E K功能原理W其他=A E机械能守题__型A E P=选择题能量守,恒计算题A E选择题计算题功和能、动能定理勺冲量20K牟t大津理综・24 变力的冲量20KK力江苏「10 向心力、摩擦20KK仑上海1 力的冲量等)----- 20KK厂东1计算题冲量9A动量定理选择题动量动冲量、动动量的变化2(方向黑、吉力量定理线上的0KK向广东不在一条直线上的)上海工 I = A p、广西・23动量守恒计算题A P = — A F计算题p i+p2=p i /计算题能量和动量的综合应用机械能守恒定律动量守恒定律动量和能量的综合应•420KK江苏1520KK上海920KK北京理综2320KK广东620KK河南河北2420KK天津理综21计算题选择题计算题选择题计算题选择题计算题选择题20KK江苏19 计算题20KK江苏20 计算题20KK江苏18 计算题20KK广东17 计算题20KK全国理综-25 计算题20KK北京理综-24 计算题20KK江苏18 计算题咼考命题思路——和能的关系及动能定理是历年高考的热点,近几年来注重考查对功的概念的理解及用功能关系研究物理过程的方法,由于所涉及的物理过程常常较为复杂,对学生的能力要求较高,因此这类问题难度较大。
例如20KK年江苏物理卷的第10题,要求学生能深刻理解功的概念,灵活地将变力分解。
2 .动量、冲量及动量定理近年来单独出题不多,选择题中常考查对动量和冲量的概念及动量变化矢量性的理解。
动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0
①
设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J
③
⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。
或
v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动量和能量综合试题例析导言处理力学问题的基本思路有三种:一是牛顿定律,二是动量关系,三是能量关系.若考查有关物理量的瞬时对应关系,须应用牛顿定律,若考查一个过程,三种方法都有可能,但方法不同处理问题的难易、繁简程度可能有很大区别.若研究对象为一个系统应优先考虑两大守恒定律, 若研究对象为单一物体,可优先考虑两个定理,特别涉及时间问题时应优先考虑动量定理, 特别涉及力和位移问题时应优先考虑动能定理,而涉及摩擦生热是要联系能量守恒定律,有时对问题的过程不予细究,这正是它们的方便之处.物理学家在研究打击和碰撞这类问题时引入了动量的概念。
研究与动量有关的规律确立了动量守恒定律,应用有关动量的知识,系统在相互作用过程中,同时也会伴随着不同形式的能量的相互转化。
动量守恒和能量相结合的综合计算题,要求较高,值得注意。
如果一个系统所受外力的矢量和为零,则该系统为动量守恒系统。
而系统内部的物体由于彼此间的相互作用,动量会有显著的变化,这里涉及到一个内力做功和系统内物体动能变化的问题,即动量守恒系统的功能问题。
我们常把动量守恒系统中物体间的相互作用过程仍视为“碰撞”问题来处理,亦即广义的碰撞问题。
如弹性碰撞可以涉及到动能和弹性势能的相互转化;非弹性碰撞可以涉及到动能和内能的相互转化,等等。
那么,通过动量守恒和能量关系,就可以顺利达到解题目的。
这一节课我们就来学习这方面的知识。
例1、如图,两滑块A、B的质量分别为m1和m2,置于光滑的水平面上,A、B间用一劲度系数为K的弹簧相连。
开始时两滑块静止,弹簧为原长。
一质量为m的子弹以速度V0沿弹簧长度方向射入滑块A并留在其中。
试求:(1)弹簧的最大压缩长度;(已知弹性势能公式E P=(1/2)KX2,其中K为劲度系数、X为弹簧的形变量) ;(2)滑块B相对于地面的最大速度和最小速度。
【解】(1)由于子弹射入滑块A的过程极短,可以认为弹簧的长度尚未发生变化,滑块A不受弹力作用。
