多元函数微分学习题

合集下载

第五章-多元函数微分学习题参考答案

第五章-多元函数微分学习题参考答案

第五章-多元函数微分学习题参考答案第五章多元函数微分学习题练习5.11.在空间直⾓坐标系下,下列⽅程的图形是什么形状? (1) )(4222椭圆抛物⾯z y x =+ (2)圆锥⾯)(4222z y x =+(3) 椭球⾯)(19164222=++z y x (4) 圆柱⾯)(122=+z x 2.求下列函数的定义域: (1)y x z --=解:??≥-≥0y x y即??≥≥≥y x x y 200 ∴函数的定义域为{}y x y x y x ≥≥≥2,0,0|),((2) z =解:0≥-y x{}0|),(≥-∴y x y x 函数的定义域为3. ()y x f ,对于函数=yx yx +-,证明不存在),(lim 0y x f x →分析:由⼆元函数极限定义,我们只须找到沿不同路径0(0,0)p p →时,所得极限值不同即可。

证明:①(,)0,0)(0,0)p x y x x y p ≠=0当沿轴(此时趋于时,(,)(,0)1,lim (,)1x y f x y f x f x y →→===②当0(,)(0)00p x y y kx k p =≠沿直线趋于(,)时, 0011(,)lim (,)1(0)11x y x kx k kf x y f x y k x kx k k→→---=1.求下列函数的偏导数①;,,33yz x z xy y x z -=求解:23323,3xy x yz y y x x z -=??-=?? ②;,,)ln(yzx z xy z =求解:[]1211ln()2z xy y x xy -?=??=?[]1211ln()2z xy x y xy -== ③222ln(),,z z z x x y x x y=+?求解:1ln()z x y x x x y=+++ 2222)(2)(1))(ln()(y x y x y x x y x y x y x x y x x x z x x z ++=+-+++=+++??==??2221()(ln())()()z z x x yx y x y y x y x y x y x y x y ==++=-=?++++ ④;,3z y x ue u xyz=求解;22,()xyz xyz xyz xyz u u yze ze yzxze z xyz e x x y==+=+? 3222()(())(12)()xyz xyz xyzu u z xyz e xyz e z xyz xye x y z z x y z==+=+++???=)31()21(222222z y x xyz e z y x xyz xyz e xyz xyz ++=+++y x f y xy ?-?+=→?)1,2()1,2(lim,),(02则解:①22(1)200(2,1)(2,1)0lim lim ()0y y y f y f e e y y +??→?→+?--=??未定式22(1)04(1)10lim 1y y e y +??→?+??-= = 42e ②22201(2,1)(2,1)lim(2,1)24xy y x y y f y f f e xye y=?→=+?-'==?=?3.设23ln(1),111x y z ux y z u u u '''=+++++在点(,,)处求解:2311x u x y z '=+++ 2321yyu x y z '=+++ 22331z z u x y z '=+++ (1,1,1) 1233()|4442x y z u u u '''∴++=++= 4.设2,20xy z zz e xy x y=+=求证: 证明:2xy y z e y e x y-?=?=?Q 22331(2)2x xy y z e x xy e y y-?=??-=-?Q22222323122(2)22x x x xy y y y z z x y xy e ye x xy e y xy e x y y---??∴+=+??-=-?+?? = 0证毕练习5.31.求下列函数的全微分(1) 求z xy =在点(2,3)处当时的全增量与全微分与2.01.0-=?=?y x 解:全增量12.068.21.2)3,2()2.03,1.02(-=-?=--+=?f f zx y dz z dx z dy ydx xdy ''=+=+(2,3)0.10.230.12(0.2)0.1dx dy dz==-=?+?-=-(2)求时的全微分当2,1),1ln(22==++=y x y x z解:22222211z z x y dz dx dy dx dy x y x y x y ??=+=+??++++ dy dx dy dx dz323141144112)2,1(+=+++++=(3),u xy yz zx du =++求解:u u udu dx dy dz x y z=2.计算下列各式的近似值(分析运⽤公式010000000()(,)(,)(,)x y f x x y y f x y f x y x f x y y ''+?+?≈+?+?)(1)03.2)1.10(解:令03.0,2,1.0,10,),(00=?==?==y y x x x y x f y 取2.03(10.1)=00000000(,)(,)(,)(,)x y f x x y y f x y f x y x f x y y ''+?+?≈+?+?01.0ln 1.010)2,10()2,10(12?+?+=-x x yx y y9.10810ln 32100≈++= (2) )198.003.1ln(43-+解:令)1ln(),(43-+=y x y x f 取 02.0,1,03.0,100-=?==?=y y x x 原式(10.03,10.02)f =+-23(1,1)11)|(0.03)x -≈+-+34(1,1)1|(0.02)y -+-= 0+005.002.04103.031=?-(3) 0046tan 29sin解:令y x y x f tan sin ),(= 取 00,,,61804180x x y y ππ==-=?=则原式=)1804,1806(ππππ+-f(,)(,)()(,)646418064180x y f f f ππππππππ''≈+-+ =2(,)(,)646411cos tan |()sin sec |2180180x y x y ππππππ?+-+?= 0.5023练习5.41. 求下列函数的导数或偏导数。

多元函数微分学的应用习题及详细解答

多元函数微分学的应用习题及详细解答

(x, y) 0 下的极值点,下列选项正确的是( D )。
A.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 C.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
B.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0 D.若fx(x0, y0 ) 0,则f y(x0, y0 ) 0
x 1 y 2 z 1. 1 1 1
5.已知曲面 z x2 y2 z2 上点 P 处的切平面 x 2y 2z 0 平行,求点 P 的坐标以及曲
面在该点的切平面方程。
解:曲面在点 P 处的法向量为 n Fx, Fy, Fz 2x, 2y, 2z 1 ,依题意,n 1, 2, 2 ,
(0, 0) 处取得极小值的一个充分条件是( A )。
A. f (0) 1, f (0) 0 C. f (0) 1, f (0) 0
B. f (0) 1, f (0) 0 D. f (0) 1, f (0) 0
(5)设 f (x, y)与(x, y) 均为可微函数,且y (x, y) 0,已知(x0, y0)是f (x, y)在约束条件
在何处?
解:行星表面方程为 x2 y2 z2 36 .令 L 6x y2 xz 60 (x2 y2 z2 36) ,求
解方程组 6 z 2x 0 , 2 y 2 y 0 , x 2z 0 ,则可得驻点
x
y
z
(4, 4, 2), ( 3, 0,3), (0, 0, 6) ,结合题意易知 H 在 (4, 4, 2) 处最小,且最小值为 12.
2x a2
2y b2
y
0,
y
b2 a2
x y
所以在点
a, 2
b 2

(完整版)多元函数微分学测试题及答案

(完整版)多元函数微分学测试题及答案

第8章 测试题1.),(y x f z =在点),(00y x 具有偏导数且在),(00y x 处有极值是 0),(00=y x f x 及0),(00=y x f y 的( )条件.A .充分B .充分必要C .必要D .非充分非必要2.函数(,)z f x y =的偏导数z x∂∂及z y ∂∂在点(,)x y 存在且连续是 (,)f x y 在该点可微分的( )条件.A .充分条件B .必要条件C .充分必要条件D .既非充分也非必要条件3. 设(,)z f x y =的全微分dz xdx ydy =+,则点(0,0) 是( )A 不是(,)f x y 连续点B 不是(,)f x y 的极值点C 是(,)f x y 的极大值点D 是(,)f x y 的极小值点4. 函数22224422,0(,)0,0x y x y x y f x y x y ⎧+≠⎪+=⎨⎪+=⎩在(0,0)处( C )A 连续但不可微B 连续且偏导数存在C 偏导数存在但不可微D 既不连续,偏导数又不存在5.二元函数22((,)(0,0),(,)0,(,)(0,0)⎧+≠⎪=⎨⎪=⎩x y x yf x y x y 在点(0,0)处( A). A .可微,偏导数存在 B .可微,偏导数不存在C .不可微,偏导数存在D .不可微,偏导数不存在6.设),(),,(y x v v v x f z ==其中v f ,具有二阶连续偏导数. 则=∂∂22y z( ). (A)222y v v f y v y v f ∂∂⋅∂∂+∂∂⋅∂∂∂; (B)22y vv f∂∂⋅∂∂;(C)22222)(y v v fy v v f ∂∂⋅∂∂+∂∂∂∂; (D)2222y v v f y v v f ∂∂⋅∂∂+∂∂⋅∂∂.7.二元函数33)(3y x y x z --+=的极值点是( ).(A) (1,2); (B) (1.-2); (C) (-1,2); (D) (-1,-1). 8.已知函数(,)f x y 在点(0,0)的某个邻域内连续,且223(,)(0,0)(,)lim 1()x y f x y xy x y →-=+,则下述四个选项中正确的是( ).A .点(0,0)是(,)f x y 的极大值点B .点(0,0)是(,)f x y 的极小值点C .点(0,0)不是(,)f x y 的极值点D .根据所给条件无法判断点(0,0)是否为(,)f x y 的极值点10.设函数(,)z z x y =由方程z y z x e -+=所确定,求2z y x ∂∂∂ 11.设(,)f u v 是二元可微函数,,y x z f x y ⎛⎫= ⎪⎝⎭,求 z z x y x y ∂∂-∂∂ 12.设222x y z u e ++=,而2sin z x y =,求u x ∂∂11.设(,,)z f x y x y xy =+-,其中f 具有二阶连续偏导数,求 2,z dz x y ∂∂∂.13.求二元函数22(,)(2)ln f x y x y y y =++的极值14.22在椭圆x +4y =4上求一点,使其到直线2360x y +-=的距离最短.第8章测试题答案1.A2.A3.D4.C5.A6.C7.D8.C 8. ()()3(1)z y z y e e ---9. 2122z z x y x y f f x y y x∂∂-=-∂∂ 10.2222(12sin )x y z u xe z y x++∂=+∂11.123123231113223233 ()(),()()dz f f yf dx f f xf dyzf f x y f f x y f xyf x y=+++-+∂=+++-+-+∂∂12.极小值11(0,)f ee-=-13. r h==14. 83(,)55。

第八章 多元函数微分练习题

第八章 多元函数微分练习题

5、已知函数 z f (sin x, y 2 ) ,其中 f (u, v) 有二阶连续偏导数,求 z 、 2 z 。 x xy
6、设
z
xf
(x2,
xy)
其中
f
(u, v)
的二阶偏导数存在,求
z y

2z yx

7、设 z f (2x 3y, xy) 其中 f 具有二阶连续偏导数,求 2 z 。 xy
z x
三、计算题
1、设 z f (x2 , x ) ,其中 f 具有二阶连续偏导数,求 z 、 2 z 。
y
x xy
2、已知 z ln x x2 y 2 ,求 z , 2 z 。 x xy
3、求函数 z tan x 的全微分。 y
4、设 z f (x y, xy) ,且具有二阶连续的偏导数,求 z 、 2 z 。 x xy
x1 (
y0
)
A、-1
B、 0
C、 1
D、 2
8、 函数 z ( x y)2 ,则 dz x1, y0 =(

A、 2dx 2dy B、 2dx 2dy
C、 2dx 2dy D、 2dx 2dy
二、填空题
1、函数 z x y 的全微分 dz 2、设 u e xy sin x ,则 u
y
xy
17、设 z f (x2 y, y2 x) ,其中 f 具有二阶连续偏导数,求 2 z 。 xy
18、设
z
z(x,
y)
是由方程
z
ln
z
xy
0
确定的二元函数,求
2z x2
19、设 z yf ( y2, xy) ,其中函数 f 具有二阶连续偏导数,求 2z 。 xy

《微积分(下)》第2章多元函数微分学--练习题

《微积分(下)》第2章多元函数微分学--练习题

第2章 多元函数微分学一、二元函数的极限专题练习:1.求下列二元函数的极限: (1) ()211(,)2,2lim2;y xy x y xy +⎛⎫→- ⎪⎝⎭+ (2)()()2222(,),3limsin ;x y x yxy→∞∞++(3) ()(,)0,1sin lim;x y xy x→ (4)()(,)0,0limx y →2.证明:当()(,)0,0x y →时,()44344(,)x yf x y xy=+的极限不存在。

