初高中数学衔接考试卷
初高中数学衔接内容调测卷

衔接内容调测卷第1页共4页 初高中数学衔接测试题(时间:120分钟)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若()213222=---y x y xy x ,且0≠≠y x 则y x 的值为( ) A 。
2± B 。
3± C 。
5± D 。
7± 2.若0362,221=+-x x x x 是方程的两个根,则2111x x +的值为 ( ) 29.21.2.2.D C B A - 3.073|2|=-++-y x y x 已知, 则xy y x --2)(的值为( ) 1.-A 21.B 0.C 1.D 4. 若743c b a ==,则b c b a ++3的值为 ( ) 8.5.3.0.D C B A 5. 已知二次函数522++=bx x y 在x ≤2时,y 随x 的增大而减小,则b 的取值范围 ( ) A. b 4-≥ B. b 4-≤ C. b 8-≥ D. b 8-≤ 6。
二次函数a ax x y 21222-+-=有最小值是23-,则a 的值为( ) .A 1或-1 .B 1或-3 .C 1或—5 .D 1或—7 7。
抛物线2(0)y ax bx c a =++≠的对称轴是2x =且经过点(30)P ,.则a b c ++的值为 ( )A.1- B.0 C.1 D.28. 关于x 的一元二次方程mx 2+(m -1)x+m=0有实根,则实数m 的取值范围是( ) A 。
311≤≤-m B 。
131≤≤-m C.且311≤≤-m m 0≠ D 。
131≤≤-m 且m 0≠学校 姓名 准考证号衔接内容调测卷第2页共4页 9. 若实数a b ≠,且,a b 满足22850,850a a b b -+=-+=,则代数式1111b a a b --+--的值为 ( )A 。
20- B.2C.220-或 D 。
初中升高中衔接试卷数学

一、选择题(每题5分,共50分)1. 若函数f(x) = x^2 - 2x + 1,则f(x)的图像是()A. 顶点为(1, 0)的抛物线B. 顶点为(0, 1)的抛物线C. 顶点为(2, 1)的抛物线D. 顶点为(1, 2)的抛物线2. 若方程x^2 - 3x + 2 = 0的解为x1和x2,则x1 + x2的值为()A. 1B. 2C. 3D. 43. 已知等差数列{an}的前三项分别为a1,a2,a3,且a1 + a3 = 8,a2 = 4,则该等差数列的公差d为()A. 2B. 3C. 4D. 54. 若a,b是方程x^2 - 3x + 2 = 0的两个根,则a^2 + b^2的值为()A. 4B. 5C. 6D. 75. 若等比数列{an}的前三项分别为a1,a2,a3,且a1 = 2,a2 = 4,则该等比数列的公比q为()B. 2C. 3D. 46. 若函数f(x) = |x - 1| + |x + 2|,则f(x)的图像是()A. 一个开口向右的抛物线B. 一个开口向左的抛物线C. 一个开口向上的抛物线D. 一条折线7. 若函数f(x) = 2x + 3,g(x) = 4 - x,则f(g(x))的值为()A. 2x + 5B. 4x + 5C. 2x - 5D. 4x - 58. 若方程x^2 - 4x + 3 = 0的解为x1和x2,则x1 x2的值为()A. 1B. 2C. 3D. 49. 已知等差数列{an}的前三项分别为a1,a2,a3,且a1 = 5,a2 = 8,则该等差数列的公差d为()A. 3B. 4C. 510. 若函数f(x) = 3x - 2,g(x) = 2x + 1,则f(g(x))的值为()A. 3x - 1B. 3x + 1C. 2x - 1D. 2x + 1二、填空题(每题5分,共25分)11. 若方程x^2 - 2x - 3 = 0的解为x1和x2,则x1 + x2的值为______。
初中衔接高中数学考试卷子

