初高中数学衔接测试题
初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN初升高衔接数学测试(总分100分,时间90分钟)一、选择题(每题3分,共30分)1.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根(C )只有一个实数根 (D )没有实数根2.已知0≠xyz ,则z z y y x x ++的值不可能为( ) (A) 1 (B) 0 (C )3 (D) —13.若关于x 的多项式x 2-px -6含有因式x -3,则实数p 的值为( ).A .-5B .5C .-1D .14.均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为一折线),则这个容器的形状为( ).5.不等式025423≤-+-x x x 的解集是( )A. 2≤xB.2≥xC.21≤≤xD.1≥x6.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上的一动点,将ΔAMN 沿MN 所在直线翻折得到ΔA ’MN ,则A ’C 长度的最小值是( )A. 7B.17-C. 2D. 73-7.已知某三角形的三边长分别为6,8,6,则该三角形的内接圆半径为( )A.6B.55 C.5 D. 554 8.如图7所示,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP ′,已知∠AP ′B=135°,P ′A :P ′C=1:3,则P ′A :PB=:[ ]。
A .1:21/2;B .1:2;C .31/2:2;D .1:31/2。
9.如果关于x 的不等式组:⎩⎨⎧≤-≥-0203b x a x ,的整数解仅有1,2,那么适合这个不等式组的整数a ,b 组成的有序数对[a ,b]共有( )个。
A.8B.7C.6D.510.设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为( ).A. 7B.8C.9D.6二、填空题(每题4分,共20分)图7F E O DB A DC 第12题11.若,x y为实数,且20x +=,则2010()x y +的值为___________.12.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为2cm ,∠A =120°,则EF = cm .13.已知当1x =时,22ax bx +的值为3,则当2x =时,2ax bx +的值为_______.14.已知关于x 的分式方程111=--++x k x k x 的解为负数,则k 的取值范围是 。
初高中数学衔接测试题

高一《初高中数学衔接读本》测试卷一.选择题1. 下列各式正确的是 ( ) A 、a a =2 B 、a a ±=2 C 、a a =2 D 、22a a =2. 已知754z y x ==,则=-+++zy x z y x ( )A 、9B 、716 C 、38D 、8 3. 二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )A 、0个B 、1个C 、 2个D 、3个4. 如图,△ABC 中,∠BAC=90°,AD ⊥BC 于D , 若AB=2,BC=3,则CD 的长是( )A .83B .23C .43D .535. 已知321+=a ,则a a a a a a a a 112121222--+---+-化简求值的结果是 ( ) A 、 0 B 、 31- C 、 3 D 、 13-- 6. 若多项式b x x -+1732分解因式的结果中有一个因式为4+x ,则b 的值为( )A 、20B 、-20C 、13D 、-137.当34x =时,代数式223111(2)(42)x x x x x-+++的值为( )A 、16B 、384C 、32D 、40 8. 把多项式1222+--b a a 分解因式,结果是( ) A 、)1)(1(++-+b a b a B 、)1)(1(-+--b a b a C 、)1)(1(++--b a b a D 、)1)(1(+---b a b a9. 已知二次函数的图象开口向下,且过点A (1,1),B (3,1),C ),4(1y -,D ),2(2y -,E ),5(3y ,则1y ,2y ,3y 的大小关系是( )A 、1y < 2y <3y B 、2y < 1y < 3yC 、3y <1y <2y D 、3y < 2y <1y10. 将函数图象上的所有点向左移动一个单位,再向下移动两个单位得到的函数解析式为4722++=x x y ,则原函数的解析式为( ) A 、111122++=x x y B 、7322++=x x y C 、1322++=x x y D 、51122++=x x y11.