二、填空题3. 若 22(,)f x y y x y +=-,则 (,)f x y = ;4.函数22(,)ln(1)f x y x y =+-的定义域是D = ; 5. 已知 2(,)x y f x y e = ,则 '(,)x f x y = ; 6. 当 23(,)5f x y x y =,则 '(0,1)x f = ; 7. 若 2xy Z e yx =+,则 Z y∂=∂ ;8. 设 (,)ln()2y f x y x x=+,则 '(1,0)y f =;9. xyZ xe Z ==二元函数全微分d ; 10. arctan()Z xy =设,则dz= .11.1,0xyx y Z e Z====二元函数全微分d三、选择题12.设函数 ln()Z xy =,则Z x∂=∂ ( )A1yBx yC 1xDy x13.设 2sin(),Z xy = 则Z x∂=∂ ( )A 2cos()xy xyB 2cos()xy xy -C 22cos()y xy -D 22cos()y xy14.设 3xy Z =,则Z x∂=∂ ( )A 3xy yB 3ln 3xyC 13xy xy - D3ln 3xyy四、计算与应用题15. (1) 22e x yz +=, 求(0,1),(1,0)xy z z ''; (2) arctan y z x=, 求(1,1),(1,1)xy z z ''--;16.2(,),(,)(,)xy x y f x y e yx f x y f x y ''=+已知求和17.已知 2242(3),x y Z Z Z x y xy+∂∂=+∂∂设求和18.22exyz x y=+,求y xz z '';。