取子弹和滑块A为系统,因子弹射入的过程为完全非弹性碰撞,子弹射入A前后物体系统动量守恒,设子弹射入后A的速度为V,1有:mV0=(m+m1)V1(1)得:(1) 取子弹、两滑块A、B和弹簧为物体系统,在子弹进入A后的运动过程中,系统动量守恒,注意这里有弹力做功,系统的部分动能将转化为弹性势能,设弹簧的最大压缩长度为x,此时两滑块具有的相同速度为V,依前文中提到的解题策略有:(m+m1)V1=(m+m1+m 2)V(2)(3)由(1)、(2)、(3)式解得:(2)子弹射入滑块A后,整个系统向右作整体运动,另外须注意到A、B之间还有相对振动,B相对于地面的速度应是这两种运动速度的叠加,当弹性势能为零时,滑块B相对地面有极值速度。
若B向左振动,与向右的整体速度叠加后有最小速度;若B向右振动,与向右的整体速度叠加后有最大速度。
设极值速度为V3,对应的A的速度为V2,依前文提到的解题策略有:mV0=(m+m1)V2+m2V3(4)(5)由(1)、(4)、(5)式得:V3[(m+m1+m2)V3-2mV0]=0解得:V3=0 (最小速度)(最大速度)说明:一、本题中的所有速度都是相对地面这一参照物而言的。
二、(1/2)mv02与(1/2)(m+m1)V12、它们的差值即系统增加的内能。
三、由前文解题策略易得系统增加的内能为:例2、如图,光滑水平面上有A、B两辆小车,C球用0.5m长的细线悬挂在A车的支架上,已知mA=m B=1kg,m C=0.5kg。
开始时B车静止,A车以V0=4m/s的速度驶向B车并与其正碰后粘在一起。
若碰撞时间极短且不计空气阻力,g取10m/s2,求C球摆起的最大高度。
【解】由于A、B碰撞过程极短,C球尚未开始摆动,故对该过程依前文解题策略有:m A V0=(m A+m B)V1(1)E内=(2)对A、B、C组成的系统,图示状态为初始状态,C球摆起有最大高度时,A、B、C有共同速度,该状态为终了状态,这个过程同样依解题策略处理有:(m A +m C )V 0=(m A +m B +m C )V 2 (3)(4)由上述方程分别所求出A、B刚粘合在一起的速度V1=2m /s ,E内=4J ,系统最后的共同速度V2=2.4m /s ,最后求得小球C摆起的最大高度h=0.16m 。
例3、质量为m 的木块在质量为M 的长木板中央,木块与长木板间的动摩擦因数为μ,木块和长木板一起放在光滑水平面上,并以速度v 向右运动。
为了使长木板能停在水平面上,可以在木块上作用一时间极短的冲量。
试求:(1)要使木块和长木板都停下来,作用在木块上水平冲量的大小和方向如何?(2)木块受到冲量后,瞬间获得的速度为多大?方向如何?(3)长木板的长度要满足什么条件才行?【解】(1)水平冲量的大小为:()I M m v =+(1分)水平冲量的方向向左(1分)(2)以木块为研究对象:取向左为正方向,则:()()I M m v mv mv m =+=--'(2分) ∴=v M m v m '(2分) (3)根据能的转化与守恒定律得:μmg L mv Mv m 21212022=+-'(2分) ()∴=+L M M m v m g 22μ(2分) 即木板的长度要满足:()L M M m v m g ≥+22μ综上所述,解决动量守恒系统的功能问题,其解题的策略应为:一、分析系统受力条件,建立系统的动量守恒定律方程。
二、根据系统内的能量变化的特点建立系统的能量方程三、建立该策略的指导思想即借助于系统的动能变化来表现内力做功。
这类问题十分广泛,不只在力学中多见,在电学、原子物理学中亦会碰到。
在动量守恒系统的功能关系中,相互作用的内力可能是恒力,但多数情况下内力为变力,有时其变化规律可能较复杂,所以我们可以由系统动能的变化这个结果来了解内力做功的影响。
相互作用的内力不仅可以变化复杂,力的性质也可以多种多样,诸如弹簧的弹力、滑动摩擦力、分子力、电场力、磁力等等,与其相对应的能量则如弹性势能、内能、分子势能、电势能、磁场能(闭合回路中的电能)等等。
因此,若我们能仔细分析系统中相互作用的内力的性质,也就可能在题设条件内建立起系统的动能和某种性质的内力相对应的能之间相互转化的能量关系。
下面我们一起来解决以下几个相关习题。
1、如图,在光滑绝缘的长直轨道上有A、B两个带同种电荷小球,其质量分别为m1、m2。
