第一章流体力学
第1章流体力学与计算流体力学基础

第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。
计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。
流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。
1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。
若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。
由上式可知,密度的单位是kg/m 3。
对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。
各种流体的具体密度值可查阅相关文献。
流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。
(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。
流体的重度单位为3N /m 。
(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。
(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。
流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。
凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。
例如,溶化的沥青、糖浆等流体均属于非牛顿流体。
流体力学 - 第一章流体属性及静力学

1
第一章
流体属性及静力学
§1-1 流体定义及连续介质假定 §1-2 流体的密度、重度和粘性 §1-3 流体的其他属性 §1-4 作用于流体上的力 §1-5 流体静压力特性及静止流体中 压力变化规律 §1-6 静止流体作用在壁面上的力
第一章 流体属性及静力学
2
重点:连续介质模型,流体的粘性, 作用于流体上的力,静压力的特性,
第一章 流体属性及静力学
31
外力:周围物体对其作用力 。包括周 围流体和固体的作用力 。 外力又可分为: 表面力:表面压力、表面粘性力。自由 面上还有表面张力 ——是一种特殊类型的 表面力 ,液体内分子对表面分子的吸引。 质量力(体积力 ):重力、惯性力、磁场 力等等。
第一章 流体属性及静力学
32
1. 流体的压缩性
如果温度不变,流体的体积随压强增加 而缩小,这种特性称为流体的压缩性,通 常用体积压缩系数 p 来表示。 p 指的是在温度不变时,压强增加一个 单位所引起的流体体积相对缩小量,即:
p
1 dV V dp
第一章 流体属性及静力学
28
流体体积压缩系数的倒数就是流体的体积 弹性模量E。它指的是流体的单位体积相对变 化所需的压强增量,即:
第一章 流体属性及静力学
25
粘性流体(viscous fluid):考虑粘性影响。 理想流体(ideal fluid):不考虑粘性影响。 粘性流体与理想流体的主要差别如下: (1)流体运动时,粘性流体相互接触的流体 层之间有剪切应力作用,而理想流体没有; (2)粘性流体附着于固体表面,即在固体表 面上其流速与固体的速度相同,而理想流体在 固体表面上发生相对滑移。
第一章 流体属性及静力学
化工原理第一章流体力学基础

第一章 流体力学基础
m GA uA
17/37
1.3.1 基本概念
三、粘性——牛顿粘性定律
y x
v
内部存在内摩擦力或粘滞力
v=0
内摩擦力产生的原 因还可以从动量传 递角度加以理解:
v
单位面积上的内摩擦力,N m2
dv x
dy
动力粘度 简称粘度
速度梯度
----------------牛顿粘性定律
(2)双液柱压差计
p1
1略小于2
z1
p1 p2 2 1 gR
p1
R
p2
R
p2
1
z1
R 2
0
倾斜式压差计
浙江大学本科生课程 化工原理
第一章 流体力学基础
读数放大
14/14
幻灯片2目录
1.3 流体流动的基本方程 1.3.1 基本概念 1.3.2 质量衡算方程 1.3.3 运动方程 一、作用在流体上的力 二、运动方程 三、N-S方程 四、欧拉方程 五、不可压缩流体稳定层流时的N-S 方程若干解
v x v y vz 0
t x
y
z
t
vx
x
vy
y
vz
z
v x x
v y y
v z z
0
D
Dt
v x x
v y y
v z z
0
-------连续性方程微分式
若流体不可压缩,则D/Dt=0