第九章多元函数微分学习题简解

第九章多元函数微分学习题简解

基本训练11.设函数222),(yx xy y x f +=,求⎪⎭⎫⎝⎛x y f ,1. 答案:222yx xy +2.求下列函数的定义域:(1)()84ln 2+-=x y z ; 答案:)}2(4|),{(2->x y y x ; (2)yx yx z -++=11; 答案:|}||),{(y x y x >;(3)xy z arcsin=; 答案:}0|||||),{(≠≤x x y y x 且3.求下列极限: (1)11lim 22220-+++→→y x yx y x ; 提示:分母有理化;答案:2(2)xxy y x )sin(lim0→→; 答案:0(3)()yxy x y x 1cos1sinlim 30+→→. 提示:无穷小与有界函数之积仍是无穷小; 答案:04.证明极限yx y x y x -+→→00lim不存在:提示:令(x, y ) 沿不同的路径kx y =趋向于原点,极限等于不同的值.5.函数yx z -=1在何处是间断的?答案:在位于xOy 平面的直线y = x 上.6.讨论函数⎪⎩⎪⎨⎧=+≠++=0,00,222222yx y x y x xy z 的连续性.提示:选取直线kx y =, 则2222)0,0(),(l 22)0,0(),(1im limkkkx x kxy x xykxy y x kxy y x +=+=+=→=→随着k 的变化而变化,即22)0,0(),(limyxxyy x +→不存在,函数在除)0,0(外任一点都连续.7.求下列函数的偏导数: (1) 22yx y x z +-+=;答案:221yx x xz +-=∂∂,221yx y yz +-=∂∂(2)yx z tanln =; 答案:yx yx y xz cossin1=∂∂,yx y x y x yz cossin2-=∂∂(3)yx z arctan =;答案:)1(22yyx x yxxz +=∂∂,)1(2ln 2yyx x x yz +=∂∂(4))sec(xy z =;答案:)sec()tan(xy xy y xz ⋅=∂∂,)sec()tan(xy xy x yz ⋅=∂∂8.设⎪⎩⎪⎨⎧=+≠++=0,00,),(4444442yx y x y x xyy x f ,证明函数),(y x f 在)0,0(处偏导数存在,但不连续.简解: 000lim)0,0()0,(lim )0,0(0=-=-=→→xxf x f f x x x ,同理0)0,0(=y f ; 但0≠k 时,442)0,0(),(limy x xykxy y x +=→∞=+==→443)0,0(),(limkxx kxkxy y x ,所以函数在)0,0(处不连续.基本训练21.求下列函数的二阶偏导数: (1) yxz 2=,求22xz ∂∂,yx z ∂∂∂2;答案:2222)12(2--=∂∂y xy y xz ,)ln 21(2122x y xyx z y +=∂∂∂-(2) x y y x z sin sin 33+=,求yx z∂∂∂2;答案:x y y x cos 3cos 322+(3) )l n(xy x z =,求yx z ∂∂∂23.答案:02.设222zy x r ++=,证明rzr yr xr 2222222=∂∂+∂∂+∂∂.简解: rx zyxxxr =++=∂∂222,322222rz yrxr x r xr +=∂∂⋅-=∂∂,同理可得,32222rz xyr +=∂∂32222ry x zr +=∂∂,因此rrz y x zr yr xr 2)(23222222222++=∂∂+∂∂+∂∂3.求下列函数的全微分:(1) y x z arcsi n =; 答案:22||x y y xdyydx --(2))ln(22y x z +=,求)1,1(dz ; 答案:dy dx +(3) zy x u =. 答案:⎥⎦⎤⎢⎣⎡++xdz y xdy z dx x yzx yz ln ln4.求函数32y x z =当2=x ,1-=y ,02.0=∆x ,01.0-=∆y 时的全增量及全微分.答案:.2.0,20404.0-=-=∆dz z*5.设有一圆柱,它的底圆半径r 由2cm 增加到05.2cm ,其高h 由10cm 减少到8.9cm ,试确定其体积的近似变化.6.设22uv v u z -=,而y x u cos =,y x v sin =,求xz ∂∂,yz ∂∂.答案:)sin (cos 2sin 232y y y x xz -=∂∂,)cos(sin)sin (cos 2sin 3333y x x y y y x yz +++-=∂∂7.设xy z =,而t e x =,t e y 21-=,求dtdz . 答案:t t e e ---.8.设)arctan(xy z =,而xe y =,求dxdz . 答案:xxex x e 221)1(++.基本训练31.设1)(2+-=a z y eu ax,而x a y sin =,x z cos =,求dxdu . 答案:x e ax sin .2.设())4(32y x y x z ++=,求xz ∂∂,yz ∂∂.两边取对数 答案:()())32ln(3232)4(2414y x y x y x y x xz yx y x +++++=∂∂+-+,()())32ln(32432)4(3414y x y x y x y x yz yx y x +++++=∂∂+-+4.设)(u xF xy z +=,而xy u =,)(u F 为可导函数,求证xy z yz yx z x+=∂∂+∂∂.解答: 因为xyu xy xu 1,2=∂∂-=∂∂,故)()()()(u F x y u F y xu u F x u F y xz '-+=∂∂'++=∂∂)()(u F x yu u F x x yz'+=∂∂'+=∂∂,所以 xy z xy u xF xy u F y xy u F y u xF xy yzyx zx+=++='++'-+=∂∂+∂∂))(()()()(5.求下列函数的一阶偏导数(其中f 具有一阶偏导数):(1))(zx yz xy f u ++=;答案:)()(xz yz xy f z y xu ++'+=∂∂,)()(xz yz xy f z x yu++'+=∂∂,)()(xz yz xy f y x zu ++'+=∂∂(3)),,(xyz xy x f u =.答案:321f yz f y f xu '+'+'=∂∂,32f xz f x yu '+'=∂∂,3f xy zu '=∂∂6.设)(22y x f y z -=,其中)(u f 为可导函数,试求yz y xz x ∂∂+∂∂11.简解: 因为)()(22)()(2222222222y xfy x f xy x y xf y xfy xz --'-=⋅-'--=∂∂,)()(2)()()2()()(222222222222222y xfy x f yy xf y xfy y x f y y xf yz --'+-=--⋅-'--=∂∂,所以yz y xz x ∂∂+∂∂11)()(222222y xfy x f y --'-=)()(2)(22222222y xyfy x f y y xf --'+-+)(122y x yf -=.7.求下列函数的二阶偏导数(其中f 有二阶连续的偏导数): (1) )(222z y x f u ++=,求22xu ∂∂;答案:)(4)(22222222z y x f x z y x f ++''+++'.(2)⎪⎪⎭⎫ ⎝⎛=y x x f u ,,求22y u ∂∂; 答案:2242232f yx f yx ''+'.(3) ),sin (22y x y e f z x +=,求yx z ∂∂∂2;简解:因为 212s i n f x f y e xz x'+'=∂∂, 所以)2c o s (2)2c o s (s i n c o s 2221121112f y f y e x f y f y e y e f y e yx z x xx x ''+''+''+''+'=∂∂∂ y e f f xy f y x y y e y y e f x x x cos 4)cos sin (2cos sin 12212211'+''+''++''=.(4) ),,(y x u f z =,yxe u =,求yx z ∂∂∂2;答案:1232113112f e f f xe f e f xe y y y y '+''+''+''+''8.设)()(t x t x y μψμϕ-++=,其中ϕ,ψ是任意的二次可导函数,求证: 22222xy ty ∂∂=∂∂μ.简证:因为 )()(t x t x ty μψμμϕμ-'-+'=∂∂,)()(2222t x t x ty μψμμϕμ-''++''=∂∂又 )()(t x t x xy μψμϕ-'++'=∂∂,)()(22t x t x xy μψμϕ-''++''=∂∂所以22222xy ty ∂∂=∂∂μ.基本训练41.设xy yx arctan ln22=+,求dxdy .提示:原方程就是xy y x arctan)ln(2122=+,对方程两边关于x 求导;也可以用隐函数的求导方法求解,令xy y xz y x F arctan)ln(21),,(22-+=, 利用隐函数存在定理的求导公式来解. 答案:yx y x -+.2.设03333=-++axyz z y x ,求xz ∂∂,yz ∂∂.答案:axyz xayz xz --=∂∂22,axyz yaxz yz --=∂∂22.3.设0=-xyz e z ,求xz ∂∂,yz ∂∂.简解:令xyz e z y x F z -=),,(,则yz F x -=,xz F y -=, xy e F z z -= xz F y -= 所以xz ∂∂xy eyzxy eyzzz-=---=,yz ∂∂xyexzxy exzzz-=---=因此yx z ∂∂∂2=--∂∂--∂∂+=2)()())((xy e x yz eyz xy e yz y z zzz()zy x e xyz zexy e z xz22223)(1---4.证明由方程0),(=--bz cy az cx ϕ(),(v u ϕ具有连续的偏导数,a ,b ,c 为常数)所确定的函数),(y x f z =满足关系式c yz bx z a=∂∂+∂∂.简解:(方法一)方程两边微分得,0)()(212121ϕϕϕϕϕϕ'+''+'=⇒=-⋅'+-⋅'b a dy c dx c dz dz b dy c dz a dx c因此211ϕϕϕ'+''=∂∂b a c xz ,212ϕϕϕ'+''=∂∂b a c yz ,得c yz bxz a=∂∂+∂∂.(方法二) 记),,(bz cy az cx F --=ϕ 则,211ϕϕϕ'+''=-=∂∂b a c F Fxz zx.212ϕϕϕ'+''=-=∂∂b a c F Fxz zy5.设023=+-y xz z ,求22xz ∂∂,22y z ∂∂.答案:3222)23(16x z xz xz --=∂∂,3222)23(6x z zyz --=∂∂7.设223),,(z y x z y x f u ==,其中),(y x z z =是由方程03333=-++xyz z y x 所确定的函数,求)1,0,1(-∂∂xu .简解:令 xyz z y x z y x F 3),,(333-++=, 则,332yz x F x -= xy z F z 332-=;xyz xyz xyz yz x xz --=---=∂∂22223333,所以xz z y x z y x xu ∂∂⋅+=∂∂2322223.232223222xyz xyz z y x z y x --⋅+=基本训练51.求曲线2y x =,3x z =在)1,1,1(处的切线与法平面方程.答案:切线方程611121-=-=-z y x ,法平面方程962=++z y x2.求出曲线t x =,2t y =,3t z =上的点,使在该点的切线平行于平面42=++z y x .简解:曲线上任一点处的切线的方向向量为 ()23,2,1t t s =,已知平面的法向量为()1,2,1=n . 由题意得 0=⋅n s ,即 03412=++t t ,解得1-=t 或31-=t ,故所求的点为)1,1,1(--,或⎪⎭⎫ ⎝⎛--271,91,313.求曲线⎩⎨⎧+==++222226y x z z y x 在点)2,1,1(处的切线方程. 提示:曲线可以表示为 ⎪⎪⎩⎪⎪⎨⎧===2sin 2cos 2z t y tx ,曲线上点)2,1,1(处也就是4π=t 时的切线的方向向量为)0,1,1(-=s.答案:切线方程⎩⎨⎧=--+=-++0222062z y x z y x 或⎪⎩⎪⎨⎧=--=--021111z y x4.求曲面xy z arctan=在⎪⎭⎫⎝⎛4,1,1π处的切平面和法线方程.答案:切平面方程022=-+-πz y x , 法线方程241111π-=--=-z y x5.求曲面273222=-+z y x 在点)1,1,3(处的切平面与法线方程.答案:切平面方程0279=--+z y x , 法线方程111193--=-=-z y x6.在曲面222y x z +=上求一点,使该点处的法线垂直于平面0142=+++z y x ,并写出法线方程.答案:所求点为),3,1,1(-- 法线方程134121-=+=+z y x .7.求曲面2222z yx +=上平行于平面01422=+-+z y x 的切平面方程.答案:切平面方程012=+-+z y x8.求下列函数在指定点处沿指定方向的方向导数: (1) y e y e z yxcos si n +=,在点⎪⎭⎫⎝⎛2,0π沿向量}1,2{-; 提示:方向l 的方向余弦为51cos ,52cos -==βα;ye xz xs i n =∂∂,y e y e y e yz yyxsin cos cos -+=∂∂,βαπππc o s c o s )2,0()2,0()2,0(yz xz lz ∂∂+∂∂=∂∂522πe +=.(2) z e xy u +=,在点)0,1,1(处沿从点)1,2,4(-到)0,1,5(的方向.提示:ze zu x yu y xu =∂∂=∂∂=∂∂,,,方向l 的方向向量)1,1,1(-=s;所以方向l 的方向余弦为:31cos ,31cos ,31cos =-==γβα;代入方向导数公式可得γβαcos cos cos )0,1,1()0,1,1()0,1,1()0,1,1(zu yu xu lu ∂∂+∂∂+∂∂=∂∂31=9.设从x 轴正向到方向l 的转角为θ,求函数332y xy x u +-=在点)1,1(M 处沿方向l 的方向导数lu ∂∂.问θ为何值时,方向导数lu ∂∂:1)具有最大值;2)具有最小值;3)等于零.