小球A以水平速度V0沿轨道向右冲向静止的B球,求最后两球最近时(A、B两球不相碰)系统电势能的变化。
2、如图所示,光滑的水平面上有质量为M的滑板,其中AB部分为光滑的1/4圆周,半径为r,BC水平但不光滑,长为。
一可视为质点的质量为m的物块,从A点由静止释放,最后滑到C点静止,求物块与BC的动摩擦因数。
3、如图所示, 在高为h的光滑平台上放一个质量为m2的小球, 另一个质量为m1的球沿光滑弧形轨道从距平台高为h处由静止开始下滑, 滑至平台上与球m2发生正碰, 若m1=m2, 求小球m2最终落点距平台边缘水平距离的取值范围.4、如图所示,A、B是位于水平桌面上的两质量相等的木块,离墙壁的距离分别为L1和L2,与桌面之间的滑动摩擦系数分别为μA和μB,今给A以某一初速度,使之从桌面的右端向左运动,假定A、B之间,B与墙间的碰撞时间都很短,且碰撞中总动能无损失,若要使木块A最后不从桌面上掉下来,则A的初速度最大不能超过______。
AB5、如图在光滑的水平台上静止着一块长50cm,质量为1kg的木板,板的左端静止着一块质量为1千克的小铜块(可视为质点),一颗质量为10g的子弹以200m/s 的速度射向铜块,碰后以100m/s速度弹回。
问铜块和木板间的摩擦系数至少是多少时铜块才不会从板的右端滑落。
(g取10m/s2 )6、有两块大小不同的圆形薄板(厚度不计), 质量分别为M和m, 半径分别为R 和r, 两板之间用一根长为0.4m的轻绳相连接. 开始时, 两板水平放置并叠合在一起, 在其正下方0.2m处有一固定支架C, 支架上有一半径为R /( r< R/<R)的圆孔, 圆孔与两薄板的中心均在同一竖直线上, 如图所示, 让两个圆形薄板自由落下, 落到固定支架上, 大板与支架发生没有机械能损失的碰撞, 碰撞后两板即分离, 直到轻绳绷紧, 在轻绳绷紧瞬间, 两薄板具有共同速度V F , 问:(1) 若M=m, 则V F多大?(2) 若M/m=k, 试讨论V F的方向与k的关系. (g取10m/s2)7、如图所示,小球A从半径为R=0.8m的1/4光滑圆弧轨道的上端点以v0=3m/s的初速度开始滑下,到达光滑水平面上以后,与静止于该水平面上的钢块B发生碰撞,碰撞后小球A被反向弹回,沿原路进入轨道运动恰能上升到它下滑时的出发点(此时速度为零)。
设A、B碰撞机械能不损失,求A和B的质量之比是多少?8、如图,有光滑圆弧轨道的小车静止在光滑水平面上,其质量为M 。
一质量为m 的小球以水平速度V 0沿轨道的水平部分冲上小车,求小球沿圆弧形轨道上升到最大高度的过程中圆弧形轨道对小球的弹力所做的功。
9、如图6—5—5所示,一质量为M ,长为L 的长方形木板B 放在光滑的水平地面上,在其右端放一质量为m 的小木块m <M 。
现以地面为参照系,给A 和B以大小相等方向相反的初速度(如图),使A 开始向左运动、B 开始向右运动,但最后A 刚好没有滑离B 板。
以地面为参照系,则求解下例两问:(1)若已知A 和B 的初速度大小为v0,求它们最后的速度的大小和方向。
(2)若初速度的大小未知,求小木块A 向左运动到达的最远处(从地面上看)离出发点的距离。
10、(1995年全国高考)如图所示,一排人站在沿x 轴的水平轨道旁,原点O 两侧的人的序号都记为n (n=1,2,3……).每人只有一个沙袋,x >0一侧的每个沙袋质量为m=14 kg ,x <0一侧的每个沙袋质量为m ′=10 kg.一质量为M=48 kg 的小车以某初速度从原点出发向正x 方向滑行.不计轨道阻力.当车每经过一人身旁时,此人就把沙袋以水平速度u 朝与车速相反的方向沿车面扔到车上,u 的大小等于扔此袋之前的瞬间车速大小的2n 倍(n 是此人的序号数).问:(1)空车出发后,车上堆积了几个沙袋时车就反向滑行?(2)车上最终有大小沙袋共多少个?H M V 0 m动量和能量综合试题例析(参考答案)1、 m 1m 2V 02/2(m 1+m 2)2、 r /L3、 (h<s<2h )4、 5、0.456、 (1) 1m/s, 方向向下; (2) k>3, V F 方向向上; k =3,V F =0; k<3, V F 方向向下。