v x v y v z 0 x y z
浙江大学本科生课程 化工原理
第一章 流体力学基础
dy
N m2 ms
Ns m2
Pa s
m
1Pa s 10P 1000cP
第一章流体力学基本概念

分别运动至A’,B’,C’,D’点,则有
A
B
A'
B'
udt
E D D D A A (u d)d u u t d dtudt
图1-2 速度梯度
由于
du ED
dt
因此得速度梯度 duED tgd d
dy dydt dt dt
可以看出dθ为矩形ABCD在dt时间后剪切变形角度,这就表明速度梯度实质上就 是流体运动时剪切变形角速度
•第一章流体力学基本概念
随着科学技术的不断进步,计算机的发展和应用,流体力学的研究领域和应用范 围将不断加深和扩大。从总的发展趋势来看,随着工业应用日益扩大,生产技术 飞速发展,不仅可以推动人们对流动现象深入了解,为科学研究提供丰富的课题 内容,而且也为验证已有的理论、假设和关系提供机会。理论和实践密切结合, 科学研究和工业应用相互促进,必将推动本学科逐步成熟并趋于完善。
第一章 流体力学基本概念
第一节 流体力学的发展、应用及其研究方法 第二节 流体的特征和连续介质假设 第三节 流体的主要物理性质及分类 第四节 作用在流体上的力
•第一章流体力学基本概念
第一节 流体力学的发展、应用及其研究方法
一、流体力学发展简史
流体力学是研究流体的平衡及运动规律,流体与固体之间的相互作 用规律,以及研究流体的机械运动与其他形式的运动(如热运动、化学 运动等)之间的相互作用规律的一门学科。 流体力学属于力学范畴,是 力学的一个重要分支。其发展和数学、普通力学的发展密不可分。流体 力学起源于阿基米德(Archimedes,公元前278~公元前212)对浮力的 研究。
流体的压缩性及相应的体积弹性模量是随流体的种类、温度和压力而变化 的。当压缩性对所研究的流动影响不大,可以忽略不计时,这种流动成为不可 压缩流动,反之称为可压缩流动。通常,液体的压缩性不大,所以工程上一般 不考虑液体的压缩性,把液体当作不可压缩流体来处理。当然,研究一个具体 流动问题时,是否考虑压缩性的影响不仅取决于流体是气体还是液体,而更主 要是由具体条件来决定。
第一章 流体力学的基本概念

当i j 时 当i j 时
(b)];2)转动,使正方形绕4轴转动,直至对角线42与
42重合[图1-1(c)],则其转角为242;3)变形,剪切 正方形1234,并拉伸42对角线,使2与2重合[图1-1 (d)]。由此可见,这种流线都是直线的简单流动,也还 是由平动、转动、变形这三种运动形式复合而成的。
分析一般情况下流体运动的分解
ai ei a1e1 a2e2 a3e3 ax i a y j az k a
ei e1 e2 e3 i j k xi x1 x2 x3 x y z
描述流体运动的两种方法
速度分解定理
变形速度张量
应力张量
本构方程 漩涡运动的基本概念
第一节 描述流体运动的两种方法
一、拉格朗日法
拉格朗日法是从分析各个流体质点的运动状态着手来研究整个流场的流体 运动的。该方法的基本思想是:从某个时刻开始跟踪每一个流体质点,记 录这些质点的位置、速度、加速度及其它物理参数的变化。这种方法是离 散的质点运动描述方法在流体力学中的推广。该方法的分析公式为
r a, b, c, t t
,
2 r a , b, c , t a t 2
p p a, b, c, t ,
T T a, b, c, t ,
a, b, c, t
拉格朗日法初看容易理解,但就某些特定问题来求解方程是很困难的。
b1 b3 b3 b1 b1 b2 b2 b2 b3 a1 a2 a3 a2 a3 a2 a3 e1 a1 e2 a1 e3 x2 x3 x2 x3 x2 x3 x1 x1 x1
第一章 流体力学基础知识

物质导数表示流体微团通过点1时密度的瞬时变化率
上式右端第一项反映流场中静止一点密度的瞬时振荡
D V Dt t
五.作用在流体微团上的力 流体静平衡方程
• 表面力:相邻流体或物体作用于所研 究流体团块外表面,大小与流体团块 表面积成正比的接触力。
• 彻体力:外力场作用于流体微团质量 中心,大小与微团质量成正比的非接 触力。
N ∞ =法向力=合力在垂直于弦线方向分力;A∞ =轴向力=合力在平行于弦线方向分力;
dNu pucos dsu usin dsu dAu pusin dsu ucos dsu
dNl plcos dsl lsin dsl dAl pusin dsl lcos dsl
M z xcp N
xcp
M z N
