(数学选修1-1)第三章导数及其应用综合训练

合集下载

高中数学选修第三章《导数及其应用》知识点归纳及单元测试

高中数学选修第三章《导数及其应用》知识点归纳及单元测试
2、当 由单调性知: ,化简得: ,解得
不合要求;综上, 为所求。
20.<1)解法1:∵ ,其定义域为 ,
∴ .
∵ 是函数 的极值点,∴ ,即 .
∵ ,∴ .
经检验当 时, 是函数 的极值点,
∴ .
解法2:∵ ,其定义域为 ,
∴ .
令 ,即 ,整理,得 .
∵ ,
∴ 的两个实根 <舍去), ,
当 变化时, , 的变化情况如下表:
<A) <B) <C) <D)
5.若曲线 的一条切线 与直线 垂直,则 的方程为< )
A. B. C. D.
6.曲线 在点 处的切线与坐标轴所围三角形的面积为< )
A. B. C. D.
7.设 是函数 的导函数,将 和 的图象画在同一个直角坐标系中,不可能正确的是< )
8.已知二次函数 的导数为 , ,对于任意实数 都有 ,则 的最小值为< )A. B. C. D. b5E2RGbCAP
A
如图所示,切线BQ的倾斜角小于
直线AB的倾斜角小于 Q
切线AT的倾斜角
O 1 2 3 4 x
所以选B
11.
12.32
13.
14. (1>
三、解答题
15. 解:设长方体的宽为x<m),则长为2x(m>,高为
.
故长方体的体积为
从而
令V′<x)=0,解得x=0<舍去)或x=1,因此x=1.
当0<x<1时,V′<x)>0;当1<x< 时,V′<x)<0,
17.设函数 分别在 处取得极小值、极大值. 平面上点 的坐标分别为 、 ,该平面上动点 满足 ,点 是点 关于直线 的对称点,.求(Ⅰ>求点 的坐标; (Ⅱ>求动点 的轨迹方程. RTCrpUDGiT

人教a版数学【选修1-1】:第三章《导数及其应用》章末检测(b)(含答案)

人教a版数学【选修1-1】:第三章《导数及其应用》章末检测(b)(含答案)