提示:2232,23yy xu x x xu +-=∂∂-=∂∂,1)1,1()1,1(=∂∂=∂∂yu xu ,)4sin(2sin cos )1,1(πθθθ+=+=∂∂lu ,所以当4πθ=时,lu ∂∂最大;当45πθ=时,lu ∂∂最小;当43πθ=或47πθ=时,0=∂∂lu .10.设z y x xy z y x u 62332222---+++=,求)0,0,0(f grad 及)1,1,1(f grad .答案:k j i f 623)0,0,0(---=grad ,j f 3)1,1,1(=grad11.设22y xy x z +-=,求在点)1,1(处的梯度,并问函数z 在该点沿什么方向使方向导数:1)取最大值;2)取最小值;3)等于零.答案:j i z +=)1,1(grad ,函数z 在)1,1(处沿j i +方向lz ∂∂取最大值,沿j i --方向lz ∂∂取最小值,沿j i +-或j i -方向lz ∂∂取值为零.基本训练61.问函数z xy u 2=在点)2,1,1(-P 处沿什么方向的方向导数最大?并求方向导数的最大值.提示:22,2,xy zu xyz yu z y xu =∂∂=∂∂=∂∂,4,2)2,1,1()2,1,1(-=∂∂=∂∂--yu xu ,1)2,1,1(=∂∂-zu ,所以kj i u +-=42grad 是方向导数取最大值的方向, 此方向导数的最大值为21||=u grad .2.求下列函数的极值:(1) 22324y xy x x z -+-=; 答案: 极大值为0)0,0(=f(2) y y ye x e z -+=cos )1(; 答案: 极大值为2)0,2(=πk f , ,2,1,0±±=k 3.求函数22y x z +=在条件1=+by a x 下的极值.答案:极小值为2222222222,b a b a b a ba b a ab f +=⎪⎪⎭⎫ ⎝⎛++ 4.建造容积为一定的矩形水池.问怎样设计,才能使建筑材料最省.简解:设水池的长宽高分别为z y x ,,,令)(22),,,(V xyz zx yz xy z y x L --++=λλ, 关于λ,,,z y x 求偏导,求得驻点为)4,2,2(333V V V ,这是唯一可能极值点,由问题的实际意义得,所用的建筑材料存在极小值,故长宽高分别为3334,2,2V V V 时,建筑材料最省.5.在椭圆4422=+y x 上求一点,使其到直线0632=-+y x 的距离最短.提示:目标函数为 13632),(-+=y x y x f ,条件函数为44),(22-+=y x y x ϕ.为了求目标函数的最值,可设)44()632(),,(222-++-+=y x y x y x L λλ,求得可能极值点为)53,58(,)53,58(--, 代入, 比较得所求点⎪⎭⎫ ⎝⎛53,58. 6.设有一槽形容器,底是半圆柱形,其长为H ,截面是半径为R 的半圆,横放在水平面上,其表面积为常数0S ,试求R 与H 的值,使其容积最大.简解:令)(21),,(022S R RH H R H R L -+-=ππλπλ,求得唯一可能极值点为:)32,3(),(0ππS S H R =;因此当π30S R =,π32S H =时,容积最大.7.在平面023=-z x 上求一点,使得它到点)1,1,1(A 、点)4,3,2(B 的距离平方之和为最小.提示:目标函数为2222)2()1()1()1(),,(-+-+-+-=x z y x z y x f 22)4()3(-+-+z y)16543(2222+---++=z y x z y x ,条件函数为z x y x 23),(-=ϕ,答案是点⎪⎭⎫⎝⎛2663,2,1321.本篇自测A 卷一、填空题1.答案:),(y x f 2.答案:不存在3.提示:分式函数在分母为0处间断,答案为:πn x =,或πm y =,(n ,,2,1,0±±=m ). 4.答案:⎩⎨⎧==0),(0),(0000y x f y x f y x二、单项选择题 1. 答案:B2.提示:函数),(y x f 在一点连续、偏导数存在、可微之间有如下关系全微分存在 ⇔ 点存在偏导数在点连续在函数点可微函数在点连续在偏导数P P P P ⇓⇒⇓故答案为B.3.提示:参见第2小题提示,答案为A .4.提示:令3),,(-+-=xy z e z y x F z ,则y F x =,x y F =,1-=z z e F 所以曲面在点)0,1,2(处法向量为:)0,2,1(,从而可得C 为正确答案.三、计算题1. 提示:有界函数与无穷小的乘积仍为无穷小, 答案为0.2. 答案:)1(21yyy x x yxxz +=∂∂-,)1(2ln yyyx x x x yz +=∂∂3. 提示:两边取对数得()y x y x z ++=2ln )2(ln , 两边关于y 求偏导得122ln(2)2z x y x y z yx y∂+=++∂+.故答案为:()⎥⎦⎤⎢⎣⎡+++++=∂∂+y x y x y x y x yz yx 22)2ln(222.4. 答案:321f y f f xz '+'+'=∂∂,321f x f f yz '+'-'=∂∂5.答案:)22()(122323zzze z y z xy zey xy e ---.6.答案:2222y x y x +-. 7.答案:22212f xy f ''-''. 8.答案:dydx 5252-.9.提示:令09632=-+=∂∂x xxz , 得3-=x 或1=x ,令0632=+-=∂∂y yyz , 得0=y 或2=y ;所以驻点为 )2,1(),0,1(),2,3(),0,3(--, 利用二元函数极值的充分条件可求得极小值为5)0,1(-=f ,极大值为31)2,3(=-f .四、应用题1. 简解:设切点为),,(z y x ,则切点处的方向向量)3,2,1(2x x s =,已知平面的法向量)1,2,1(=n.由题意得 s 与n 垂直, 即 0=⋅n s, 所以03412=++x x , 解得1x =-或13x =-. 故所求点为:)1,1,1(--或⎪⎭⎫ ⎝⎛--271,91,31.2. 简解: 令)1()1543(),,,,(222-++-+++=y x z y x z z y x L μλμλ,分别求关于μλ,,,,z y x 的偏导数得,52,24,23λμλμλ+=+=+=z L y L x L x y x1543-++=z y x L λ,122-+=y x L μ解得可能极值点为:⎪⎭⎫ ⎝⎛1235,53,54⎪⎭⎫ ⎝⎛--1285,53,54. 比较z 的大小得所求点为: ⎪⎭⎫⎝⎛1235,53,54.3. 简解: 设第一卦限内的内接点为),,(z y x , 由空间解析几何知识得: 直角平行六面体的长宽高分别为z y x 2,2,2, 体积xyz V 8=; 故令).1(8),,,(222222-+++=cz by ax xyz z y x L λλ答案为:长、宽、高分别为32a ,32b ,32c 时,有最大体积 abc V 338=.五、证明题1.简解: )(z y x z ϕ+= 两边关于x ,y 求偏导得xz z y xz ∂∂'+=∂∂)(1ϕ,yz z y z yz ∂∂'+=∂∂)()(ϕϕ,解得 )(11z y x z ϕ'-=∂∂,)(1)(z y z yz ϕϕ'-=∂∂, 又 xzz f xu ∂∂'=∂∂)(, yz z f yu ∂∂'=∂∂)(所以xu z yu ∂∂=∂∂)(ϕ.2. 简证: 令 ⎪⎭⎫⎝⎛----=c z b y cz ax f z y x F ,),,(,则cz f F cz f F y x -'=-'=21,, 2221)()()()(c z b y f c z a x f F z ---⋅'+---⋅'=.所以曲面上任一点),,(z y x 处的法向量为:),)()(,,(2121cz b y f cz a x f f f ---⋅'+---⋅'''故点),,(z y x 处的切平面为,0)]()()([)()(2121=----⋅'+---⋅'+-⋅'+-⋅'z Z cz b y f cz a x f y Y f x X f即 .0)])(())([()])(())([(21=-----⋅'+-----⋅'z Z b y c z y Y f z Z a x c z x X f 不论z y x ,,取何值,c Z b Y a X ===,,总能使上式恒成立;即切平面总通过点),,(c b a .本篇自测B 卷一、填空题1.答案:}104|),{(222<+<≤y x x y y x 且. 2.提示:分子有理化,原式41241lim)24(44lim000=++=++-+=→→→→xy xy xy xy y x y x .3.提示:混和偏导数连续,则它们相等;答案为: = .4.提示:函数可微分, 则方向导数存在(显然偏导数连续也保证方向导数存在). 答案为: 函数可微分.二、单项选择题 1.提示:令xy v y x u =+=,,则1u x v=+,1uv y v=+ 代入得21(,)1v f u v u v-=+,故答案为B2.简解:xb x a f b x a f x ),(),(lim--+→xb a f b x a f xb a f b x a f x x ---+-+=→→),(),(lim),(),(lim),(2b a f x =.3.提示:切点为)0,1,1(, 方向向量为)1,1,1(-,所以答案为D.*4.简解:偏导数存在,不一定可微,故A 错误;由题设条件知曲面),(y x f z =的法向量为}1,1,3{--,故B 错误;曲线⎩⎨⎧==0),(y y x f z 在点))0,0(,0,0(f 的一个切向量为{1,0,}{1,0,3}x f =,故C正确;也可以根据曲线的切向量与曲面的法向量互相垂直来判定答案C 正确而D 错误..三、计算题 1.提示: 因为xy yxy x xy y xy x xy =++≤+-≤22222222)()(0⎪⎪⎭⎫ ⎝⎛-≤+-≤22222221)(0y x y x y x xy 或,由夹逼准则得0)(lim2222=+-→→yxy x xy y x .2.答案:⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛+'x y f xy x y f xy f )(.3.简解:21)(f x f xz '+''=∂∂ϕ, 所以))(()())((222112112f y f x f y f yx z'''+''-+''''+''-=∂∂∂ψϕψ 221211)()1)()(()(f y f y x f x '''+''-''+'''-=ψψϕϕ. 4.提示:两边关于x 求偏导得:)(222xy x y f x x y f x zzx -⎪⎭⎫⎝⎛'+⎪⎭⎫ ⎝⎛=∂∂+,zx x y f x y x y f xz 22-⎪⎭⎫⎝⎛'-⎪⎭⎫ ⎝⎛=∂∂.也可以令⎪⎭⎫ ⎝⎛-++=x y xf z y x z y x F 222),,(,利用隐函数求偏导公式来计算.5.答案:⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+dz y z x dy x y z dx z x y z y x xzyln ln ln 6. 简解:(解法一)利用全微分的形式不变性,方程两边求微分得:0)()()(21=++-+'++'zdz ydy xdx dz dy F dz dx F , 所以 z F F dy F y dx F x dz -'+''-+'-=2121)()(.(解法二)方程两边关于x 求偏导得: 0)1(21=∂∂--∂∂'+∂∂+'xz zx x z F x z F ,解得 z F F F x x z-'+''-=∂∂211,同理得 z F F F y y z-'+''-=∂∂212, 所以 z F F dy F y dx F x dz -'+''-+'-=2121)()(. *7.简解:方程组两边对x 求偏导得: ⎪⎩⎪⎨⎧=∂∂+∂∂-=∂∂-∂∂-022022x v v x u u y x v u v x u x解关于xu ∂∂,xv ∂∂的二元一次方程组得)(24222v u uyxv xu ++=∂∂,)(24222v u vyxu xv +-=∂∂.四、应用题1. 简解:曲面上任一点),,(z y x 处切平面的法向量为 )1,2,2(-=y x n, 又已知直线的方向向量为: )2,1,0()2,0,1(⨯=s)1,2,2(--= 由题意, s n//, 即112222-=-=-y x .解得1,1==y x ,代入曲面方程得2=z ,故所求的切平面方程为0)2()1(2)1(2=---+-z y x ,即 0222=--+z y x .*2.简解:x y yh y x xh +-=∂∂+-=∂∂2,2,00),(00),(2,20000x y y h y x x h y x y x +-=∂∂+-=∂∂,所以j y x i x y y x h )2()2(),(000000-+-=grad ,沿梯度j y x i x y y x h )2()2(),(000000-+-=grad方向的方向导数最大,最大值为 00202000855),(y x y x y x g -+=. 令xyy x y x L 855),,(22-+=λ)75(22--+-xy yxλ,由拉格朗日乘数法得)5,5(1-M ,)5,5(2-M ,),35,35(3M )35,35(3--M 为),(00y x g 的可能极值点,计算相应函数值并比较得)5,5(1-M 或)5,5(2-M 可作为攀登的起点.五、证明题 1. 简证:因为=∂∂xz [])]()([2)()(2ax y ax y a ax y ax y a -+++-'-+'ψψϕϕ,[])]()([21)()(21ax y ax y ax y ax y yz --++-'++'=∂∂ψψϕϕ;[])]()([2)()(22222ax y ax y aax y ax y axz -'-+'+-'++''=∂∂ψψϕϕ,[])]()([21)()(2122ax y ax y ax y ax y yz -'-+'+-'++''=∂∂ψψϕϕ.所以022222=∂∂-∂∂yz axz .*2.简证:因为 ()22|||)|2(02/12/3222/32222xy xy yx yxyx =≤+≤, 又022||lim2/10=→→xy y x ,所以 ()0lim2/3222200=+→→yx yx y x ,注意到0)0,0(=f ,因此函数在点)0,0(处连续;因为0)0,(≡x f ,所以0)0,0()0,(lim )0,0(0=-=→x f x f f x x , 同理 0)0,0(=y f ;考虑极限 ρρ)0,0(),(limf y x f -→()22222)0,0(),(limy x yx y x +=→,其中22yx+=ρ,若沿直线kx y =取极限,则()22242242)0,0(),()1(1limk kxk xk kxy y x +=+=→随着k 的变化而变化,表明上述极限不存在,因此函数在点)0,0(处不可微.。