已知:如图,△ABC 中,D 在AC 上,且AD :DC =1:2, E 为BD 的中点,AE 的延长线交BC 于F ,则BF :FC =( )A 、2:1B 、3:1C 、4:1D 、5:1 12.给出下列命题,其中正确的有( )①重心到顶点与对边中点的距离之比为2:1;②等边三角形的外接圆的半径和内切圆半径之比为1:2; ③等腰三角形的内心、重心和外心同在底边的高线上; ④直角三角形的外心是斜边的中点,垂心是直角的顶点; A 、0个 B 、1个 C 、 2个 D 、3个二.填空题 13. 化简381--=____________ ,324- =___________; 14. 如果2a b c x y z ===,则456456a b cx y z+++-= ; 15. 如图,梯形ABCD 中,DC ∥AB ,DC =3cm ,AB =6cm ,且MN ∥PQ ∥AB ,DM =MP =PA , 则MN = ,PQ = 。
初高中数学衔接考试卷

2022年3月23日;第1页共1页数学初高中衔接【1】考试卷(考试时间:120分钟 满分:100分)一、 选择 (每题4分,共32分)1.若ba b a b a +<<>则且,,0,0一定是()非正数非负数负数正数....D C B A2.若669,32--+-<x x x x 则的值是 ( )9.9.3.3.D C B A --3. 若743c b a ==,则b cb a ++3的值为 ( ) 8.5.3..D C B A4.实数0111=+-+b a b a b a 满足、,则b aa b +的值为( ) 3.1.1.3.D C B A --5.若0362,221=+-x x x x 是方程的两个根,则2111x x +的值为 ( ) 29.21.2.2.D C B A -6.若实数,b a ≠且058,05822=+-=+-b b a a b a 满足、则1111--+--b a a b 的值为 () 202.202.2.20.或或D C B A --7.若t 是一元二次方程的根)0(02≠=++a c bx ax 则判别式ac b 42-=∆ 和完全平方式()22b at M +=的关系是 ().大小关系不能确定....D MC M B M A <∆>∆=∆8.已知菱形ABCD 的边长为5,两条对角线交与O 点,且OA 、OB 的长分别是关于x 的方程()031222=++-+m x m x 的根,则m 等于 () 35.35.5.3.或或---D C B A二、 填空 (每题4分,共20分)1.若22442--+=-x b x a x x ,则ba +=.2.已知最简根式ba b a a -+72与是同类根式,则满足条件的b a 、的值.3.若方程03)1(22=+++-k x k x 的两根之差为1,则k 的值是. 4.如果方程0)()()(2=-+-+-b a x a c x c b 的两根相等,则c b a 、、之间的 大小关系是.5.已知方程23)1(-=+k x k 的解大于1,求k 的取值范围.三、解答 (共48分)1.解方程:(8分)(1)02232222=++--x x x ;(2)49491=+++x xx2.化简:(10分)(1)yy x x y xy x y xy yx x y -++--+2;(2)已知01251022=-++y xy x ,化简2235x y x x ++.3.对字母m 讨论,求关于x 的不等式m mx x m +>+222的解.(10分)4.求证:无论a 取什么实数,二次函数22-++=a ax x y 的图像都与x 轴相交于两个不同 的点,并求这两点间距离最小时的二次函数解析式.(10分)5.某商场以每件30元的价格购进一种商品,试销中发现这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数.5430,3162≤≤-=x x m (10分)(1)写出商场卖出这种商品的销售利润y 与每件销售价x 之间的函数关系式;(2)如果商场要想每天获得最大销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?。
初中高中衔接数学试卷