第三章 章末检测(B)(时间:120分钟 满分:150分)一、选择题(本大题12小题,每小题5分,共60分)1. 已知函数y =f (x )的图象如图,则f ′(x A )与f ′(x B )的大小关系是( )A .f ′(x A )>f ′(xB ) B .f ′(x A )<f ′(x B )C .f ′(x A )=f ′(x B )D .不能确定2.任一作直线运动的物体,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度是( )A .0B .3C .-2D .3-2t3.已知曲线y =2ax 2+1过点(a ,3),则该曲线在该点处的切线方程为( ) A .y =-4x -1 B .y =4x -1 C .y =4x -11 D .y =-4x +74.若点P 在曲线y =x 3-3x 2+(3-3)x +34上移动,经过点P 的切线的倾斜角为α,则角α的取值范围是( )A.⎣⎡⎦⎤0,π2B.⎣⎡⎦⎤0,π2 ∪2,3ππ⎡⎫⎪⎢⎣⎭C. 2,3ππ⎡⎫⎪⎢⎣⎭D.⎣⎡⎦⎤0,2π3 5.函数f (x )=x 3+ax -2在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A .[3,+∞)B .[-3,+∞)C .(-3,+∞)D .(-∞,-3)6.曲线y =xx +2在点(-1,-1)处的切线方程为( )A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -27.已知a >0,函数f (x )=-x 3+ax 在[1,+∞)上是单调减函数,则a 的最大值为( ) A .1 B .2 C .3 D .48.若函数f (x )=a sin x +13cos x 在x =π3处有最值,那么a 等于( )A.33 B .-33 C.36 D .-369.函数y =x -sin x ,x ∈⎣⎡⎦⎤π2,π的最大值是( )A .π-1 B.π2-1C .πD .π+110. 函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点( )A .1个B .2个C .3个D .4个11.函数f (x )=x1-x的单调增区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,1),(1,+∞)D .(-∞,-1),(1,+∞)12.某银行准备新设一种定期存款业务,经预测,存款量与存款利率成正比,比例系数为k (k >0),贷款的利率为4.8%,假设银行吸收的存款能全部放贷出去.若存款利率为x (x ∈(0,0.048)),则存款利率为多少时,银行可获得最大利益( )A .0.012B .0.024C .0.032D .0.036 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数y =f (x )的图象在点M (1,f (1))处的切线方程是y =12x +2,则f (1)+f ′(1)=________________________________________________________________________.14.设函数f (x )=ax 3-3x +1 (x ∈R ),若对于x ∈[-1,1],都有f (x )≥0,则实数a 的值为________________________________________________________________________.15. 如图,内接于抛物线y =1-x 2的矩形ABCD ,其中A 、B 在抛物线上运动,C 、D 在x 轴上运动,则此矩形的面积的最大值是________.16.已知函数f (x )=x 3+ax 2+bx +c ,x ∈[-2,2]表示过原点的曲线,且在x =±1处的切线的倾斜角均为34π,有以下命题:①f (x )的解析式为f (x )=x 3-4x ,x ∈[-2,2]. ②f (x )的极值点有且只有一个.③f (x )的最大值与最小值之和等于零. 其中正确命题的序号为________.三、解答题(本大题共6小题,共70分)17.(10分)若函数f (x )=13x 3-12ax 2+(a -1)x +1在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a 的取值范围.18.(12分)已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值.(1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围.19.(12分)某大型商厦一年内需要购进电脑5 000台,每台电脑的价格为4 000元,每次订购电脑的其它费用为1 600元,年保管费用率为10%(例如,一年内平均库存量为150台,一年付出的保管费用60 000元,则60 000150×4 000=10%为年保管费用率),求每次订购多少台电脑,才能使订购电脑的其它费用及保管费用之和最小?20.(12分)已知a ≥0,函数f (x )=(x 2-2ax )e x .(1)当x 为何值时,f (x )取得最小值?证明你的结论; (2)设f (x )在[-1,1]上是单调函数,求a 的取值范围.21.(12分)设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.22.(12分)已知函数f (x )=x 2+ln x .(1)求函数f (x )在[1,e]上的最大值和最小值;(2)求证:当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.