由图中可以看出, N会产生一个关于前缘的负力矩(使机翼低头),故上式中含有负号。 Xcp定义为翼型压力中心,是翼型上气动力合力作用线与弦线的交点。 当合力作用在这个点上时,产生与分布载荷相同的效果。 为了确定分布载荷产生的气动力-气动力矩系统,最终的力系可以作用在物体的任何处,只要同 时给出关于该点的力矩值。
这种流动称为连续流。连续流流过的空间称为流场。
• 流体微团:想象流场中有一个个小的流体团,体积为dv。宏观上足够小,但其内部含有足够多的分 子,依然可以视为连续介质。在流场中运动,流体质量保持不变。
• 控制体:流场中的有限封闭区域。固定在流场中,体积形状保持不变。
• 在连续介质前提下,可以讨论介质内部某一几何点的密度
围绕点P划取一块微小空间,容积为ΔV,所包含介质质量Δm,则该空间内平均密度: = m
取极限ΔV→0,此极限值定义为P点介质密度: = lim m
第一章 流体力学的基础知识

u P u Z1 Z2 2g 2g P
假设从1—1断面到2—2断面流动过程中损失为h, 则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
2 1
2 2
P
第一章 流体力学的基础知识
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高
单体面积上流体的静压力称为流体的静压强。
若流体的密度为ρ,则液柱高度h与压力p的关系 为:
p=ρgh
第一章 流体力学的基础知识
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强
以绝对真空为基准测得的压力称为绝对压力,它是流 体的真实压力;以大气压为基准测得的压力称为表压 或真空度、相对压力,它是在把大气压强视为零压强 的基础上得出来的。
第一章 流体力学的基础知识
1.3 流体动力学基础
(3) 射流
流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
第一章 流体力学的基础知识
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
第一章 流体力学的基础知识
1.1 流体主要的力学性质
质量密度与重量密度的关系为:
γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性
(完整版)流体力学 第一章 流体力学绪论

第一章绪论§1—1流体力学及其任务1、流体力学的任务:研究流体的宏观平衡、宏观机械运动规律及其在工程实际中的应用的一门学科。
研究对象:流体,包括液体和气体。
2、流体力学定义:研究流体平衡和运动的力学规律、流体与固体之间的相互作用及其在工程技术中的应用.3、研究对象:流体(包括气体和液体)。
4、特性:•流动(flow)性,流体在一个微小的剪切力作用下能够连续不断地变形,只有在外力停止作用后,变形才能停止。
•液体具有自由(free surface)表面,不能承受拉力承受剪切力( shear stress)。
•气体不能承受拉力,静止时不能承受剪切力,具有明显的压缩性,不具有一定的体积,可充满整个容器。
流体作为物质的一种基本形态,必须遵循自然界一切物质运动的普遍,如牛顿的力学定律、质量守恒定律和能量守恒定律等。
5、易流动性:处于静止状态的流体不能承受剪切力,即使在很小的剪切力的作用下也将发生连续不断的变形,直到剪切力消失为止。
这也是它便于用管道进行输送,适宜于做供热、制冷等工作介质的主要原因.流体也不能承受拉力,它只能承受压力.利用蒸汽压力推动气轮机来发电,利用液压、气压传动各种机械等,都是流体抗压能力和易流动性的应用.没有固定的形状,取决于约束边界形状,不同的边界必将产生不同的流动。
6、流体的连续介质模型流体微团——是使流体具有宏观特性的允许的最小体积。
这样的微团,称为流体质点。
流体微团:宏观上足够大,微观上足够小。
流体的连续介质模型为:流体是由连续分布的流体质点所组成,每一空间点都被确定的流体质点所占据,其中没有间隙,流体的任一物理量可以表达成空间坐标及时间的连续函数,而且是单值连续可微函数。
7流体力学应用:航空、造船、机械、冶金、建筑、水利、化工、石油输送、环境保护、交通运输等等也都遇到不少流体力学问题。
例如,结构工程:钢结构,钢混结构等.船舶结构;梁结构等要考虑风致振动以及水动力问题;海洋工程如石油钻井平台防波堤受到的外力除了风的作用力还有波浪、潮夕的作用力等,高层建筑的设计要考虑抗风能力;船闸的设计直接与水动力有关等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体力学的西方史
科勒布茹克(C.F.Colebrook)在1939年发表的论文中,提出
了把紊流光滑管区和紊流粗糙管区联系在一起的过渡区 阻力系数计算公式。