一、选择题(每题5分,共50分)1. 下列函数中,是奇函数的是()A. y = x^2B. y = |x|C. y = x^3D. y = 2x2. 已知等差数列的前三项分别为2,5,8,则该数列的公差是()A. 1B. 2C. 3D. 43. 若直角三角形的两条直角边长分别为3和4,则斜边长为()A. 5B. 6C. 7D. 84. 已知一个圆的半径为r,则该圆的面积S与半径r的关系为()A. S = πr^2B. S = 2πrC. S = πrD. S = 4πr5. 若等比数列的前三项分别为2,6,18,则该数列的公比是()A. 2B. 3C. 4D. 66. 已知函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 4),则a的取值范围是()A. a > 0B. a < 0C. a = 0D. a ≥ 07. 已知等差数列的前n项和为S_n,若S_5 = 15,S_10 = 50,则该数列的首项a_1为()A. 1B. 2C. 3D. 48. 若函数y = kx + b的图象经过点A(1, 2),B(3, 4),则该函数的斜率k为()A. 1B. 2C. 3D. 49. 已知直角三角形的两条直角边长分别为3和4,斜边上的高为h,则h的取值范围是()A. 0 < h < 3B. 0 < h < 4C. 0 < h < 5D. 0 < h < 610. 若等比数列的前三项分别为2,6,18,则该数列的通项公式为()A. a_n = 2 3^(n-1)B. a_n = 2 2^(n-1)C. a_n = 6 3^(n-1)D. a_n = 6 2^(n-1)二、填空题(每题5分,共50分)1. 若函数y = ax^2 + bx + c的图象开口向上,且顶点坐标为(-1, 4),则a = _______,b = _______,c = _______。
初升高数学衔接带答案

初升高数学衔接带答案一、选择题1. 已知函数\( f(x) = 2x^2 - 3x + 5 \),求\( f(2) \)的值。
A. 7B. 9C. 11D. 13答案:B2. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
A. 5B. 6C. 7D. 8答案:A3. 一个数列的前三项为1, 2, 3,且每一项都是前一项的两倍加一,求第4项的值。
A. 7B. 8C. 9D. 10答案:A二、填空题1. 计算\( \sqrt{64} \)的值是______。
答案:82. 一个圆的半径为7,求该圆的面积。
面积公式为\( A = \pi r^2 \),所以面积是______。
答案:\( 49\pi \)三、简答题1. 解释什么是二项式定理,并给出一个例子。
答案:二项式定理是代数学中的一个重要定理,它描述了(a+b)^n展开成多项式的形式。
例如,\( (x+y)^2 = x^2 + 2xy + y^2 \)。
2. 给定一个函数\( g(x) = 3x - 4 \),求\( g^{-1}(x) \)。
答案:为了求\( g^{-1}(x) \),我们首先设\( y = g(x) \),即\( y = 3x - 4 \)。
解出x,得到\( x = \frac{y+4}{3} \),所以\( g^{-1}(x) = \frac{x+4}{3} \)。
四、计算题1. 解不等式\( |x - 5| < 2 \)。
答案:解这个绝对值不等式,我们得到两个不等式:\( -2 < x - 5 < 2 \)。
解这两个不等式,我们得到\( 3 < x < 7 \)。
2. 计算\( \int_{0}^{1} (3x^2 + 2x) \, dx \)。
答案:首先找到被积函数的原函数,即\( F(x) = x^3 + x^2 \)。
然后计算定积分:\[ \int_{0}^{1} (3x^2 + 2x) \, dx = F(1) - F(0) = (1^3 + 1^2) - (0^3 + 0^2) = 1 + 1 = 2 \]。
初升高衔接数学题加答案

初升高衔接数学题加答案一、选择题(每题3分,共30分)1. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不规则三角形答案:B2. 已知x^2 - 5x + 6 = 0,求x的值。
A. x = 2B. x = 3C. x = -2D. x = -3答案:B3. 一个数列的前三项为1,2,3,若每一项都等于前一项的平方,那么第四项是:A. 4B. 8C. 9D. 16答案:C4. 一个圆的半径为r,圆心到圆上任意一点的距离都等于r,这个圆的面积是:A. πr^2B. 2πrC. r^2D. 2r^2答案:A5. 若函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 2D. 1答案:A6. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B的结果。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}答案:B7. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -8答案:A8. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 8答案:A9. 一个二次方程x^2 + 2x + 1 = 0的解是:A. x = -1B. x = 1C. x = -2D. x = 2答案:A10. 若a和b互为相反数,且a + b = 0,那么a的值是:A. 0B. 1C. -1D. 无法确定答案:D二、填空题(每题2分,共20分)1. 若一个数的立方等于-27,则这个数是______。