多元函数微分学选择题

多元函数微分学选择题

第七章 多元函数微分学1 多元函数题目尽量简单,难难度系数在0.1-0.5每个题目都标上难难度系数),格式如下: 选择题:1、设。

,则。

等于( )(c, 难难度系数0.1) A 、 B 、 C 、 D 、 1、2200lim3x y xyx y →→+之值为( )(B, 难难度系数0.2)A 、 0B 、 不存在C 、13 D 、 142、若()(),ln 1ln xy xy e f x y x x e x ⎛⎫-=-⎪⎝⎭,则(),f x y 等于( )(D, 难难度系数0.2) A 、1xye B 、x x e yC 、 xxe D 、 2x yxe ye3、已知ln x y x =是微分方程yx y x y ϕ⎛⎫'=+ ⎪⎝⎭的解,则x y ϕ⎛⎫ ⎪⎝⎭的表达式为( )(A, 难难度系数0.3) A 、22y x - B 、22y x C 、22x y- D 、22x y4、设函数(),zf x y =的定义域为(){},01,01D x y x y =≤≤≤≤,则函数()23,z f x y =的定义域为( )(B, 难难度系数0.3) A 、 (){},01,01D x y x y =≤≤≤≤ B 、 (){},11,01D x y x y =-≤≤≤≤C 、(){},01,11D x y x y =≤≤-≤≤ D 、 (){},11,11D x y x y =-≤≤-≤≤ 5、下列函数中,在点()0,0处连续的函数是( )(c, 难难度系数0.3)A 、33x y z x y +=+ B 、()()()()222,,0,010,,0,0xyx y x y z x y -⎧≠⎪++=⎨⎪=⎩C 、sin(),00,0xy x z xx ⎧≠⎪=⎨⎪=⎩ D 、 ()()()(),,0,00,,0,0x y x y x y z x y -⎧≠⎪+=⎨⎪=⎩6、设()22,f x y x y x y +-=-,则(),f x y =( )(D, 难难度系数0.1)A 、22x y - B 、 22x y + C 、 2()x y - D 、 xy7、22(,)(,)limx y x yx xy y →∞∞+=-+( )(A, 难难度系数0.3)A 、 0B 、 1C 、1- D 、 ∞8、设(),,0,xyx y x y f x y x y ⎧≠⎪-=⎨⎪=⎩,则(),f x y 在()0,0点( )(D, 难难度系数0.2) A 、 极限存在且为1 B 、极限存在且为1- C 、 连续 D 、 极限不存在9、设()()()()()242,,0,0,0,,0,0x yx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩,则( )(c, 难难度系数0.2)A 、 极限()(,)(0,0)lim,x y f x y →存在,但(),f x y 在点()0,0处不连续 B 、 极限()(,)(0,0)lim ,x y f x y →存在,且(),f x y 在点()0,0处连续 C 、 极限()(,)(0,0)lim,x y f x y →不存在,但(),f x y 在点()0,0处不连续 D 、 极限()(,)(0,0)lim,x y f x y →不存在,但(),f x y 在点()0,0处连续 10、函数()1,sin cos f x y x y=的间断点为( )(D, 难难度系数0.1)A 、(),x y ,其中2,1,1,2,x y n n π===±±B 、 (),x y ,其中2,1,1,2,2x y n n ππ==+=±±C 、(),x y ,其中,1,1,2,x y n n π===±±D 、(),x y ,其中,,1,1,2,2x n y n n πππ==+=±±11、下列式子正确的是( )(D, 难难度系数0.3) A 、2200lim 0x y xyx y →→=+ B 、 00lim0x y xy x y →→=+ C 、 32600lim 0x y xy x y →→=+ D 、 2244lim 0x y x y x y →∞→∞+=+12、00limx y xyx y →→+之值为( )(B, 难难度系数0.2)A 、 0B 、 不存在C 、∞ D 、 1-13、2(,)lim x y →=( )(A, 难难度系数0.2)A 、 12B 、 不存在C 、 1-D 、 ∞的不存在14、设()22,f x y x y x y +-=-,则(),f x y =( )(B, 难难度系数0.1)A 、()22y x y x ⎛⎫+- ⎪⎝⎭B 、211y x y ⎛⎫- ⎪+⎝⎭ C 、 11y x y ⎛⎫- ⎪+⎝⎭D 、 22x y - 15、函数22ln 4x y z +-=的定义域是( )(c, 难难度系数0.2)A 、 224x y +≥且20x y >≥B 、 224x y +>且20x y ≥≥C 、224x y +>且20x y >≥ D 、 224x y +≥且20x y ≥≥16、已知函数()2,4f x y x y =+,则(),f x y xy -=( )(B, 难难度系数0.2)A 、 ()2x y - B 、()2x y + C 、24x y - D 、 24x y +17、已知函数()33,2f x y x y =+,则(),f y x --=( )(C, 难难度系数0.1)A 、332xy - B 、 332y x + C 、 332x y -- D 、 332x y -+18、已知函数()2,2x y f x y x y-=-,则()1,3f =( )(B, 难难度系数0.1)A 、15 B 、 5 C 、 15- D 、 5- 19、已知函数()22,3f x y x y x y -+=+,则(),f x y =( )(D, 难难度系数0.2)A 、223()()x y x y -++B 、22()3()x y x y -++C 、22xxy y ++ D 、 22x xy y -+20、已知函数(),32f x y x y =+,则()(),,f xy f x y =( )(B, 难难度系数0.2)A 、32x y +B 、364xy x y ++ C 、36xy x + D 、34xy y +20、()2222arcsin ln 14x y z x y +=++-的定义域是( )(D, 难难度系数0.2) A 、(){}22,14x y x y ≤+≤ B 、(){}22,14x y x y <+< C 、(){}22,14x y xy ≤+< D 、 (){}22,14x y x y <+≤21、)]ln(ln[x y x z -=的定义域是( )(D, 难难度系数0.2)A 、(){},0,1x y x x y x <<<+B 、 (){},,0,1x y x y x >≥+C 、(){}(){},,0,1,0,1x y x y x x y x x y x >≥+⋃<<<+ D 、 (){}(){},,0,1,0,1x y x y x x y xx y x>>+⋃<<<+ 22、()()ln arcsin 3z y x x =-+-的定义域是( )(C, 难难度系数0.2)A 、(){},,,2,24x y y x y x x >≤≤< B 、(){},,,2,24x y y x y x x >≤<≤ C 、(){},,,2,24x y y x y x x >≤≤≤ D 、(){},,,2,24x y y x y x x ><≤≤23、02sin limx y xyx →→=( )(A, 难难度系数0.1)A 、2 B 、1 C 、0 D 、不存在24、()2222001lim52sin34x y xy x y →→+=+( )(D, 难难度系数0.2)A 、不存在B 、∞C 、1D 、 025、(,)(0,0)limx y →=( )(A, 难难度系数0.2)A 、14B 、∞C 、1D 、 0 26、00x y →→=( )(D, 难难度系数0.2)A 、∞B 、1C 、0D 、 16-27、二重极限22400lim x y xy x y →→+值为( )(C, 难难度系数0.2)A 、1B 、∞C 、不存在D 、028、二重极限26300lim y x yx y x +→→值为( )(D, 难难度系数0.2)A 、1B 、∞C 、0D 、不存在 29、二重极限()102lim1xx y xy →→+=( )(A, 难难度系数0.2)A 、 2eB 、1C 、∞D 、 030、22()lim (e x y x y x y -+→+∞→+∞+=)( )(C, 难难度系数0.2)A 、1B 、∞C 、0D 、不存在31、函数⎪⎩⎪⎨⎧=≠=0,0,sin ),(x y x xxyy x f 的连续范围是( )(D, 难难度系数0.3) A 、220xy +≠ B 、0xy ≠ C 、0x ≠ D 、 全平面32、函数2222y x z y x+=-在22y x =处( )(B, 难难度系数0.1)A 、不能判定B 、间断C 、连续D 、不间断也不连续 33、函数2sinzx xy=在0xy =处( )(A, 难难度系数0.1) A 、连续 B 、不能判定 C 、不间断也不连续 D 、间断34、函数⎪⎩⎪⎨⎧=+≠++=0,00,2),(222222y x y x y x xy y x f 在)0,0(点( )(A, 难难度系数0.2)A 、间断B 、连续C 、极限存在D 、不间断也不连续 35、函数()22(,)ln f x y x y =+在点)0,0(( )(B, 难难度系数0.2)A 、连续B 、 间断C 、极限存在D 、不间断也不连续2 偏导数1、设(),f x y 在点()00,x y 处偏导数存在,则()()00000,,limx f x x y f x x y x∆→+∆--∆=∆( )(c, 难难度系数0.2) A 、()00,x f x y ' B 、 ()002,x f x y ' C 、 ()002,x f x y ' D 、()001,2x f x y ' 2、设(),ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则()1,0y f '=( )(B, 难难度系数0.3)A 、 1B 、 12C 、 2D 、 0 3、若()22,f xy x y x y xy +=++,则(),x f x y =( )(A, 难难度系数0.3)A 、1- B 、 2y C 、 ()2x y + D 、 2x4、二元函数()()()()()22,,0,0,0,,0,0xyx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点()0,0处( )(c, 难难度系数0.2) A 、 连续,偏导数存在 B 、连续,偏导数不存在 C 、不连续,偏导数存在 D 、 不连续,偏导数不存在 5、已知(),f x y = )(D, 难难度系数0.3)A 、 ()()0,0,0,0x y f f ''都存在B 、 ()0,0x f '不存在(),0,0y f '存在C 、()0,0x f '存在(),0,0y f '不存在 D 、 ()0,0x f '(),0,0y f '都不存在6、二元函数()()()()()242,,0,0,0,,0,0x yx y x y f x y x y ⎧≠⎪+=⎨⎪=⎩在点()0,0处( )(c, 难难度系数0.3)A 、 连续,偏导数存在B 、连续,偏导数不存在C 、不连续,偏导数存在D 、 不连续,偏导数不存在7、设函数(),z f x y =满足222fy∂=∂,且()(),01,,0y f x f x x ==,则(),f x y =( )(B, 难难度系数0.4) A 、21xy y -+ B 、 21xy y ++ C 、221x y y -+ D 、 221x y y ++8、设(),zf x y =在点()00,x y 处偏导数存在,则()00,x y zx ∂=∂( )(B, 难难度系数0.3)A 、()()00000,,limx f x x y y f x y x ∆→+∆+∆-∆ B 、 ()()00000,,lim x f x x y f x y x ∆→+∆-∆C 、()()0000,,limx f x x y f x y x ∆→+∆-∆ D 、 ()()0000,,lim x f x y x f x y x∆→+-∆9、若()22,f xy x y x y xy +=+-,则()(),,x y f x y f x y +=( )(c, 难难度系数0.3)A 、22x y + B 、 23y + C 、 23y - D 、 23x +10、二元函数),(y x f 在点),(00y x 处的两个偏导数),(00y x f x '和),(00y x f y '都存在,是),(y x f 在该点连续的( )条件(D,难难度系数0.3)A 、 充分条件但非必要条件B 、 必要条件但非充分条件C 、 充分必要条件D 、 既非充分条件也非必要条件 11、二元函数(),f x y 在点()0,0处连续,且偏导数存在,()0,00f =,则当()(),0,0x y ≠时,(),f x y 可以等于下列四个式子中的( )(c, 难难度系数0.3)A 、2422x y x y ++ BCD 、22xy x y +12、已知(),f x y = )(c, 难难度系数0.3)A 、 ()()0,0,0,0x y f f ''都存在B 、 ()0,0x f '不存在(),0,0y f '存在C 、()0,0x f '存在(),0,0y f '不存在 D 、 ()0,0x f '(),0,0y f '都不存在13、二元函数()()()()()544,,0,0,0,,0,0x xyx y x y f x y x y ⎧+≠⎪+=⎨⎪=⎩,则()0,0x f =( )(c, 难难度系数0.3)A 、 0B 、∞C 、 1D 、 不存在但不是无穷大14、二元函数()()()()()3322,,0,0,0,,0,0x y xy x y x y f x y x y ⎧-≠⎪+=⎨⎪=⎩,则下列各式错误的是( )(c, 难难度系数0.4) A 、()0,0x f =0 B 、()0,x f y y =- C 、()0,01xy f = D 、 ()0,01xy f =-15、曲线22:44x y z y ⎧+=⎪Γ⎨⎪=⎩在点()2,4,5处的切线与Ox 轴正向的倾角是( )(c, 难难度系数0.3)A 、2π B 、 3π C 、4π D 、 6π 16、设x zy =,则xy z =()(c, 难难度系数0.2)A 、1ln x xy x -B 、()1ln x y x y -+C 、()11ln x y x y -+D 、2ln x y x17、()22,f x y xy x y π=---,则(,)f x y x∂=∂( )22y x y --(c, 难难度系数0.2)A 、22y x y π--- B 、 22y x y -- C 、2y x - D 、 22y x y --18、设()22,f x y xy x y e =--+,则(,)f x y y∂=∂( )(B, 难难度系数0.2)A 、22y x y e --- B 、2x y - C 、 22y x y -- D 、 22y x y --19、已知理想气体状态方程RT PV =,则=∂∂⋅∂∂⋅∂∂PT T V V P ( )(A, 难难度系数0.3 A 、1- B 、 1 C 、 2 D 、 没意义20、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则()0,0x f =( )(C,难难度系数0.3)A 、 1B 、1- C 、 0 D 、 不存在21、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则()0,1x f =( )(A,难度系数0.3) A 、1- B 、 1 C 、 0 D 、 不存在22、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则()0,x f y =( )(B,难度系数0.3)A 、yB 、y -C 、x -D 、123、已知()()()()()2222,,0,0(,)0,,0,0x y xy x y f x y x y x y ⎧-⎪≠=+⎨⎪=⎩,则(),0y f x =( )(A,难度系数0.3)A 、xB 、y -C 、x -D 、124、设)cos()2cos(),(y x y x y x f +-=,则=')4,(ππyf ( )(D,难度系数0.3)A 、0BC 、D 、 -25、设y x y x u arcsin)1(-+=,则xu∂∂在(2,1)的值是( )(A,难度系数0.1)A 、1B 、1-C 、0D 、226、设(ux y =+-,则(,1)x f x 的值是( )(A,难度系数0.1)A 、1B 、1-C 、0D 、2 27、设(21)arcsinx ux y y =+-,则xu ∂∂在(1,2)的值是( )(D,难度系数0.3)A 、1-B 、1+C 、1-D 、 31+28、设(21)arccosx u x y y=+-,则xu ∂∂在(1,2)的值是( )(B,难度系数0.3)A 、1-B 、1-C 、1+D 、 31+29、设(1)arctanx u y y y =+-,则xu ∂∂在(1,2)的值是( )(D,难度系数0.3)A 、15 B 、 15- C 、25- D 、 2530、设2arctan (21)arccoty xue y y=+-,则xu ∂∂在(1,2)的值是( )(C,难度系数0.3)A 、35 B 、35- C 、 65- D 、6531、设(21)arctanyux x x=+-,则u y ∂∂在(1,1)-的值是( )(B,难度系数0.3)A 、32 B 、 12 C 、12- D 、1 32、设2arctan 2y ux x =+,则uy∂=∂( )(D,难度系数0.3) 33、设2arcsin 2y ux y =+,则ux∂=∂( )(A,难度系数0.3)A 、212y yx - B 、22ln yxx C 、2ln y x x D 、2122214y yx x -++34、设(),z f x y x y ==+()3,4x f =( )(D,难度系数0.3)A 、35 B 、85 C 、15 D 、 2535、设(),ln 2y f x y x x ⎛⎫=+ ⎪⎝⎭,则1x y f y ==∂=∂( )(C,难度系数0.3)A 、23 B 、13 C 、12D 、 1 36、设2e xyu =, 则2u uxy x y∂∂+=∂∂( )(C,难度系数0.4) A 、1 B 、224xy x eyC 、0D 、224xy x ey-37、设2x yue=,则2ux y∂=∂∂( )(D,难度系数0.3) A 、22x yxe B 、2x ye C 、()2321x yyx e+ D 、()2221xyx x y e +38、设2sin xu xz y=+,则42u x y z ∂=∂∂∂( )(A,难度系数0.3) A 、0 B 、2xz C 、2z D 、21sin xy y-39、设xyz ln =,则22zx ∂=∂( )(D,难度系数0.4) A 、1 B 、0 C 、2ln 2ln ln x y y y x + D 、 2ln 2ln ln xy y y x- 40、设xyzln =,则2zx y∂=∂∂( )(C,难度系数0.3) A 、0 B 、ln 2ln ln 1xx y y x - C 、 ln ln ln 1x y x y xy ⋅+ D 、 2ln 2ln ln x y y y x - 41、设yxz u arctan =,则222222u u u x y z ∂∂∂++=∂∂∂( )(C,难度系数0.3)A 、()2224xyzxy-+ B 、()2224xyzxy-+ C 、 0 D 、1A 、B 、C 、连续D 、 不连续 42、设()22,f xy x y x y -=+,则1f f x y y∂∂+=∂∂( )(D,难度系数0.3) A 、0 B 、1 C 、2 D 、43 全微分及其应用1、函数(),zf x y =在点()00,x y 处具有偏导数()()0000,,,x y f x y f x y ''是函数在该点可微的( )(A,难度系数0.2)A 、 必要条件但非充分条件B 、充分条件但非必要条件C 、 充分必要条件D 、 既非充分条件也非必要条件 2、二元函数(),f x y 在点()0,0处可微的一个充分条件是( )(C,难度系数0.3)A 、()()()(),0,0lim,0,00x y f x y f →-=⎡⎤⎣⎦B 、()(),00,0lim0x f x f x→-=,且()()00,0,0lim0y f y f y →-= C 、()(,0,0,0,0lim0x y f x y f →-=D 、()()0lim ,00,00x x x f x f →''-=⎡⎤⎣⎦,且()()0lim 0,0,00y y y f y f →''⎡⎤-=⎣⎦ 3、若函数(),f x y 在点()00,x y 处的偏导数存在,则(),f x y 在该点处函数( )(D,难度系数0.3)A 、 有极限B 、连续C 、可微D 、 A 、B 、C 都不成立 4、考虑二元函数(),f x y 的下面4条性质:①(),f x y 在点()00,x y 处连续, ②(),f x y 在点()00,x y 处的两个偏导数连续, ③(),f x y 在点()00,x y 处可微, ④(),f x y 在点()00,x y 处的两个偏导数存在若用“P Q ⇒”表示可由性质P 推出性质Q ,则有( )(A,难度系数0.3) A 、②⇒③⇒① B 、③⇒②⇒① C 、③⇒④⇒① D 、 ③⇒①⇒④ 5、设z=()1,1dz =( )(B,难度系数0.3)A 、()12dx dy + B 、 dx dy + C 、 ()13dx dy + D 、)dx dy + 6、设1zx uy ⎛⎫= ⎪⎝⎭,则()1,1,1du=( )(B,难度系数0.3)A 、dx dy dz ++B 、 dx dy -C 、 dx dz -D 、 dy dz -7、设cos ,sin x r y r θθ==,则xdy ydx -=( )(B,难度系数0.2)A 