一、选择题(每题4分,共20分)1. 下列各数中,不是有理数的是()A. 3.14B. -2/3C. √2D. 02. 已知函数f(x) = 2x - 1,若f(3) = f(2),则x的值为()A. 1B. 2C. 3D. 43. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,若∠BAC=50°,则∠BAD 的度数是()A. 20°B. 30°C. 40°D. 50°4. 下列各对数中,能构成一组相反数的是()A. 2和-2B. 0和2C. 2和-0.5D. 0和-0.55. 若等差数列{an}的前n项和为Sn,且a1=1,公差d=2,则S10等于()A. 100B. 110C. 120D. 130二、填空题(每题4分,共20分)6. 已知x^2 - 3x + 2 = 0,则x的值为______。
7. 若等腰三角形ABC中,AB=AC,AD是底边BC上的高,若∠BAC=60°,则BC的长度为______。
8. 已知函数f(x) = 3x + 4,若f(-1) = 1,则x的值为______。
9. 在等比数列{an}中,a1=2,公比q=3,则第5项an的值为______。
10. 若等差数列{an}的前n项和为Sn,且a1=5,公差d=2,则S10等于______。
三、解答题(每题10分,共40分)11. 已知等差数列{an}的前n项和为Sn,且a1=3,公差d=2,求Sn的表达式。
12. 已知等比数列{an}的第四项a4=16,公比q=2,求前三项a1、a2、a3。
13. 已知函数f(x) = x^2 - 4x + 3,求f(x)的对称轴方程。
14. 在等腰三角形ABC中,AB=AC,AD是底边BC上的高,若∠BAC=70°,求∠BAD 的度数。
四、应用题(每题10分,共20分)15. 某商店原价销售一批商品,现进行打折促销,打折后每件商品售价为原价的0.8倍。
初升高数学衔接试卷及答案

初升高数学衔接试卷及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(无限循环)B. πC. √2D. 1/32. 一个圆的半径为5,那么它的直径是多少?A. 10B. 15C. 20D. 253. 如果一个二次方程 \( ax^2 + bx + c = 0 \) 有两个相等的实根,那么 \( b^2 - 4ac \) 等于多少?A. 0B. 1C. -1D. 44. 函数 \( y = 3x + 2 \) 的斜率是多少?A. 2B. 3C. 5D. 45. 以下哪个表达式是正确的因式分解?A. \( x^2 - 1 = x + 1 \)B. \( x^2 - 1 = x - 1 \)C. \( x^2 - 1 = (x + 1)(x - 1) \)D. \( x^2 - 1 = (x - 1)^2 \)6. 一个三角形的三边长分别是3,4,5,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能构成三角形7. 一个数的平方根是2,那么这个数是:A. 4B. -4C. 2D. -28. 如果一个函数 \( f(x) \) 是奇函数,那么 \( f(-x) \) 等于:A. \( f(x) \)B. \( -f(x) \)C. \( x \cdot f(x) \)D. \( x^2 \cdot f(x) \)9. 以下哪个选项是不等式 \( x^2 - 4x + 3 < 0 \) 的解集?A. \( x < 1 \) 或 \( x > 3 \)B. \( x < 3 \) 或 \( x > 1 \)C. \( 1 < x < 3 \)D. \( x < -3 \) 或 \( x > 1 \)10. 一个数列的前5项为1,3,5,7,9,这个数列是:A. 等差数列B. 等比数列C. 既不是等差数列也不是等比数列D. 几何数列二、填空题(每题2分,共20分)11. 一个直角三角形的两条直角边长分别是6和8,那么斜边长是________。
初升高衔接数学题加答案

初升高衔接数学题加答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形答案:B2. 已知x^2 - 5x + 6 = 0,求x的值。
A. x = 2B. x = 3C. x = -2D. x = -3答案:B3. 一个数列的前三项为1,2,3,若每一项都等于前一项的平方,那么第四项是:A. 4B. 8C. 9D. 16答案:C4. 一个圆的半径为r,圆心到圆上任意一点的距离都等于r,这个圆的面积是:A. πr^2B. 2πrC. r^2D. 2r^2答案:A5. 若函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 2D. 1答案:A6. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}答案:B7. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -8答案:A8. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个二次方程x^2 + 2x + 1 = 0的解是:A. x = -1B. x = 1C. x = -2D. x = 2答案:A10. 若a和b互为相反数,且a + b = 0,那么a的值是:A. 0B. 1C. -1D. 无法确定答案:D二、填空题(每题2分,共20分)1. 若一个数的立方等于-27,则这个数是______。
答案:-32. 一个数的绝对值是5,则这个数可以是______或______。
答案:5 或 -53. 一个直角三角形的斜边长为5,若一条直角边长为3,则另一条直角边长为______。
答案:44. 若a = 3b,且b ≠ 0,则a和b的比例是______。
2024年新高一数学初升高衔接《一元二次函数、方程和不等式》含答案解析