答案:-32. 一个数的绝对值是5,则这个数可以是______或______。
答案:5 或 -53. 一个直角三角形的斜边长为5,若一条直角边长为3,则另一条直角边长为______。
答案:44. 若a = 3b,且b ≠ 0,则a和b的比例是______。
初升高数学衔接题及答案

初升高数学衔接题及答案【题目一:代数基础】题目:求解方程 \( x^2 - 5x + 6 = 0 \) 的根。
【答案】首先,我们可以通过因式分解来解这个方程:\( x^2 - 5x + 6 = (x - 2)(x - 3) = 0 \)。
因此,方程的根是 \( x = 2 \) 和 \( x = 3 \)。
【题目二:几何基础】题目:在直角三角形ABC中,角C是直角,AB是斜边,如果AC=6,BC=8,求斜边AB的长度。
【答案】根据勾股定理,直角三角形的斜边平方等于两直角边的平方和,即:\( AB^2 = AC^2 + BC^2 \)。
代入已知值:\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \)。
因此,斜边AB的长度为 \( AB = \sqrt{100} = 10 \)。
【题目三:函数基础】题目:如果函数 \( f(x) = 2x - 3 \),求 \( f(5) \) 的值。
【答案】将 \( x = 5 \) 代入函数 \( f(x) = 2x - 3 \) 中,我们得到:\( f(5) = 2 \cdot 5 - 3 = 10 - 3 = 7 \)。
所以,\( f(5) \) 的值为7。
【题目四:不等式基础】题目:解不等式 \( 3x - 5 < 10 \)。
【答案】首先,我们将不等式两边加上5:\( 3x - 5 + 5 < 10 + 5 \),得到 \( 3x < 15 \)。
然后,我们将不等式两边除以3:\( \frac{3x}{3} < \frac{15}{3} \),得到 \( x < 5 \)。
所以,不等式的解为 \( x < 5 \)。
【题目五:概率基础】题目:一个袋子里有5个红球和3个蓝球,随机取出一个球,求取出红球的概率。
【答案】总共有 \( 5 + 3 = 8 \) 个球。
取出红球的概率为红球数量除以总球数,即:\( P(\text{红球}) = \frac{5}{8} \)。
初升高衔接数学测试(附解答)

初升高衔接数学测试(附解答)初升高衔接数学测试(附解答)一.填空题。
(每题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,则f(1) = ______。
解答:f(1) = 1^2 - 4 × 1 + 3 = 1 - 4 + 3 = 0。
2. 设x = 2,则函数f(x) =x^3 - 3|x|的值为______。
解答:f(2) = 2^3 - 3 × 2 = 8 - 6 = 2。
3. 设一次函数y = kx + 3的图象过点(2, 7),则k的值为______。
解答:代入已知点得7 = k × 2 + 3,整理得k = (7 - 3)/2 = 4/2 = 2。
4. 已知x^2 + k = (x - 2)(x + 3),则k的值为______。
解答:展开右侧得x^2 + k = x^2 + x - 6,比较系数得k = -6。
5. 一个三位数的1/10是5,将这个三位数加上55后得到一个四位数,这个四位数是________。
解答:设三位数为xyz,其中x、y、z表示个位、十位和百位数字。
根据题意得到两个方程:(1)1/10 * 100 * x + 1/10 *10 * y + 1/10 * z = 5;(2)100 * x + 10 * y + z + 55 = 1000 * x+ 100 * y + 10 * z。
计算得x = 4,y = 4,z = 5,所以四位数为4445。
6. 一根绳子长45米,把它剪成3段,第一段比第二段短3米,第二段比第三段短2米,则第一段的长度是________。
解答:设第一段的长度为x,根据题意得到两个方程:(1)x + (x + 3) + (x + 3 + 2) = 45;(2)x + 5 = x + 3。
解得x = 13,所以第一段的长度是13米。
7. 甲、乙两人连续投掷硬币,甲方先开始,投得正面得1分,反面得0分;乙方投得正面得2分,反面得0分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初高中数学衔接测试题work Information Technology Company.2020YEAR高一《初高中数学衔接读本》测试卷一.选择题1. 下列各式正确的是 ( ) A 、a a =2 B 、a a ±=2 C 、a a =2 D 、22a a =2. 已知754zy x ==,则=-+++z y x z y x ( ) A 、9 B 、716 C 、38D 、8 3. 二次函数y =ax 2+bx+c (a ≠0)的图象如图所示,则下列结论:①a>0;②c>0;•③b 2-4ac>0,其中正确的个数是( )A 、0个B 、1个C 、 2个D 、3个 4. 如图,△ABC 中,∠BAC=90°,AD ⊥BC 于D , 若AB=2,BC=3,则CD 的长是( )A .83B .23C .43D .535. 已知321+=a ,则a a a a a a a a 112121222--+---+-化简求值的结果是 ( )A 、 0B 、 31-C 、 3D 、 13-- 6. 若多项式b x x -+1732分解因式的结果中有一个因式为4+x ,则b 的值为( )A 、20B 、-20C 、13D 、-137.当34x =223111(2)(42)x x x x x-+++的值为( )A 、16B 、34、32 D 、40 8. 把多项式1222+--b a a 分解因式,结果是( ) A 、)1)(1(++-+b a b a B 、)1)(1(-+--b a b aC 、)1)(1(++--b a b aD 、)1)(1(+---b a b a9. 已知二次函数的图象开口向下,且过点A (1,1),B (3,1),C ),4(1y -,D ),2(2y -,E ),5(3y ,则1y ,2y ,3y 的大小关系是( )A 、1y < 2y <3y B 、2y < 1y < 3yC 、3y <1y <2y D 、3y < 2y <1y10. 将函数图象上的所有点向左移动一个单位,再向下移动两个单位得到的函数解析式为4722++=x x y ,则原函数的解析式为( ) A 、111122++=x x y B 、7322++=x x y C 、1322++=x x y D 、51122++=x x y11.已知:如图,△ABC 中,D 在AC 上,且AD :DC =1:2, E 为BD 的中点,AE 的延长线交BC 于F ,则BF :FC =( )A 、2:1B 、3:1C 、4:1D 、5:1 12.给出下列命题,其中正确的有( ) ①重心到顶点与对边中点的距离之比为2:1;②等边三角形的外接圆的半径和内切圆半径之比为1:2; ③等腰三角形的内心、重心和外心同在底边的高线上; ④直角三角形的外心是斜边的中点,垂心是直角的顶点; A 、0个 B 、1个 C 、 2个 D 、3个二.填空题 13. 化简381--=____________ ,324- =___________; ABDEC14. 如果2a b c x y z ===,则456456a b c x y z+++-= ; 15. 如图,梯形ABCD 中,DC ∥AB ,DC =3cm , AB =6cm ,且MN ∥PQ ∥AB ,DM =MP =PA , 则MN = ,PQ = 。
16.已知关于x 的不等式122++mx mx >0的解是一切实数,则m 的取值范围为___________三.解答题:(请写明详细解答过程,共70分。
) 17.解方程(每题5分,共10分) ① 412=--x x ② 0518=-++x x18. 已知关于x 的一元二次方程01222=+-+a ax x 的两个实根的平方和为429,求a 的值。
(12分)D C M PN Q AB19. 已知:如图,梯形ABCD 中,AB ∥DC ,E 是AB 的中点,直线ED 分别与对角线AC 和BC 的延长线交于M 、N 点,求证:MD ∶ME =ND ∶NE 。
(10分)20.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x 元(x ≥50),一周的销售量为y . (1)写出y 与x 的函数关系式(标明x 的取值范围);(2)设一周的销售利润为S ,写出S 与x 的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?N D CAEB M21. 如图,在Rt △ABC 中,CD 为斜边AB 上的高,且AD =2厘米,BD =8厘米,求:①其外接圆的半径; (13分)②其内切圆的半径;③若CE 为直角的角平分线,求△AEC 的面积。
22. 已知某二次函数的图象与x 轴交于点A (2,0) , B (4,0),且过点(1,3), ①求此二次函数的解析式;②求1≤x ≤b (b 为大于1的常数)时的最大值和最小值。