、2rd rdr θ+ B 、 2r d θ C 、 rdr D 、 rd θ8、在下列条件中,使函数(),z f x y =在点()00,x y 处可微,且全微分为零的是( )(D,难度系数0.3) A 、 具有偏导数且()()0000,0,,0x y f x y f x y ''== B 、()00,x y f∆=C 、()0022,sin x y x y f∆+∆∆=D 、()()0022,x y fx y ∆=∆+∆9、下列函数在点()0,0处可微的是( )(C,难度系数0.3)A、z =B 、()()()(),0,00,,0,0x y z x y ≠==⎩ C 、()()()()()22221sin ,,0,00,,0,0x y x y x y z x y ⎧+≠⎪+=⎨⎪=⎩ D 、()()()()22,,0,00,,0,0xy x y x y z x y ⎧≠⎪+=⎨⎪=⎩10、若()()(),,zf x y x yg x y ==+,(),g x y 在点()0,0处连续,则(),f x y 在该点处结论错的是( )(C,难度系数0.3)A 、 有极限B 、连续C 、不可微D 、 dz dx dy =+11、若函数(),f x y 在点()00,x y 处不连续,则( )、(D,难度系数0.1) A 、()00,f x y 必不存在 B 、()()00(,),lim,x y x y f x y →必不存在C 、()()0000,,,x y f x y f x y 必不存在D 、 (),f x y 在()00,x y 必不可微12、函数(),f x y 在点(),x y 处可微是它在该点偏导数z x ∂∂与z y∂∂连续的( )条件(A,难度系数0.2) A 、 必要 B 、 充分 C 、 充要 D 、 无关 13、设432z x y x =+,则()1,2dz =( )(C,难度系数0.2)A 、()3342423x ydx x y dy ++ B 、1234dx dy + C 、 3412dx dy + D 、3412dx dy -14、arctanxz y=,则dz =( )(D,难度系数0.2) A 、22xdy ydx x y -+ B 、22xdx ydy x y -+ C 、22ydx xdy x y ++ D 、 22ydx xdyx y -+15、(),fx y 在()00,x y 的一阶偏导数连续是(),f x y 在()00,x y 可微的( )条件(B,难度系数0.2)A 、 必要B 、 充分C 、 充要D 、 无关16、若(),f x y =()1,1df=( )(D,难度系数0.2)A 、22xdx ydy x y ++ B 、221xdx ydyx y +++ C 、2dx dy+ D 、3dx dy+17、u =()0,1处的du =( )(B,难度系数0.3)A 、2dxB 、dxC 、()2222yx dx xydy x y--+ D 、222y dx xydyx y-+ 18、设yx yx y x z-+++=arctanln 22,则d z =( )(D,难度系数0.3) A 、()()22x y dy x y dxx y --++ B 、()()22x y dx x y dyx y --++C 、()()22x y dx x y dyx y ++-+ D 、()()22x y dx x y dyx y -+++19、设(),zf x y =在点()00,x y 处的全增量为z ∆,全微分为dz ,则(),z f x y =在点()00,x y 处的全增量与全微分的关系式是( )(B,难度系数0.2) A 、zdz ∆= B 、()z dz o dz ∆=+ C 、()z dz o z ∆=+ D 、()z dz o dx ∆=+20、函数)ln(22z y x u++=,则在点)1,0,1(A 处的全微分为( )(C,难度系数0.2)A 、22dx ydy zdz x y z ++++ B 、2222dx ydy zdzx y z ++++ C 、22dx dz + D 、2dx dz+ 21、函数32),(y x y x f =在点)0,0(处( )(D,难度系数0.3)A 、两个偏导函数连续B 、可微C 、连续且两个偏导数)0,0(),0,0(y x f f ''都不存在 D 、 连续且两个偏导数)0,0(),0,0(y x f f ''都存在,但不可微22、若(),z f x y =在点()00,x y 处可微,则下列结论错误的是( )(B,难度系数0.3)A 、(),z f x y =在点()00,x y 处连续B 、()(),,,x y f x y f x y 在点()00,x y 处连续C 、()(),,,x y f x y f x y 在点()00,x y 处存在D 、 曲面(),zf x y =在点()()0000,,,x y f x y 处有切平面23、二元函数),(y x f 在点),(000y x M 处连续,且),(00y x f x '和),(00y x f y '都存在,这是),(y x f 在点可微的( )条件(B,难度系数0.2)A 、 充分非必要B 、必要非充分C 、 充分必要D 、 既非充分亦非必要 24、.难度0、3答案 设2yu x =,则du =( )(A,难度系数0.3)A 、22212ln y y y xdx yx xdy -+ B 、2221ln y y y xdx x xdy -+C 、221()y y x dx dy -+ D 、22212ln y y y x dy yx xdx -+25、函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全增量z ∆=( )(C,难度系数0.1)A 、0.20B 、0.20-C 、0.2040402004-D 、0.2040402004 26、函数23z x y =在点()2,1-处,当0.02,0.01x y ∆=∆=-时有全微分d z =( )(C,难度系数0.1)A 、0.20B 、0.2040402004C 、0.2040402004-D 、0.20- 27、x y ucos )(ln =,则d u =( )(A,难度系数0.3)A 、cos cos (ln)ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦ B 、cos cos (ln )ln ln sin ln x x y y xdx dy y y ⎡⎤⋅+⎢⎥⎣⎦C 、cos sin (ln)ln ln sin ln x x y y xdx dy y y ⎡⎤-⋅+⎢⎥⎣⎦ D 、cos cos (ln )ln ln sin ln x x y y xdx dy y ⎡⎤-⋅+⎢⎥⎣⎦28、z yxu)(=,则d u =( )(D,难度系数0.3)A 、11()ln z x x dx dy dz y x y y ⎛⎫-+ ⎪⎝⎭ B 、()ln z x z z x dx dy dz y x y y ⎛⎫-++ ⎪⎝⎭ C 、()ln z x z z x dx dy dz y x y y ⎛⎫++ ⎪⎝⎭ D 、()ln z x z z x dx dy dz y x y y ⎛⎫-+ ⎪⎝⎭ 29、2221zy x u++=,则d u =( )(C,难度系数0.3)A 、()()32222xy zxdx ydy zdz -++++ B 、()()32222xy zxdx ydy zdz -++++ C 、 ()()32222x y z xdx ydy zdz --++++ D 、()()32222xy zxdx ydy zdz ++++30、(),f x y =()0,0处( )(C,难度系数0.3)A 、不连续B 、()0,0x f 与()0,0y f 不存在C 、 不可微D 、可微31、设xy zxe y =+,则()1,1dz =( )(B,难度系数0.2)A 、edx dy +B 、 ()21edx e dy ++C 、xyedx dy + D 、()()211xy xy xy e dx x e dy +++4 多元复合函数的求导法则1、设(),u f x y =,且cos ,sin x r y r θθ==,其中f 具有二阶连续的偏导数,则22uθ∂=∂( )(C,难度系数0.3) A 、 2222sin cos xx yy r f r f θθ+B 、 22222sin sin 2cos xx xy yy r f r f r f θθθ-+C 、 22222sin sin 2cos cos sin xx xy yy x y r f r f r f rf rf θθθθθ-+--D 、2222sin cos cos sin xx yy x y r f r f rf rf θθθθ+--2、设(),,tf x xy xyz =,其中f 具有连续二阶偏导数,则2ty z∂=∂∂( )(D,难度系数0.3) A 、2132333xyf x yf xyzf ++ B 、 222333x yf x yzf +C 、2223333x yf x yzf f ++ D 、 2223333x yf x yzf xf ++3、设(),,tf x xy xyz =,其中f 具有连续二阶偏导数,则22tx∂=∂( )(D,难度系数0.3)A 、222112233f y f y z f ++B 、 2121323222yf yzf y zf ++C 、 2222112233121323222y f yf y z f f yzf y zf +++++D 、2222112233121323222f y f y z f yf yzf y zf +++++4、设函数()()(),ux y x y x y ϕϕ=++-,其中函数ϕ具有二阶导数,则必有( )(B,难度系数0.3) A2222u u x y ∂∂=-∂∂ B 2222u u x y ∂∂=∂∂ C 20u x y ∂=∂∂ D 2220u ux x y∂∂+=∂∂∂ 5、设()(),,,zf x v vg x y ==,其中,f g 均有二阶连续导数,则( )(C,难度系数0.3)A2222f f vx v x ∂∂∂+∂∂∂ B222222f f v f vx v x v x∂∂∂∂∂++∂∂∂∂∂C222222222f f v fv f v x x v x v x v x∂∂∂∂∂∂∂⎛⎫+++ ⎪∂∂∂∂∂∂∂∂⎝⎭ D2222222f fv f v x v x v x∂∂∂∂∂⎛⎫++ ⎪∂∂∂∂∂⎝⎭6、设函数222200,0x y z x y +≠=+=⎩,又,x t y t ==,则t dzdt ==( )(C,难度系数0.3) A 、 0 B、 C 、D 、 17、设函数()()()(),x yx yux y x y x y t dt ϕϕψ+-=++-+⎰,其中函数ϕ具有二阶导数,ψ具有一阶导数,则必有( )(B,难度系数0.4)A2222u u x y ∂∂=-∂∂ B 2222u u x y ∂∂=∂∂ C 222u u x y y ∂∂=∂∂∂ D 222u ux y x ∂∂=∂∂∂ 8、设函数()21ax e y z u a -=+,又sin ,cos y a x z x ==,则du dx=( )(A,难度系数0.3)A 、sin ax e x B 、cos ax e x C 、21(cos sin )1ax e a x x a ++ D 、 21cos 1axe x a + A 、 B 、 C 、 D 、 9、设()v uf z,=,其中e ,x u v x y -==+,下面运算中( )(B,难度系数0.3):e x z f f I x u v-∂∂∂=-+∂∂∂,222:v f y x z II ∂∂=∂∂∂A 、I 、II 都不正确B 、I 正确,II 不正确C 、I 不正确,II 正确D 、 I 、II 都正确10、设(),u f x y xz =+有二阶连续偏导数,则2ux y∂=∂∂( )(C,难度系数0.3) A 、 ()2111222f xf x z f xzf ++++ B 、 1222xf xzf +C 、21222f xf xzf ++ D 、 22xzf11、设()(),,,,zf x y z yg x t ==,其中,f g 可微,则zx∂=∂( )(B,难度系数0.3) A 、()(),,,y x f x y z g x t - B 、 1x y x z f f g f +-C 、 ()(),,,y x f x y z g x tD 、1x y x zf fg f ++12、若设()22222,f x y x y M x y∂++=∂∂,其中f为二次连续可微函数,则( )(D,难度系数0.3)A 、2f f M x u v ∂∂⎛⎫=+ ⎪∂∂⎝⎭ B 、 22222f f M x u v ⎛⎫∂∂=+ ⎪∂∂⎝⎭C 、22222f f M xy u v ⎛⎫∂∂=- ⎪∂∂⎝⎭ D 、 22224f f M xy uv ⎛⎫∂∂=- ⎪∂∂⎝⎭13、若函数(),x y uxyf f t xy ⎛⎫+= ⎪⎝⎭为可微函数,且满足()22,u u x y G x y u x y ∂∂-=∂∂,则(),G x y 必等于( )(B,难度系数0.3) A 、x y + B 、 x y - C 、 22x y - D 、 ()2x y +14、设()()2,zf x yg x xy =-+,其中f有二阶连续导数,g 有二阶连续偏导数,则下列正确的是( )(C,难度系数0.3)A2x x xy zf g yg x∂''=++∂ B2,,2xy x xy xy xy xy z f xg g xyg x y ∂'''''''=-+++∂∂ C2122222z f xg g xyg x y ∂'''''''=-+++∂∂ D 2122222zf xg g xyg x y∂'''''''=-++-∂∂ 15、设函数()2222,z x y u x y ϕ=+=+,其中函数ϕ可微,则下列四个式子正确的是( )(B,难度系数0.2) Az u x u x ϕ∂∂∂=⋅∂∂∂ B z d u x du x ϕ∂∂=⋅∂∂ C z d du x du dx ϕ∂=⋅∂ D z du x u dxϕ∂∂=⋅∂∂16、设y zxyf x ⎛⎫= ⎪⎝⎭,且()f u 可导,则z x x ∂+∂z y y ∂∂为( )(D,难度系数0.2)A 、2xy B 、 ()2x y z + C 、()2x y + D 、 2z17、设)(22y x z-=ϕ,其中ϕ具有连续的导数,则下列等式成立的是( )(C,难度系数0.2)A 、y z y x z x∂∂=∂∂ B 、 y z x x z y ∂∂=∂∂ C 、 y z x x z y ∂∂-=∂∂ D 、 yzy x z x ∂∂-=∂∂5 隐函数求导法1、设有三元方程ln 1xzxy z y e-+=,根据隐函数存在定理,存在点()0,1,1的一个邻域,在此邻域内该方程( )(D,难度系数0.3)A 、只能确定一个具有连续偏导数的隐函数(),z z x y =B 、可确定俩个具有连续偏导数的隐函数(),y y x z =和(),z z x y =C 、 可确定俩个具有连续偏导数的隐函数(),x x y z =和(),z z x y =D 、 可确定俩个具有连续偏导数的隐函数(),x x y z =和(),y y x z =2、已知,tan ,cos zxx y z e xe t y t +-===,则220t d zdt ==( )(D,难度系数0.3)A 、12 B 、 14 C 、 18 D 、 138- 3、若(),u u x y =为可微函数,且满足()22,1,y x y x uu x y x x==∂==∂,则必有2y x u y=∂=∂( )(C,难度系数0.3)A 、 1B 、12 C 、 12- D 、 1- 4、设函数(),z z x y =由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( )(B,难度系数0.3) A 、 x B 、 z C 、 x - D 、 z -5、设(),z z x y =由方程()22y z xf y z +=-确定,f 可微,则z zxy x y∂∂+=∂∂( )(B,难度系数0.3)A 、xB 、yC 、zD 、 1 6、设函数(),z f x y =由方程()x y z x y z e-++++=确定,则( )(C,难度系数0.3)A 、z zx y∂∂≠∂∂ B 、2222z z x y ∂∂≠∂∂ C 、 222z z x y y ∂∂=∂∂∂ D 、 222z z x x y ∂∂≠∂∂∂7、设(),z x y 由方程()22ln 0xz xyz xyz -+=确定,则zx∂=∂( )(C,难度系数0.2)A 、z x B 、 x z C 、 z x - D 、 x z- 8、设ln x zz y=,则()0,1=dz ( )(B,难度系数0.2) A 、1122dx dy + B 、 1122dx dy - C 、 dx dy + D 、 dx dy - 9、设(),0f x az y bz ++=,则z zab x y∂∂+=∂∂( )(C,难度系数0.3) A 、0 B 、1 C 、1- D 、 ab10、设(),z z x y =由方程222124y z x ++=确定,则( )(C,难度系数0.3) A 、2z xx z∂=-∂ B 、 224z x z ∂=-∂ C 、 2223416z x x z z ∂=--∂ D 、2223416z x x z z∂=-+∂11、由方程2222=+++z y x xyz 所确定的函数),(y x z z =在点()1,0,1-处的全微分=dz ( )(C,难度系数0.3)A dy -B dy +C 、 dx -D 、dx +12、设⎪⎭⎫⎝⎛=z y z x ϕ,其中ϕ为可微函数,则z z x y x y ∂∂+=∂∂( )(D,难度系数0.3) A 、()x y z + B 、0 C 、z - D 、 z13、若(),zz x y =由方程,0y z F x x ⎛⎫= ⎪⎝⎭确定,则z z x y x y ∂∂+=∂∂( )(A,难度系数0.3)A 、zB 、z -C 、0D 、 114、由方程组222222320z x yx y z ⎧=+⎪⎨++=⎪⎩所确定的()y x 及()z x 的导数dz dx =( )(B,难度系数0.3)A 、13y z - B 、 13x z + C 、13x z - D 、13yz+15、设函数()zf u =,又方程()()d xyu u P t t ϕ=+⎰确定u 是,x y 的函数,其中()f u 与()u ϕ均可微;()(),Pt u ϕ'连续,且()1u ϕ'≠、 则()()z zP y P x x y∂∂+=∂∂( )(A,难度系数0.3) A 、 0 B 、1 C 、2 D 、()()xPy yP x +6 方向导数与梯度1、函数(),arctanxf x y y =在点()0,1处的梯度等于( )(A,难度系数0.2) A 、iB 、i- C 、jD 、j-2、设2uxy z =-,则在点()1,2,2-处方向导数的最大值为( )(C,难度系数0.2) A 、 1 B 、 2 C 、 3 D 、 4 3、设2uxy z =,则在点()01,1,1M 处方向导数的最大值为( )(D,难度系数0.2)A 、B 、 4C 、 1D 、4、函数(),zf x y =在点()0,0处的两个偏导数()()0,0,0,0x y f f ''都存在,则在点()0,0处,函数(),z f x y =( )(B,难度系数0.2)A 、 沿x 轴的正向和负向的方向导数比相等B 、关于x 连续,关于y 也连续C 、 沿x 轴的正向和负向的方向导数比相等D 、 连续 5、设22223326ux y z xy x y z =++++--在原点沿()1,2,1方向的方向导数为( )(C,难度系数0.2) A 、B 、C 、D 、 6、函数(),f x y 在点(),x y 处可微是它在该点有方向导数的( )条件(D,难度系数0.1)A 、无关B 、充要C 、必要D 、充分7、在梯度向量的方向上,函数的变化率( )(B,难度系数0.1) A 、 B 、最大 C 、 D 、8、函数xyz u =在点)1,1,1(处沿方向}cos ,cos ,{cos γβα=l的方向导数是( )(B,难度系数0.2)A 、0B 、cos cos cos αβγ++ C 、1 D 、{cos ,cos ,cos }αβγ9、函数xyxu =在点)1,1,1(的梯度为( )(B,难度系数0.3)A 、{}1,1- B 、 {}1,1,0- C 、{}1,1,0- D 、{}1,1-10、二元函数),(y x f 在点),(00y x 处的两个偏导数),(00y x f x '和),(00y x f y '都存在,则),(y x f ( )(D,难度系数0.2)A 、在该点可微;B 、 在该点连续;C 、在该点沿任意方向的方向导数存在;D 、 以上结论都不对、; 11、函数e cos()x u yz =在点)0,0,0(处沿方向}2,1,2{-=l的方向导数是( )(D,难度系数0.3)A 、13 B 、13- C 、23- D 、 2310.难度0、3答案 函数)ln(22z y x u++=在点)1,0,1(A 处沿A 指向点)2,2,3(-B 方向的方向导数是( )(C,难度系数0.3) A 、1 B 、0 C 、 12 D 、12- 12.难度0、2答案 设函数u x xy xyz =++在点()1,2,0的所有方向导数中,最大的方向导数是沿方向( )(B,难度系数0.2)A 、{3,1,2}---B 、 {3,1,2}C 、{1,3,2}D 、{3,2,1}13、函数z=在点()0,0处沿方向{}1,0的方向导数zl∂=∂( )(A,难度系数0.2) A 、 1 B 、1- C 、0 D 、不存在 14、设2)0,0(,1)0,0(='='y x f f ,则( )(D,难度系数0.3)A 、),(y x f 在点)0,0(处连续;B 、 dy dx y x df 2),()0,0(+=;C 、 βαcos 2cos )0,0(+=∂∂lf ,其中βαcos ,cos 为l 的方向余弦;D 、),(y x f 在点)0,0(处沿x 轴负方向的方向导数为1-。

(完整版)多元函数微分学复习题及答案

(完整版)多元函数微分学复习题及答案

第八章 多元函数微分法及其应用 复习题及解答一、选择题1. 极限lim x y x yx y→→+00242= (提示:令22y k x =) ( B ) (A) 等于0 (B) 不存在 (C) 等于12 (D) 存在且不等于0或12 2、设函数f x y x y y xxy xy (,)sin sin=+≠=⎧⎨⎪⎩⎪1100,则极限lim (,)x y f x y →→0= ( C )(提示:有界函数与无穷小的乘积仍为无穷小)(A) 不存在 (B) 等于1 (C) 等于0 (D) 等于23、设函数f x y xy x y x y x y (,)=++≠+=⎧⎨⎪⎩⎪222222000,则(,)f x y ( A )(提示:①在220x y +≠,(,)f x y 处处连续;②在0,0x y →→ ,令y kx =,200(0,0)x x y f →→→=== ,故在220x y +=,函数亦连续.所以,(,)f x y 在整个定义域内处处连续.)(A) 处处连续 (B) 处处有极限,但不连续 (C) 仅在(0,0)点连续 (D) 除(0,0)点外处处连续4、函数z f x y =(,)在点(,)x y 00处具有偏导数是它在该点存在全微分的 ( A ) (A)必要而非充分条件(B)充分而非必要条件(C)充分必要条件 (D)既非充分又非必要条件5、设u y x =arctan ,则∂∂u x = ( B )(A)xx y 22+(B) -+y x y 22 (C) yx y 22+(D)-+xx y 226、设f x y yx(,)arcsin=,则f x '(,)21= ( A ) (A )-14(B )14 (C )-12 (D )127、设yxz arctan=,v u x +=,v u y -=,则=+v u z z ( C )(A )22v u v u -- (B )22v u u v -- (C )22v u v u +- (D )22v u uv +-8、若f x x x x f x x x x (,),(,)'232612=+=+,则f x x y '(,)2= ( D ) (A) x +32(B) x -32(C) 21x + (D) -+21x 9、设z y x =,则()(,)∂∂∂∂z x zy+=21 ( A ) (A) 2 (B) 1+ln2 (C) 0 (D) 110、设z xye xy =-,则z x x x'(,)-= ( D ) (A)-+2122x x e x () (B)2122x x e x ()- (C)--x x e x ()122 (D)-+x x e x ()12211、曲线x t y t z t ===24sin ,cos ,在点(,,)202π处的法平面方程是 (C )(A) 242x z -=-π (B) 224x z -=-π (C) 42y z -=-π (D) 42y z -=π12、曲线45x y y z ==,,在点(,,)824处的切线方程是 (A )(A)842204x z y --=-= (B)x y z +==+122044 (C) x y z -=-=-85244 (D)x y z -=-=351413、曲面x z y x z cos cos +-=ππ22在点ππ2120,,-⎛⎝ ⎫⎭⎪处的切平面方程为 (D )(A )x z -=-π1 (B )x y -=-π1 (C )x y -=π2 (D )x z -=π214、曲面x yz xy z 2236-=在点(,,)321处的法线方程为 (A ) (A )x y z +=--=--58531918 (B )x y z -=-=--3823118(C )83180x y z --= (D )831812x y z +-=15、设函数z x y =-+122,则点 (,)00是函数 z 的 ( B ) (A )极大值点但非最大值点 (B )极大值点且是最大值点 (C )极小值点但非最小值点 (D )极小值点且是最小值点 16、设函数z f x y =(,)具有二阶连续偏导数,在P x y 000(,)处,有2)()(,0)()(,0)(,0)(000000======P f P f P f P f P f P f yx xy yy xx y x ,则( C )(A )点P 0是函数z 的极大值点 (B )点P 0是函数z 的极小值点 (C )点P 0非函数z 的极值点 (D )条件不够,无法判定 17、函数f x y z z (,,)=-2在222421x y z ++=条件下的极大值是 ( C )(A) 1 (B) 0 (C)-1 (D) -2 二、填空题 1、极限limsin()x y xy x→→0π= ⎽⎽⎽⎽⎽⎽⎽ .答:π 2、极限limln()x y x y e x y→→++01222=⎽⎽⎽⎽⎽⎽⎽ .答:ln23、函数z x y =+ln()的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:x y +≥14、函数z xy=arcsin 的定义域为 ⎽⎽⎽⎽⎽⎽⎽ .答:-≤≤11x ,y ≠0 5、设函数f x y x y xy y x (,)ln =++⎛⎝ ⎫⎭⎪22,则f kx ky (,)= ⎽⎽⎽⎽⎽⎽⎽ .答:k f x y 2⋅(,)6、设函数f x y xy x y (,)=+,则f x y x y (,)+-= ⎽⎽⎽⎽⎽⎽⎽ .答:222x y x-(22()()(,)()()2x y x y x y f x y x y x y x y x+--+-==++-Q )7、设f x y x y x y A x y (,)ln()//=-⋅+<+≥⎧⎨⎩11212222222,要使f x y (,)处处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:-ln28、设f x y x y x y x y Ax y (,)tan()(,)(,)(,)(,)=++≠=⎧⎨⎪⎩⎪22220000,要使f x y (,)在(0,0)处连续,则A= ⎽⎽⎽⎽⎽⎽⎽ .答:1 9、函数221x y z x +=-的间断点是 .答:直线10x -=上的所有点10、函数f x y x y yx (,)cos =-122的间断点为 ⎽⎽⎽⎽⎽⎽⎽ .答:直线y x =±及x =011、设z x y y =-+sin()3,则∂∂z xx y ===21_________ .答:3cos512、设f x y x y (,)=+22,则f y (,)01= _________ .答:113、设u x y z x y z(,,)=⎛⎝ ⎫⎭⎪,则)3,2,1(d u =_________ .答:38316182d d ln d x y z --14、设u x x y =+22,则在极坐标系下,∂∂ur= _________ .答:0 15、设u xy y x =+,则∂∂22u x = _________.答:23yx16、设u x xy =ln ,则∂∂∂2u x y = ___________ .答:1y17、函数y y x =()由12+=x y e y 所确定,则d d y x = ___________ .答:22xye xy - 18、设函数z z x y =(,)由方程xy z x y z 2=++所确定,则∂∂zy= _______ .答:2112xyz xy --19、由方程xyz x y z +++=2222所确定的函数z z x y =(,)在点(1,0,-1)处的全微分d z = _________ .答:d d x y -220、曲线x t y t z t ===23213,,在点(,,)1213处的切线方程是_________.答:x y z -=-=-12221321、曲线x te y e z t e t t t ===232222,,在对应于 t =-1点处的法平面方程是___________. 答:01132=+--e y x 22、曲面xe y e z e ey z x ++=+223321在点(,,)210-处的法线方程为_________ . 答:e ze y x 22212=-+=- 23、曲面arctan y xz 14+=π在点(,,)-210处的切平面方程是_________.答:y z +=2124、设函数z z x y =(,)由方程123552422x xy y x y e z z +--+++=确定,则函数z的驻点是_________ .答:(-1,2) 27、函数z x y x y =----2346122的驻点是_________.答:(1,1)25、若函数f x y x xy y ax by (,)=+++++22236在点 (,)11-处取得极值,则常数a =_________, b =_________.答:a =0,b =426、函数f x y z x (,,)=-22在x y z 22222--=条件下的极大值是_______答:-4 三、计算题1、求下列二元函数的定义域,并绘出定义域的图形.(1) z = (2)ln()z x y =+ (3)1ln()z x y =+ (4)ln(1)z xy =-解:(1)要使函数z =有意义,必须有2210x y --≥,即有221x y +≤.故所求函数的定义域为22{(,)|1}D x y x y =+≤,图形为图3.1(2)要使函数ln()z x y =+有意义,必须有0x y +>.故所有函数的定义域为{}(,)|0D x y x y =+>,图形为图3.2(3)要使函数1ln()z x y =+有意义,必须有ln()0x y +≠,即0x y +>且1x y +≠.故该函数的定义域为{}(,)|01D x y x y x y =+>+≠,,图形为图3.3(4)要使函数ln(1)z xy =-有意义,必须有10xy ->.故该函数的定义域为{(,)|1}D x y xy =>,图形为图3.4图3.1 图3.2图3.3 图3.42、求极限limsin x y y xxy →→+-0211.解:lim sin x y y xxy →→+-0211=⋅++→→lim sin ()x y y x xy xy 00211= 43、求极限lim sin()x y x y x yxy →→-+0023211. 解:原式=lim ()sin()x y x y x y x y xy →→-++0232211=-++⋅→→limsin()x y x y xy xy 002111=-124、求极限lim x y xxye xy→→-+0416 . 解:lim x y xxye xy→→-+00416=++-→→lim ()x y x xye xy xy 00416= -85、设u x y y x =+sin cos ,求 u u x y ,. 解:u y y x x =-sin sinu x y x y =+cos cos6、设z xe ye y x =+-,求z z x y ,. 解:z e ye x y x =--z xe e y y x =+-7、设函数z z x y =(,)由yz zx xy ++=3所确定,试求∂∂∂∂z x zy,(其中x y +≠0). 解一:原式两边对x 求导得yz x x zxz y ∂∂∂∂+++=0,则∂∂z x z y y x =-++同理可得:∂∂z y z x y x =-++ 解二:xy xz F F y z xy y z F F x z x y y x ++-=-=++-=-=∂∂∂∂, 8、求函数z x xy y x y =-++-+23243122的极值.解:由z x y z x y x y=-+==-+-=⎧⎨⎩43403430,得驻点(,)-10074334>=--==yy yxxy xx z z z z D z xx =>40,函数z 在点(,)-10处取极小值z (,)-=-101.9、设z e x y =+32,而x t y t ==cos ,2,求d d z t. 解:d d (sin )()zte t e t x y x y =-+++3223232=-++(sin )3432t t e x y10、设z y xy x =ln(),求∂∂∂∂z x z y,. 解:z y y xy xy x x x =⋅+ln ln 1 z xy xy yy y x x =+-11ln() 11、设u a x a x yz a =->+ln ()0,求d u . 解:∂∂u x a a ax x yz =-+-ln 1,∂∂u y a z a x yz =⋅+ln ,∂∂u zya a x yz =+ln d (ln )d ln (d d )u a a ax x a a z y y z x yz x yz =-+++-+112、求函数z x y e xy =++ln()22的全微分.解:∂∂∂∂z x x ye x y e z y y xe x y e xyxyxyxy=+++=+++222222,[]d ()d ()d z x y ex ye x y xe y xyxy xy =+++++12222 四、应用题1、要造一容积为128立方米的长方体敞口水池,已知水池侧壁的单位造价是底部的2倍,问水池的尺寸应如何选择,方能使其造价最低? 解:设水池的长、宽、高分别为x y z ,,米.水池底部的单位造价为a .则水池造价()S xy xz yz a =++44 且 xyz =128令 ()L xy xz yz xyz =+++-44128λ由 ⎪⎪⎩⎪⎪⎨⎧=-==++==++==++=01280440404xyz L xy y x L xz z x L yz z y L z y x λλλλ得 x y z ===82由于实际问题必定存在最小值,因此当水池的长、宽、高分别为8米、8米、2米时,其造价最低.2、某工厂生产两种商品的日产量分别为x 和y (件),总成本函数22128),(y xy x y x C +-=(元).商品的限额为42=+y x ,求最小成本. 解:约束条件为042),(=-+=y x y x ϕ,构造拉格朗日函数22(,,)812(42)F x y x xy y x y λλ=-+++-,解方程组160240420x y F x y F x y F x y λλλ'⎧=-+=⎪'=-++=⎨⎪'=+-=⎩,得唯一驻点)17,25(),(=y x ,由实际情况知,)17,25(),(=y x 就是使总成本最小的点,最小成本为8043)17,25(=C (元).3、某工厂生产两种产品甲和乙,出售单价分别为10元与9元,生产x 单位的产品甲与生产y 单位的产品乙的总费用是)33(01.03240022y xy x y x +++++元, 求取得最大利润时,两种产品的产量各为多少?解:),(y x L 表示获得的总利润,则总利润等于总收益与总费用之差,即有利润目标函数)]33(01.032400[)910(),(22y xy x y x y x y x L +++++-+=)0,0(,400)33(01.06822>>-++-+=y x y xy x y x ,令⎩⎨⎧=+-='=+-='0)6(01.060)6(01.08y x L y x L yx,解得唯一驻点(120,80).又因06.0,01.0,006.0-=''=-=''=<-=''=yy xy xx L C L B L A ,得0105.332>⨯=--B AC .得极大值320)80,120(=L . 根据实际情况,此极大值就是最大值.故生产120单位产品甲与80单位产品乙时所得利润最大320元. 五、证明题 1、设)11(yx e z +-=, 求证z yz y x z x 222=∂∂+∂∂.证明: 因为2)11(1x e xzy x ⋅=∂∂+-, 2)11(1ye y z y x ⋅=∂∂+-, 所以 z e e yz y x z x y x y x 2)11()11(22=+=∂∂+∂∂+-+-2、证明函数nx ey tkn sin 2-=满足关系式22x y k t y ∂∂=∂∂ 证明:因为nx e kn kn nx e ty tkn t kn sin )(sin 2222⋅-=-⋅⋅=∂∂--, nx nex y tkn cos 2-=∂∂, nx e n xy t kn sin 2222--=∂∂, nx e kn xyk t kn sin 2222--=∂∂,所以22x y k t y ∂∂=∂∂.3、设z =xy +xF (u ), 而xyu =, F (u )为可导函数, 证明xy z y z y x z x +=∂∂+∂∂⋅.证明:y z y x z x ∂∂⋅+∂∂⋅])([])()([yu u F x x y x u u F x u F y x ∂∂'+⋅+∂∂'++=)]([)]()([u F x y u F xyu F y x '+⋅+'-+==xy +xF (u )+xy =z +xy .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 多元函数微分学【内容提要】1.空间解析几何基础知识三条相互垂直的坐标轴Ox 、Oy 、Oz 组成了一个空间直角坐标系。