莫迪(L.F.Moody)在1944年发表的论文中,给出了他绘
制的实用管道的当量糙粒阻力系数图--莫迪图。至此, 有压管流的水力计算已渐趋成熟。
真州船闸
北宋(960-1126)时期,在运河上修建的真州船闸与十四 世纪末荷兰的同类船闸相比,约早三百多年。
潘季顺
明朝的水利家潘季顺(1521-1595)提出了“筑堤防溢, 建坝减水,以堤束水,以水攻沙”和“借清刷黄”的治黄 原则,并著有《两河管见》、《两河经略》和《河防一 揽》。
流 量
清朝雍正年间,何梦瑶在《算迪》一书中提出流量等于 过水断面面积乘以断面平均流速的计算方法。
信天翁滑翔
应用广泛已派生出很多新的分支:
电磁流体力学、生物流体力学 化学流体力学、地球流体力学 高温气体动力学、非牛顿流体力学 爆炸力学、流变学、计算流体力学等
第三节 流体的定义及特征
流体 能够流动的物质叫流体 在任何微小的剪切力的作用下都能够发生 连 续变形的物质称为流体。包括---气体、液体。
理论,解释了阻力产生的机制。以后又针对 航空技术和其他工程技术中出现的紊流边界 层,提出混合长度理论。1918-1919年间, 论述了大展弦比的有限翼展机翼理论,对现 代航空工业的发展作出了重要的贡献。 卡 门(T.von Kármán,1881-1963)在19111912年连续发表的论文中,提出了分析带旋 涡尾流及其所产生的阻力的理论,人们称这 种尾涡的排列为卡门涡街。在1930年的论文 中,提出了计算紊流粗糙管阻力系数的理论 公式。嗣后,在紊流边界层理论、超声速空 气动力学、火箭及喷气技术等方面都有不少 贡献。
流体力学的西方史
阿基米德(Archimedes,公元前287-212)
欧美诸国历史上有记载的最早 从事流体力学现象研究的是古希腊 学者阿基米德在公元前250年发表 学术论文《论浮体》,第一个阐明 了相对密度的概念,发现了物体在 流体中所受浮力的基本原理──阿 基米德原理。
流体力学的西方史
列奥纳德.达.芬奇(Leonardo.da.Vinci,1452-1519)
流体力学在中国
钱学森
钱学森(1911-)浙江省杭州市人, 他在 火箭、导弹、航天器的总体、动力、制导、 气动力、结构、材料、计算机、质量控制 和科技管理等领域的丰富知识,为中国火 箭导弹和航天事业的创建与发展作出了杰 出的贡献。1957年获中国科学院自然科学 一等奖,1979年获美国加州理工学院杰出 校友奖,1985年获国家科技进步奖特等奖。 1989年获小罗克维尔奖章和世界级科学与 工程名人称号,1991年被国务院、中央军 委授予“国家杰出贡献科学家”荣誉称号 和一级英模奖章。
托里析利(E.Torricelli,1608-1647)论证了孔口出流的基本规律。
流体力学的西方史
帕斯卡(B.Pascal,1623-1662)
提出了密闭流体能传递压强的原数学家、物理学家、天文学家和自 然哲学家。1642年12月25日生于英格兰林肯郡格兰 瑟姆附近的沃尔索普村,1727年3月20日在伦敦病 逝。牛顿在科学上最卓越的贡献是微积分和经典力 学的创建。牛顿的成就,恩格斯在《英国状况十八 世纪》中概括得最为完整:"牛顿由于发明了万有引 力定律而创立了科学的天文学,由于进行了光的分 解而创立了科学的光学,由于创立了二项式定理和 无限理论而创立了科学的数学,由于认识了力的本 性而创立了科学的力学"。
从1906年起,发表了《论依附涡流》等论文, 找到了翼型升力和绕翼型的环流之间的关系, 建立了二维升力理论的数学基础。他还研究 过螺旋桨的涡流理论以及低速翼型和螺旋桨 桨叶剖面等。他的研究成果,对空气动力学 的理论和实验研究都有重要贡献,为近代高 效能飞机设计奠定了基础。
流体力学的西方史
普朗特(L.Prandtl,1875-1953)建立了边界层
工程流体力学
第一章 绪 论
课程安排
学时数: 56(理论课) 课程性质:技术基础课 教 材:孔 珑《工程流体力学》第三版高等教育出版社 2007.02
参考书:杜广生《工程流体力学》中国电力出版社
孔 珑《流体力学》Ⅰ高等教育出版社 2003.9
孔 珑《流体力学》Ⅱ高等教育出版社 2003.9
陈卓如《工程流体力学》第二版 高等教育出版社 2004.1
流体力学的西方史 弗劳德(W.Froude,1810-1879)对船舶阻力和摇摆的研究颇 有贡献,他提出了船模试验的相似准则数--弗劳德数,建立了 现代船模试验技术的基础。 亥姆霍兹(H.von Helmholtz,1821-1894)和基尔霍夫 (G.R.Kirchhoff,1824-1887)对旋涡运动和分离流动进行了大 量的理论分析和实验研究,提出了表征旋涡基本性质的旋涡 定理、带射流的物体绕流阻力等学术成就。
• 气体无一定形状和体积。
• 就易变形性而言,液体与气体属于同类。