(12分)2010-2011年度高一第一学期《初高中衔接教材》测试卷答案C AD BE一.选择题二.填空题13. 121; 14. 2 ; 15. 4 ,5 ; 16. 0≤m <1.三.解答题:(请写明详细解答过程,共70分。
)17.解方程(每题6分,共12分) ① 412=--x x解:()()2441x x -=-且x ≥4 另解:()130x --=212200x x -+=令t =t ≥0,2230t t --=()()2100x x --= ()()310t t -+=2x ∴=或10x = 3t ∴=或1t =-x ≥4 t ≥010x ∴= 3t ∴= 10x ∴= ②8501x x +-=+ 解:()()18510x x x ++-+=且x ≠-1,整理得2430x x -+= 即()()130x x --=故1x =或3x =18. 已知关于x 的一元二次方程01222=+-+a ax x 的两个实根的平方和为429,求a 的值。
题号 1 2 3 4 5 6 7 8 9 10 11 12 答案CDCDBBCBACBD解:设1x ,2x 为方程的两根,则有:()2821a a ∆=--+≥0即2168a a +-≥0 ①122a x x +=- ② 12122ax x -= ③将②和③代入222121212()2x x x x x x +=+-=2291244a a =-+=解得1a =或11a =-但11a =-不满足①式,故1a =。
19. 已知:如图,梯形ABCD 中,AB ∥DC ,E 是AB 的中点,直线ED 分别与对角线AC 和BC 的延长线交于M 、N 点,求证:MD ∶ME =ND ∶NE 。
证明: AB ∥DC ,E 是AB 的中点∴ND DC DC NEBEAE==且ΔEAM ∽ΔDCM∴DC MD AEME=ND MDNE ME∴=即MD ∶ME =ND ∶NE 。
20.某超市经销一种销售成本为每件40元的商品.据市场调查分析,如果按每件50元销售,一周能售出500件;若销售单价每涨1元,每周销量就减少10件.设销售单价为x 元(x ≥50),一周的销售量为y . (1)写出y 与x 的函数关系式(标明x 的取值范围);(2)设一周的销售利润为S ,写出S 与x 的函数关系式,并确定当单价在什么范围内变化时,利润随着单价的增大而增大?(3)在超市对该种商品投入不超过10000元的情况下,使得一周销售利润达到8000元,销售单价应定为多少?ND CA E BM解:①(40)(100010)y x x =-- (50≤x ≤100)210140040000x x =-+-()210709000x =--+当50≤x ≤70时,利润随着单价的增大而增大. ②2101400400008000x x -+-= 解得:60x =或80x =当60x =,成本= 40×[500-10×(60-50)] =16000>10000不符要求,舍去 当80x =,成本= 40×[500-10×(80-50)] =8000<10000符合要求。
所以销售单价应定为80元,才能使一周销售利润达到8000元的同时,投入不超过10000 元.21. 如图,在Rt △ABC 中,CD 为斜边AB 上的高,且AD =2厘米,BD =8厘米,求:①其外接圆的半径; (12分)②其内切圆的半径;③若CE 为直角的角平分线,求△AEC 的面积。
解:①Rt △ABC 的外心为斜边的中点∴外接圆的半径为2852+=;②设内切圆的半径为r ,则S △ABC ()12r AB AC BC =++ 根据射影定理有:2CD AD BD =•得4CD =,根据勾股定理解得AC =BC =C AD B∴S △ABC ()111041022r =⨯⨯=⨯ 故 5r ==;③CE 平分ACB ∠∴2BC AE ACBE===∴1033AB AE ==∴S △AEC 110204233=⨯⨯=22. 已知某二次函数的图象与x 轴交于点A (2,0) , B (4,0),且过点(1,3), ①求此二次函数的解析式;②求1≤x ≤b (b 为大于1的常数)时的最大值和最小值。
(12分) 解:①设二次函数的解析式为(2)(4)y a x x =--,代入点(1,3)有:3(12)(14)a =-⨯-解得:1a = 故2(2)(4)68y x x x x =--=-+②()231y x =--其对称轴为3x =,且与点(1,3)关于对称轴对称的点为(5,3),若1<b ≤3时,y 随着x 的减小而增大,则当1x =时取得max 3y =,当x b =时取得min y = 268b b -+;若3<b ≤5时,当1x =时取得max 3y =,当3x =时取得min 1y =-; 若b >5时,当x b =时取得max y = 268b b -+;当3x =时取得min 1y =-。