空间直角坐标系下两点间的距离公式为: 平面方程:0Ax By Cz D +++=二次曲面方程:2220Ax By Cz Dxy Eyz Fzx Gx Hy Iz K +++++++++= 球面方程:()()()2202020Rz z y y x x =-+-+-圆柱面方程:222R y x =+椭球面方程:()2222221,,0x y z a b c a b c ++=>, 椭圆抛物面方程:2222,(,0)x y z a b a b+=>双曲抛物面方程:2222,(,0)x y z a b a b-=>单叶双曲面图方程:1222222=-+cz b y a x (a ,b ,c >0)双叶双曲面方程:2222221,(,,0)x y z a b c a b c +-=->椭圆锥面方程:2222220,(,,0)x y z a b c a b c+-=>2.多元函数与极限多元函数的定义:在某一过程中,若对变化范围D 的每一对值(,)x y ,在变域M 中存在z 值,按一定对应法则f 进行对应,有唯一确定的值,则称f 为集合D 上的二元函数,记为,x y 称为自变量,D 称为定义域,z 称为因变量。

(,)x y 的对应值记为(,)f x y ,称为函数值,函数值的集合称为值域。

多元函数的极限:设函数(,)f x y 在开区间(或闭区间)D 内有定义,000(,)P x y 是D 的内点或边界点。

如果对于任意给定的正数e ,总存在正数d ,使得对于适合不等式的一切点(,)P x y D Î,都有 成立,则称常数A 为函数(,)f x y 当00,xx y y 时的极限,记作多元函数的连续性:设函数(,)z f x y =在区域D 内有定义,点000(,)P x y 是D 的内点或边界点且0P D Î。

如果则称函数(,)z f x y =在点000(,)P x y 处连续。

3.多元函数的偏导数与全微分偏导数:设函数(,)z f x y =在点00(,)x y 的某一邻域内有定义,当y 固定在0y 而x 在0x 处有增量x D 时,相应地函数有增量如果极限存在,则称此极限为函数(,)z f x y =在点00(,)x y 处对x 的偏导数, 记作0y y x x x z==∂∂, 00y y x x x f ==∂∂, 0y y x x xz ==, 或),(00y x f x同理,如果极限00000(,)(,)limy f x y y f x y yD ?+D -D存在,则称此极限为函数(,)z f x y =在点00(,)x y 处对y 的偏导数, 记作00x x y y z y==∂∂,00x x y y f y==∂∂, 00x x yy y z ==, 或00(,)y f x y4.二元函数(,)z f x y =在点00(,)x y 的偏导数的几何意义00(,)x f x y 是过曲面(,)z f x y =上点00000(,,(,))M x y f x y 的曲线在点0M 处的切线x T 对x 轴的斜率。

5.二阶偏导数),()(22y x f x z x z x xx=∂∂=∂∂∂∂,),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂,),()(2y x f x y z y z x yx=∂∂∂=∂∂∂∂,),()(22y x f y z y z y yy=∂∂=∂∂∂∂。

如果函数(,)z f x y =的两个二阶混合偏导数x y z ∂∂∂2及yx z ∂∂∂2在区域D 内连续, 那么在该区域内这两个二阶混合偏导数必相等。

6.全微分如果函数(,)z f x y =在点(,)f x y 的全增量 可表示为其中A 、B 不依赖于x D 、y D 而仅与x 、y 有关,则称函数(,)z f x y =在点(,)f x y 可微分, 而称A x B y D +D 为函数(,)z f x y =在点(,)x y 的全微分,记作dz ,即如果函数(,)z f x y =的偏导数x z ∂∂、yz ∂∂在点(,)x y 连续,则函数在该点可微分。

7.复合函数微分法复合函数的中间变量均为一元函数的情形如果函数()u t j =及()v t y =都在点t 可导,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数((),())z f t t j y =在点t 可导,且有复合函数的中间变量均为多元函数的情形 如果函数u(x y )v(x y )都在点(x y )具有对x 及y 的偏导数函数z f (u v )在对应点(u v )具有连续偏导数 则复合函数z =f [j (x y ), (x y )]在点(x y )的两个偏导数存在 且有8. 全微分形式不变性无论z 是自变量u 、v 的函数或中间变量u 、v 的函数,它的全微分形式是一样的,这个性质叫做全微分形式不变性。

9. 隐函数微分法在点00(,)x y 的某邻域内,若函数(,)F x y 有连续的偏导数x F ¢、y F ',且00(,)0F x y =,则在),(00y x F y '≠0时,方程(,)0F x y =确定唯一的、有连续导数的函数()y f x =,满足00()y f x =及(,())0F x f x =。

这个定理称为隐函数存在定理。

隐函数存在定理给出了隐函数求导的方法,即由(,)0F x y =,两边全微分得0d d ='+'y F x F y x , 由y F '≠0,得到隐函数的导数为yx F F x y''-=d d 。

10. 二元函数的极值设函数(,)z f x y =在点00(,)x y 的某个邻域内有定义,如果对于该邻域内任何异于00(,)x y 的点(,)x y ,都有00(,)(,)f x y f x y <(或00(,)(,)f x y f x y >)则称函数在点00(,)x y 有极大值(或极小值)00(,)f x y 。

极大值、极小值统称为极值。

使函数取得极值的点称为极值点。

设函数(,)z f x y =在点00(,)x y 具有偏导数,且在点00(,)x y 处有极值,则有00(,)0x f x y =,00(,)0y f x y =设函数(,)z f x y =在点00(,)x y 的某邻域内连续且有一阶及二阶连续偏导数, 又00(,)0x f x y =,00(,)0y f x y =, 令则在点00(,)x y 处是否取得极值的条件如下:(1) AC -B 2>0时具有极值,且当A <0时有极大值,当A >0时有极小值; (2) AC -B 2<0时没有极值;(3) AC -B 2=0时可能有极值, 也可能没有极值。

极值的求法: 第一步 解方程组(,)0x f x y =,(,)0y f x y =求得一切实数解, 即可得一切驻点。

第二步 对于每一个驻点00(,)x y , 求出二阶偏导数的值A 、B 和C 。

第三步 判断AC -B 2的符号, 按定理2的结论判定00(,)f x y 是否是极值、是极大值还是极小值。

11.多元函数的最大值、最小值如果(,)f x y 在有界闭区域D 上连续,则(,)f x y 在D 上必定能取得最大值和最小值。

这种使函数取得最大值或最小值的点既可能在D 的内部,也可能在D 的边界上。

我们假定, 函数在D 上连续、在D 内可微分且只有有限个驻点,这时如果函数在D 的内部取得最大值(最小值),那么这个最大值(最小值)也是函数的极大值(极小值)。

因此,求最大值和最小值的一般方法是:将函数f (x ,y )在D 内的所有驻点处的函数值及在D 的边界上的最大值和最小值相互比较,其中最大的就是最大值,最小的就是最小值。

12. 条件极值 拉格朗日乘数法对自变量有附加条件的极值称为条件极值。

一般地,考虑函数(,)z f x y =在限制条件(,)0g x y =下的极值问题,称为条件极值问题.考虑极值的函数(,)z f x y =称为目标函数,考虑的限制条件(,)0g x y =称为约束条件.没有约束条件的极值问题,称为无条件极值问题.若能从约束条件(,)0g x y =解出()y y x =,则条件极值问题可以转化为函数[,()]z f x y x =的无条件极值问题。

拉格朗日乘数法要找函数(,)z f x y =在条件(,)0x y j =下的可能极值点, 可以先构成辅助函数(,)(,)(,)F x y f x y x y l j =+,其中为某一常数。

然后解方程组⎪⎩⎪⎨⎧==+==+=0),(0),(),(),(0),(),(),(y x y x y x f y x F y x y x f y x F y y y x x x ϕλϕλϕ。

由这方程组解出x , y 及, 则其中(,)x y 就是所要求的可能的极值点。

13. 最小二乘法简介变量x 、y 满足线性方程y ax b =+,其中,a 、b 需要确定.通过试验测得x 、y 的n 组对应值:(x 1,y 1)、(x 2,y 2)、…、(x n ,y n ),建立计算值与实测值之差的平方和函数,得到 则Q 的意义是很明显的,它等于各点离开直线y ax b =+的偏差平方和,反映了各点关于直线的偏离情况。

视Q 为a 、b 的函数,求Q 的最小值,确定出线性方程的系数a 、b ,这就是通常所说的最小离差平方和原则,又称最小二乘法原则。

根据微积分学知识,Q 有极小值的必要条件是 这样就得到关于a 和b 的线性方程组这个方程组通常称为线性回归的正规方程。

解此方程组得【习题解答】7-1 确定下列函数的定义域,并画出定义域的图形。

(1)221y x z --=; (2)11),(22-+-=y x y x f ; (3)arcsinyz x=; (4)11z x y x y =++-。

解 1)221x y +≤(2)1111x y y -≤≤⎧⎨≥≤-⎩或(3)11yx-≤≤ (4)y xy x≠-⎧⎨≠⎩7-2 计算下列函数的偏导数。

(1)2sin z x y =; (2)yz x =;(3)x z xy y=+; (4)2arctan()z x y =-; (5)42243y y x x z +-=; (6)()y x x z +=ln 2; (7)yx z 2tan =; (8)ln xz y =;(9)设arctan22(,)ln()y xf x y ex y =⋅+,求(1,0)x f ';(10)设(,)(f x y x y =+-(,1)x f x '。

相关文档
最新文档