流体的易变形性: 在受到剪切力持续作用时,固体的变形一般是微小的(如 金属)或有限的(如塑料),但流体却能产生很大的甚至无限大 (只作用时间无限长)的变形。
第三节 流体的定义及特征
当剪切力停止作用后,固体变形能恢复或部分恢复, 流体则不作任何恢复。 固体内的切应力由剪切变形量(位移)决定,而流体内 的切应力与变形量无关,由变形速度(切变率)决定。 任意改变均质流体微元排列次序,不影 响它的宏观物理性质;任意改变固体微元 的排列无疑将它彻底破坏。
1744年提出了达朗伯疑题(又称达朗伯佯谬),即在 理想流体中运动的物体既没有升力也没有阻力。从反面说 明了理想流体假定的局限性。
拉格朗日(grange,1736-1813)
提出了新的流体动力学微分方 程,使流体动力学的解析方法有了 进一步发展。严格地论证了速度势 的存在,并提出了流函数的概念, 为应用复变函数去解析流体定常的 和非定常的平面无旋运动开辟了道 路。
流体力学在中国
周培源( 1902-1993)
吴仲华(Wu Zhonghua)
1902年8月28日出生,江苏宜兴人。 理论学家、流体力学家主要从事物理学 的基础理论中难度最大的两个方面即爱 因斯坦广义相对论引力论和流体力学中 的湍流理论的研究与教学并取得出色成 果。
在1952年发表的《在轴流式、 径流式和 混流式亚声速和超声速叶轮机械中的三元流 普遍理论》和在1975年发表的《使用非正 交曲线坐标的叶轮机械三元流动的基本方程 及其解法》两篇论文中所建立的叶轮机械三 元流理论,至今仍是国内外许多优良叶轮机 械设计计算的主要依据。
流体力学的西方史
伯努利(D.Bernoulli,1700-1782) 瑞士科学家
在1738年出版的名著《流体 动力学》中,建立了流体位势 能、压强势能和动能之间的能 量转换关系──伯努利方程。 在此历史阶段,诸学者的工作 奠定了流体静力学的基础,促 进了流体动力学的发展。
流体力学的西方史
欧 拉(L.Euler,1707-1783)
流体力学的西方史
瑞 利(L.J.W.Reyleigh,1842-1919英国)在相似原
理的基础上,提出了实验研究的量纲分析法 中的一种方法--瑞利法。 库 塔(M.W.Kutta,1867-1944)1902年就曾提 出过绕流物体上的升力理论,但没有在通行 的刊物上发表。
儒科夫斯基(Н.Е.Жуковский,1847-1921)
流体力学的西方史 布拉休斯(H.Blasius)在1913年发表的论文中,提出了计算 紊流光滑管阻力系数的经验公式。 伯金汉(E.Buckingham)在1914年发表的《在物理的相似 系统中量纲方程应用的说明》论文中,提出了著名的π定理, 进一步完善了量纲分析法。 尼古拉兹(J.Nikuradze)在1933年发表的论文中,公布了 他对砂粒粗糙管内水流阻力系数的实测结果--尼古拉兹曲线, 据此他还给紊流光滑管和紊流粗糙管的理论公式选定了应有 的系数。
斯托克斯(G.Stokes,1819 -1903,英国)
流体力学的西方史
谢 才(A.de Chézy法国 )
在1755年便总结出明渠均匀流 公式--谢才公式,一直沿用至今。
雷 诺(O.Reynolds,1842-1912)
1883年用实验证实了粘性流体 的两种流动状态──层流和紊流 的客观存在,找到了实验研究 粘性流体流动规律的相似准则 数──雷诺数,以及判别层流和 紊流的临界雷诺数,为流动阻 力的研究奠定了基础。
流体力学在中国
水利风力机械
在古代,以水为动力的简单机械也有了长足的发展,例如 用水轮提水,或通过简单的机械传动去碾米、磨面等。东汉 杜诗任南阳太守时(公元37年)曾创造水排(水力鼓风机), 利用水力,通过传动机械,使皮制鼓风囊连续开合,将空气 送入冶金炉,较西欧约早了一千一百年。
流体力学在中国
研究流体所遵循的宏观运动规律以及流体和周围 物体之间的相互作用。
研究方法
理论分析: 根据实际问题建立理论模型 涉及微分体 积法 速度势法 保角变换法 实验研究方法: 根据实际问题利用相似理论建立实验 模型 选择流动介质 设备包括风洞、水槽、水洞、 激波管、测试管系等 数值计算方法 :根据理论分析的方法建立数学模型, 选择合适的计算方法,包括有限差分法、有限元法、 特征线法、边界元法等,利用商业软件和自编程序 计算,得出结果,用实验方法加以验证。
引 言 (INTRODUCTION)
流体力学: 宏观力学。
Fluid Mechanics, Fluid Hydrodynamics, Hydrodynamics
研究对象:流体(Fluid)。包括液体和气体。 液体——无形状,有一定的体积;不易压缩,存在 自由(液)面。 气体——既无形状,也无体积,易于压缩。 研究任务: