运筹学试卷及答案

合集下载

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、选择题(每题2分,共20分)1. 线性规划问题的基本解是:A. 唯一解B. 可行域的顶点C. 可行域的内部点D. 可行域的边界点2. 以下哪项不是运筹学中的常用数学工具?A. 线性代数B. 微积分C. 概率论D. 量子力学3. 单纯形法是解决哪种类型问题的算法?A. 整数规划B. 非线性规划C. 线性规划D. 动态规划4. 以下哪个是网络流问题中的术语?A. 节点B. 弧C. 流量D. 所有以上5. 以下哪个不是运筹学中的优化问题?A. 最大化问题B. 最小化问题C. 等值问题D. 线性规划问题...(此处省略其他选择题)二、简答题(每题10分,共30分)1. 简述线性规划问题的基本构成要素。

2. 解释单纯形法的基本思想及其在解决线性规划问题中的应用。

3. 描述网络流问题中的最短路径算法,并简述其基本原理。

三、计算题(每题25分,共50分)1. 给定以下线性规划问题:Max Z = 3x1 + 5x2s.t.2x1 + x2 ≤ 10x1 + 3x2 ≤ 15x1, x2 ≥ 0请找出该问题的最优解,并计算最大值。

2. 考虑一个网络流问题,其中有三个节点A、B、C,以及四条边。

边的容量和成本如下表所示:| 起点 | 终点 | 容量 | 成本 ||||||| A | B | 10 | 2 || A | C | 5 | 3 || B | C | 8 | 1 || C | B | 3 | 4 |假设从节点A到节点B的需求量为8,从节点A到节点C的需求量为5。

使用最小成本流算法求解此问题,并计算总成本。

四、论述题(每题30分,共30分)1. 论述运筹学在现代企业管理中的应用,并给出至少两个实际案例。

运筹学期末试题答案一、选择题答案:1. B2. D3. C4. D5. C...(此处省略其他选择题答案)二、简答题答案:1. 线性规划问题的基本构成要素包括目标函数、约束条件和变量。

运筹学试题及答案解析

运筹学试题及答案解析

运筹学试题及答案一、填空题:(每空格2分,共16分)1、线性规划的解有唯一最优解、无穷多最优解、 无界解 和无可行解四种。

2、在求运费最少的调度运输问题中,如果某一非基变量的检验数为4,则说明 如果在该空格中增加一个运量运费将增加4 。

3、“如果线性规划的原问题存在可行解,则其对偶问题一定存在可行解”,这句话对还是错? 错4、如果某一整数规划: MaxZ=X 1+X 2X 1+9/14X 2≤51/14 -2X 1+X 2≤1/3 X 1,X 2≥0且均为整数所对应的线性规划(松弛问题)的最优解为X 1=3/2,X 2=10/3,MaxZ=6/29,我们现在要对X 1进行分枝,应该分为 X1≤1 和 X1≥2 。

5、在用逆向解法求动态规划时,f k (s k )的含义是: 从第k 个阶段到第n 个阶段的最优解 。

6. 假设某线性规划的可行解的集合为D ,而其所对应的整数规划的可行解集合为B ,那么D 和B 的关系为 D 包含 B7. 已知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等问:(1)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛---1003/20.3/1312(2)对偶问题的最优解: Y =(5,0,23,0,0)T8. 线性规划问题如果有无穷多最优解,则单纯形计算表的终表中必然有___某一个非基变量的检验数为0______;9. 极大化的线性规划问题为无界解时,则对偶问题_ 无解_____;10. 若整数规划的松驰问题的最优解不符合整数要求,假设X i =b i 不符合整数要求,INT (b i )是不超过b i 的最大整数,则构造两个约束条件:Xi ≥INT (b i )+1 和 Xi ≤INT (b i ) ,分别将其并入上述松驰问题中,形成两个分支,即两个后继问题。

11. 知下表是制订生产计划问题的一张LP 最优单纯形表(极大化问题,约束条件均为“≤”型不等式)其中对偶问题的最优解: Y =(4,0,9,0,0,0) (2)写出B -1=⎪⎪⎪⎭⎫ ⎝⎛611401102二、计算题(60分)1、已知线性规划(20分) MaxZ=3X 1+4X 2X 1+X 2≤5 2X 1+4X 2≤12 3X 1+2X 2≤8X 1,X 2≥02)若C 2从4变成5,最优解是否会发生改变,为什么?3)若b 2的量从12上升到15,最优解是否会发生变化,为什么?4)如果增加一种产品X 6,其P 6=(2,3,1)T ,C 6=4该产品是否应该投产?为什么? 解:1)对偶问题为Minw=5y1+12y2+8y3 y1+2y2+3y3≥3y1+4y2+2y3≥4y1,y2≥02)当C 2从4变成5时, σ4=-9/8 σ5=-1/4由于非基变量的检验数仍然都是小于0的,所以最优解不变。

运筹学试卷及参考答案

运筹学试卷及参考答案

运筹学试卷及参考答案运筹学试卷一、选择题(每小题2分,共20分)1、下列哪个不是线性规划的标准形式?() A. min z = 3x1 + 2x2B. max z = -4x1 - 3x2C. s.t. 2x1 - x2 <= 1D. s.t. x1 + x2 >= 0答案:C2、以下哪个是最小生成树的Prim算法?() A. 按照权值从小到大的顺序选择顶点 B. 按照权值从大到小的顺序选择顶点 C. 按照距离从小到大的顺序选择顶点 D. 按照距离从大到小的顺序选择顶点答案:B3、下列哪个不是网络流模型的典型应用?() A. 道路交通流量优化 B. 人员部署 C. 最短路径问题 D. 生产计划答案:C4、下列哪个是最小化问题中常用的动态规划解法?() A. 自顶向下的递推求解 B. 自底向上的递推求解 C. 分治算法 D. 回溯法答案:A5、下列哪个是最大流问题的 Ford-Fulkerson 算法?() A. 增广路径的寻找采用深度优先搜索 B. 增广路径的寻找采用广度优先搜索 C. 初始流采用最大边的二分法求解 D. 初始流采用最小边的二分法求解答案:B二、简答题(每小题10分,共40分)1、请简述运筹学在现实生活中的应用。

答案:运筹学在现实生活中的应用非常广泛。

例如,线性规划可以用于生产计划、货物运输和资源配置等问题;网络流模型可以用于解决道路交通流量优化、人员部署和生产计划等问题;动态规划可以用于解决最短路径、货物存储和序列安排等问题;图论模型可以用于解决最大流、最短路径和最小生成树等问题。

此外,运筹学还可以用于医疗资源管理、金融风险管理、军事战略规划等领域。

总之,运筹学的理论和方法可以帮助人们更好地解决实际生活中的问题,提高决策的效率和准确性。

2、请简述单纯形法求解线性规划的过程。

答案:单纯形法是一种求解线性规划问题的常用方法。

它通过不断迭代和修改可行解,最终找到最优解。

具体步骤如下: (1) 将线性规划问题转化为标准形式; (2) 根据标准形式构造初始可行基,通常选取一个非基变量,使其取值为零,其余非基变量的取值均为零; (3) 根据目标函数的系数,计算出目标函数值; (4) 通过比较目标函数值和已选取的非基变量的取值,选取最优的非基变量进行迭代; (5) 在迭代过程中,不断修正基变量和非基变量的取值,直到找到最优解或确定无解为止。

运筹学试卷含答案

运筹学试卷含答案

一、填空题1.运筹学是应用(系统的)、(科学的)、(数学分析)的方法,通过建立、分析、检验和求解数学模型,而获得最优决策的科学。

2.对于求取一组变量xj (j =1,2,......,n),使之既满足(线性约束条件),又使具有线性表达式的目标函数取得(极大值或极小值)的一类最优化问题称为(线性规划)问题。

3.用一组未知变量表示要求的方案,这组未知变量称为(决策变量)。

4.可行解是满足约束条件和非负条件的(决策变量)的一组取值。

5.最优解是使目标函数达到(最优值)的可行解。

6.线性规划的图解法就是用(几何作图)的方法分析并求出其(最优解)的过程。

7.每一个线性规划都有一个“影像”(一个伴生的线性规划),称之为线性规划的(对偶规则)。

8.根据线性规划问题的可行域是凸多边形或凸多面体,一个线性规划问题有(最优解),就一定可以在可行域的(顶点)找到。

9.用非基变量表示目标函数的表达式中,非基变量的系数(检验数)全部非正时,当前的基本可行解就是(最优解)。

10.最优表中,基变量中仍含有人工变量,表明原线性规划的约束条件被破坏,线性规划(没有可行解),也就没有最优解11.排队(queue)现象是由两个方面构成:要求得到服务的对象统称为(顾客),为顾客提供服务的统称为(服务台)。

12.排队论(queuing theory)是通过研究排队系统中等待现象的(概率特性),解决系统(最优设计)与(最优控制)的一种理论。

13.等待制排队规则包括:先到先服务、后到先服务、优先权服务、随机服务14.排队系统的重要概率分布包括: 定长分布、泊松分布、负指数分布、K阶爱尔朗分布15.排队系统的主要数量指标包括: 队长、等待队长、逗留时间、等待时间、忙期、闲期二、判断题1.对偶问题的对偶是原问题。

(对)2.若X*为原问题(最大化)的可行解,Y为对偶问题(最小化)的可行解,则CX*≤Yb。

(对)3.当X* 是原问题(Max)的可行解,Y* 是其对偶问题(Min)的可行解时,若CX*=Y*b,则X*与Y* 是各自问题的最优解。

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。

2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。

4、连通图的是指: 。

5、树图指 ,最小树是 。

6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。

二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。

(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。

(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。

在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。

若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。

请用匈牙利法求总费用最小的分配方案。

(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考研真题及答案

运筹学考研真题及答案

运筹学考研真题及答案运筹学考研真题及答案一、选择题1. 在线性规划中,若最优化问题的对偶问题有最优解,则原始问题也有最优解。

(正确)解析:线性规划理论中对偶定理:“若原始问题的对偶问题有可行解,且存在最优解,则原始问题也有最优解。

”2. 若在线性规划的单纯形法中,某一回路上的所有非基变量(非基变量为0)均为0,则这一问题无有限最优解。

(错误)解析:所有非基变量为0时,相应的基变量可以任意非负,问题有无穷多最优解。

3. 在线性规划中,若某元组在原始问题和对偶问题下都是可行解,则该元组是原始问题和对偶问题的最优解。

(错误)解析:若某元组在原始问题和对偶问题下都是可行解,则该元组满足原始问题的可行性和对偶问题的可行性,但并不一定是最优解。

4. 线性规划的最优性条件是原始问题的可行解和对偶问题的可行解所对应的目标函数值相等。

(正确)解析:线性规划理论中最优性条件:“若原始问题的可行解与对偶问题的可行解所对应的目标函数值相等,则解是原始问题和对偶问题的最优解。

”5. 线性规划的可行性要求约束条件为不等式约束。

(错误)解析:线性规划的可行性要求是所有约束条件都满足,包括等式约束和不等式约束。

二、填空题1. 与线性规划的相对论证法相对应的是(单纯形法)。

解析:线性规划的相对论证法和单纯形法是互为相对的两种求解方法。

2. 在线性规划中,若最优差异为0,则最优解是(非唯一)。

解析:最优差异为0意味着最优解是非唯一的,有多个最优解。

3. 线性规划的最优性条件是(对偶定理)与最优条件相对应。

解析:线性规划的最优性条件是对偶定理,而最优条件是原始问题的可行解和对偶问题可行解所对应的目标函数值相等。

4. 在线性规划中,若一个可行解在原始问题和对偶问题下都是最优解,则称为(互补性)条件。

解析:若一个可行解在原始问题和对偶问题下都是最优解,则满足互补性条件。

三、应用题1.某公司生产两种产品A和B,每个产品的制造工序及所需时间如下表,在一天内,公司有8小时的工时可用,每个工序只能由一名员工负责完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7、目标规划模型中,应同时包含绝对约束与目标约束。 ( )
8、线性规划问题是目标规划问题的一种特殊形式。 ( )
9、指派问题效率矩阵的每个元素都乘上同一常数k,将不影响最优指派方案。( )
三、解答题。(72分)
1、(20分)用单纯形法求解 ;并对以下情况作灵敏度分析:(1)求 的变化范围;(2)若右边常数向量变为 ,分析最优解的变化。





二、判断下列说法是否正确。正确的在括号内打“√”,错误的打“×”。(18分,每小题2分)
1、如线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。( )
2、单纯形法计算中,如不按最小比列原则选取换出变量,则在下一个解中至少有一个基变量的值为负。 ( )
3、任何线性规划问题存在并具有惟一的对偶问题。 ( )
三、解答题:
1、解:
加入人工变量,化问题为标准型式如下:
(3分)
下面用单纯形表进行计算得终表为:
3
3
0
0
0

0
1
0
2/3
1
0
-1/6
0
5
0
4/3
0
1
1/6
3
3
1
1/3
0
0
1/6
0
0
0
0
-1/2
(5分)
所以原最优解为 (2分)
(1)设 变化 ,将 得变化带入最终单纯形表得 的变化范围为 ;(5分)
(2)若右边常数向量变为 ,将变化带入最终单纯形表得:最优基解不变,最优解的值由(3,0)T变为(10/3,0)T。 (5分)
4、若线性规划的原问题有无穷多最优解,则其最偶问题也一定具有无穷多最优解。
( )
5、运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有惟一最优解,有无穷多最优解,无界解,无可行解。 ( )
6、如果运输问题的单位运价表的某一行(或某一列)元素再乘上那个一个常数 ,最有调运方案将不会发生变化。 ( )

12
7
9
7
9

8
9
6
6
6

7
17
12
14
9

15
14
6
6
10

14
10
7
10
9
5、(10分)用大M法求解
参考答案及评分标准 ( A卷 )
课程名称:运筹学
考试时间: 2 (第 16周
一、单项选择题:
1-5 CDABD (每题 2 分)
二、判断题:
1-5 √√√√× 6-10 ××√×√(每题 2 分)
2、解:
(1)该问题的对偶问题为:
(5分)
将 带入约束条件的①②为严格不等式,由互不松弛性得 ,因为 故有:
(6分)
最优解: (2分)
目标函数最优值: (2分)
3、解:
因为销量:3+5+6+4+3=21;产量:9+4+8=21;为产销平衡的运输问题。 (1分)
由最小元素法求初始解:
销地
产地





1
0
3
2
1
1
0
-1
0
1
1-2M
M
M
0
0
0
1
1/3
1
-1/3
0
1/3
0
0
1
2/3
0
1/3
-1
-1/3
1
3
0
3
M
4M/
0
0
1/2
0
1
-1/2
1/2
1/2
-1/2
3
3/2
1
0
1/2
-3/2
-1/2
3/2
0
0
1/4
3/4
M-1/4
M-3/4
由于所有系数都为正,所以此为最优解,
最优目标函数值为: 。
2、(15分)已知线性规划问题:
其对偶问题最优解为 ,试根据对偶理论来求出原问题的最优解。
3、(15分)用表上作业法求下表中给出的运输问题的最优解。
销地
产地




产量

3
2
7
6
50

7
5
2
3
60

2
5
4
5
25
销量
60
40
20
15
4、(12分)求下表所示效率矩阵的指派问题的最小解,
工作
工人ABC源自DE产量Ⅰ
4
5
9

4
4

3
1
1
3
8
销量
3
5
4
6
3
(5分)
用位势法检验得:
销地
产地





U

4
5
0

4
-9

3
1
1
3
1
V
0
19
5
9
3
(7分)
所有非基变量的检验数都大于零,所以上述即为最优解且该问题有唯一最优解。
此时的总运费: 。(2分)
4、解:
系数矩阵为:
(3分)
从系数矩阵的每行元素减去该行的最小元素,得:
经变换之后最后得到矩阵:
相应的解矩阵: (13分)
由解矩阵得最有指派方案:甲—B,乙—D,丙—E,丁—C,戊—A
或者甲—B,乙—C,丙—E,丁—D,戊—A (2分)
所需总时间为:Minz=32 (2分)
5、解:将问题标准后,构造辅助为:
以 为初始基变量,列单纯形表计算如下:
1
0
0
M
M

0
3
1
3
-1
0
相关文档
最新文档