第二章:一元二次函数、方程和不等式综合检测卷(试卷满分150分,考试用时120分钟)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.(23-24高一下·河南开封·期中)不等式220x x +-<的解集为( )A .{21}x x -<<∣B .{12}x x -<<∣C .{2xx <-∣或1}x >D .{1x x <-∣或2}x >2.(23-24高一上·湖南衡阳·月考)若2x >-,则12y x x =++的最小值为( )A .-2B .0C .1D .123.(23-24高一上·广东珠海·期中)已知25P a =+,41Q a =+,则P ,Q 的大小关系是( )A .P Q<B .P Q>C .P Q≤D .P Q≥4.(23-24高一上·江苏盐城·月考)已知实数x ,y 满足41x y -≤-≤-,145x y -≤-≤,则9x y -的取值范围是( )A .[7,26]-B .[1,20]-C .[]4,15D .[]1,155.(23-24高一上·湖南衡阳·月考)已知不等式230ax x b +->的解集为{}12x x -<<,则a 、b 的值等于( )A .3a =,6b =-B .3a =,6b =C .3a =-,6b =-D .3a =-,6b =6.(23-24高一上·贵州黔南·月考)已知,0x y >且41x y +=,则11x y +的最小值为( )A .B .8C .9D .107.(23-24高一下·河南·月考)若命题“x ∃∈R ,20x ax a --≤”为假命题,则实数a 的取值范围是( )A .(,4][0,)-∞-+∞B .(,4)(0,)∞∞--⋃+C .[]4,0-D .()4,0-8.(23-24高一上·广东广州·月考)一家金店使用一架两臂不等长的天平称黄金.一位顾客到店内购买20g 黄金,店员先将10g 的砝码放在天平左盘中,取出一些黄金放在天平右盘中,使天平平衡;再将10g 的砝码放在天平右盘中,再取出一些黄金放在天平左盘中,使得天平平衡;最后将两次称得的黄金交给顾客.记顾客实际购得的黄金为xg ,则x 与20的大小关系为( )A .20x <B .20x >C .20x =D .无法确定二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高一上·江苏苏州·月考)若0a b <<,则下列结论正确的是( )A .11a b>B .01a b<<C .2ab b >D .b a a b>10.(22-23高一上·山西大同·月考)下列结论正确的是( )A .当0x >时,2≥B .当2x >时,1x x+的最小值是2C .当0,0x y >>时,2x y y x+≥D .当2x <时,112y x x =-+-的最小值为311.(23-24高一上·湖北武汉·月考)已知01b a <<+,若关于x 的不等式22()()x b ax ->的解集中的整数恰有3个,则a 的值可以为( )A .12-B .12C .32D .52三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高一上·河北沧州·期末)不等式302x x+≥-的解集为 .13.(23-24高一上·江苏连云港·月考)已知方程22240x ax a -+-=的一个实根小于2,另一个实根大于2,求实数a 的取值范围.14.(23-24高一上·山东菏泽·月考)若两个正实数x y ,满足3x y +=,且不等式4161m x y+>+恒成立,则实数m 的取值范围为.四、解答题:本题共5小题,共77分。
初升高数学衔接题及答案

初升高数学衔接题及答案【题目一:代数基础】题目:求解方程 \( x^2 - 5x + 6 = 0 \) 的根。
【答案】首先,我们可以通过因式分解来解这个方程:\( x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \)。
因此,方程的根是 \( x = 2 \) 和 \( x = 3 \)。
【题目二:几何基础】题目:在直角三角形ABC中,角C是直角,AB是斜边,如果AC=6,BC=8,求斜边AB的长度。
【答案】根据勾股定理,直角三角形的斜边平方等于两直角边的平方和,即:\( AB^2 = AC^2 + BC^2 \)。
代入已知值:\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,斜边AB的长度为 \( AB = \sqrt{100} = 10 \)。
【题目三:函数基础】题目:如果函数 \( f(x) = 2x - 3 \),求 \( f(5) \) 的值。
【答案】将 \( x = 5 \) 代入函数 \( f(x) = 2x - 3 \) 中,我们得到:\( f(5) = 2 \cdot 5 - 3 = 10 - 3 = 7 \)。
所以,\( f(5) \) 的值为7。
【题目四:不等式基础】题目:解不等式 \( 3x - 5 < 10 \)。
【答案】首先,我们将不等式两边加上5:\( 3x - 5 + 5 < 10 + 5 \),得到 \( 3x < 15 \)。
然后,我们将不等式两边除以3:\( \frac{3x}{3} < \frac{15}{3} \),得到 \( x < 5 \)。
所以,不等式的解为 \( x < 5 \)。
【题目五:概率基础】题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。
【答案】总共有 \( 5 + 3 = 8 \) 个球。
取出红球的概率为红球数量除以总球数,即:\( P(\text{红球}) = \frac{5}{8} \)。
初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)初升高衔接数学测试(附解答)一.填空题。
(每题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,则f(1) = ______。
解答:f(1) = 1^2 - 4 × 1 + 3 = 1 - 4 + 3 = 0。
2. 设x = 2,则函数f(x) =x^3 - 3|x|的值为______。
解答:f(2) = 2^3 - 3 × 2 = 8 - 6 = 2。
3. 设一次函数y = kx + 3的图象过点(2, 7),则k的值为______。
解答:代入已知点得7 = k × 2 + 3,整理得k = (7 - 3)/2 = 4/2 = 2。
4. 已知x^2 + k = (x - 2)(x + 3),则k的值为______。
解答:展开右侧得x^2 + k = x^2 + x - 6,比较系数得k = -6。
5. 一个三位数的1/10是5,将这个三位数加上55后得到一个四位数,这个四位数是________。
解答:设三位数为xyz,其中x、y、z表示个位、十位和百位数字。
根据题意得到两个方程:(1)1/10 * 100 * x + 1/10 *10 * y + 1/10 * z = 5;(2)100 * x + 10 * y + z + 55 = 1000 * x+ 100 * y + 10 * z。
计算得x = 4,y = 4,z = 5,所以四位数为4445。
6. 一根绳子长45米,把它剪成3段,第一段比第二段短3米,第二段比第三段短2米,则第一段的长度是________。
解答:设第一段的长度为x,根据题意得到两个方程:(1)x + (x + 3) + (x + 3 + 2) = 45;(2)x + 5 = x + 3。
解得x = 13,所以第一段的长度是13米。
7. 甲、乙两人连续投掷硬币,甲方先开始,投得正面得1分,反面得0分;乙方投得正面得2分,反面得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学初高中衔接考试卷
(考试时间:120分钟 满分:100分)
一、 选择 (每题4分,共32分)
1.若b a b a b a +<<>则且,,0,0一定是 ( )
非正数非负数负数正数...
.D C B A
2.若669,32
--+-<x x x x 则的值是 ( )
9.9.3.3.
D C B A --
3. 若
743c b a ==,则
b c
b a ++3的值为 ( ) 8.
5
.
3
.
.
D C B A
4.实数0111=+-+b a b a b a 满足、,则b a a b +的值为 ( )
3.1.1.
3
.
D C B A --
5.若0362,2
21=+-x x x x 是方程的两个根,则
2
11
1x x +的值为 ( ) 2
9.
2
1
.
2
.2.D C B A - 6.若实数,b a ≠且058,0582
2
=+-=+-b b a a b a 满足、则
1
1
11--+
--b a a b 的值为 ( ) 20
2.202.2
.20.或或D C B A --
7.若t 是一元二次方程的根)0(02
≠=++a c bx ax 则判别式ac b 42
-=∆
和完全平方式()2
2b at M +=的关系是 ( ).
大小关系不能确定....D M C M B M A <∆>∆=∆
8.已知菱形ABCD 的边长为5,两条对角线交与O 点,且OA 、OB 的长分别是关于x 的 方程()03122
2
=++-+m x m x 的根,则m 等于 ( )
3
5.35.5.3.或或---D C B A
二、 填空 (每题4分,共20分)
1. 若
2
2442
--+=-x b
x a x x ,则b a += . 2. 已知最简根式b a b a a -+72与是同类根式,则满足条件的b a 、的值 . 3. 若方程03)1(22
=+++-k x k x 的两根之差为1,则k 的值是 . 4. 如果方程0)()()(2
=-+-+-b a x a c x c b 的两根相等,则c b a 、、之间的 大小关系是 .
5. 已知方程23)1(-=+k x k 的解大于1,求k 的取值范围 .
三、解答 (共48分)
1. 解方程:(8分)
(1)02232222
=++--x x x ;(2)49
491=+++
x x x
2. 化简:(10分) (1)y
y x x y xy x y
xy y x x y -++-
-+2
;(2)已知01251022=-++y xy x ,化简2
235x y x x ++.
3.对字母m 讨论,求关于x 的不等式m mx x m +>+222
的解.(10分)
4.求证:无论a 取什么实数,二次函数22
-++=a ax x y 的图像都与x 轴相交于两个不同 的点,并求这两点间距离最小时的二次函数解析式.(10分)
5. 某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数.5430,3162≤≤-=x x m (10分)
(1)写出商场卖出这种商品的销售利润y 与每件销售价x 之间的函数关系式;
(2)如果商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?。