第三章 导数及其应用(B) 答案1.B [f ′(x A )和f ′(x B )分别表示函数图象在点A 、B 处的切线斜率,故f ′(x A )<f ′(x B ).] 2.B [物体的初速度即为t =0时物体的瞬时速度,即函数s (t )在t =0处的导数. s ′(0)=s ′|t =0=(3-2t )|t =0=3.]3.B [∵曲线过点(a ,3),∴3=2a 2+1,∴a =1, ∴切点为(1,3).由导数定义可得y ′=4ax =4x , ∴该点处切线斜率为k =4,∴切线方程为y -3=4(x -1),即y =4x -1.] 4.B5.B [f ′(x )=3x 2+a .令3x 2+a ≥0, 则a ≥-3x 2,x ∈(1,+∞),∴a ≥-3.]6.A [∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2,∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为:y +1=2(x +1),即y =2x +1.] 7.C8.A [f ′(x )=a cos x -13sin x ,由题意f ′⎝⎛⎭⎫π3=0, 即a ·12-13×32=0,∴a =33.]9.C [y ′=1-cos x ≥0,所以y =x -sin x 在⎣⎡⎦⎤π2,π上为增函数.∴当x =π时, y max =π.]10.A [由图象看,在图象与x 轴的交点处左侧f ′(x )<0,右侧f ′(x )>0的点才满足题意,这样的点只有一个B 点.]11.C [∵f ′(x )=x ′(1-x )-x (1-x )′(1-x )2=1-x +x (1-x )2=1(1-x )2>0,又x ≠1, ∴f (x )的单调增区间为(-∞,1),(1,+∞).]12.B [由题意知,存款量g (x )=kx (k >0),银行应支付的利息h (x )=xg (x )=kx 2, x ∈(0,0.048).设银行可获得收益为y ,则y =0.048kx -kx 2.于是y ′=0.048k -2kx ,令y ′=0,解得x =0.024,依题意知y 在x =0.024处取得最大值.故当存款利率为0.024时,银行可获得最大收益.]13.3解析 由切点(1,f (1))在切线y =12x +2上,得f (1)=12×1+2=52.又∵f ′(1)=12,∴f ′(1)+f (1)=12+52=3.14.4解析 若x =0,则不论a 取何值,f (x )≥0,显然成立;当x ∈(0,1]时,f (x )=ax 3-3x +1≥0可转化为a ≥3x 2-1x3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎭⎫0,12上单调递增,在区间⎝⎛⎦⎤12,1上单调递减, 因此g (x )max =g ⎝⎛⎭⎫12=4,从而a ≥4; 当x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可转化为a ≤3x 2-1x3,设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间[-1,0)上单调递增. 因此g (x )min =g (-1)=4,从而a ≤4, 综上所述,a =4. 15.439解析 设CD =x ,则点C 坐标为⎝⎛⎭⎫x2,0. 点B 坐标为⎝⎛⎭⎫x2,1-⎝⎛⎭⎫x 22, ∴矩形ABCD 的面积S =f (x )=x ·⎣⎡⎦⎤1-⎝⎛⎭⎫x 22 =-x34+x (x ∈(0,2)).由f ′(x )=-34x 2+1=0,得x 1=-23(舍),x 2=23,∴x ∈⎝⎛⎭⎫0,23时,f ′(x )>0,f (x )是递增的,x ∈⎝⎛⎭⎫23,2时,f ′(x )<0,f (x )是递减的, 当x =23时,f (x )取最大值439.16.①③解析 f ′(x )=3x 2+2ax +b , 由题意得f (0)=0,f ′(-1)=f ′(1)=tan 3π4=-1.∴⎩⎪⎨⎪⎧c =03-2a +b =-13+2a +b =-1,∴a =0,b =-4,c =0.∴f (x )=x 3-4x ,x ∈[-2,2].故①正确.由f ′(x )=3x 2-4=0得x 1=-233,x 2=233.根据x 1,x 2分析f ′(x )的符号、f (x )的单调性和极值点.x =233是极小值点也是最小值点.f (x )min +f (x )max =0.∴②错,③正确. 17.解 f ′(x )=x 2-ax +a -1,由题意知f ′(x )≤0在(1,4)上恒成立, 且f ′(x )≥0在(6,+∞)上恒成立. 由f ′(x )≤0得x 2-ax +a -1≤0, 即x 2-1≤a (x -1).∵x ∈(1,4),∴x -1∈(0,3),∴a ≥x 2-1x -1=x +1.又∵x +1∈(2,5),∴a ≥5, ① 由f ′(x )≥0得x 2-ax +a -1≥0, 即x 2-1≥a (x -1).∵x ∈(6,+∞),∴x -1>0,∴a ≤x 2-1x -1=x +1.又∵x +1∈(7,+∞),∴a ≤7, ② ∵①②同时成立,∴5≤a ≤7.经检验a =5或a =7都符合题意, ∴所求a 的取值范围为5≤a ≤7. 18.解 (1)f (x )=x 3+ax 2+bx +c , f ′(x )=3x 2+2ax +b ,由f ′⎝⎛⎭⎫-23=129-43a +b =0, f ′(1)=3+2a +b =0得a =-12,b =-2.f ′(x )=3x 2-x -2=(3x +2)(x -1),令f ′(x )>0,得x <-23或x >1,令f ′(x )<0,得-23<x <1.所以函数f (x )的递增区间是⎝⎛⎭⎫-∞,-23和(1,+∞),递减区间是⎝⎛⎭⎫-23,1. (2)f (x )=x 3-12x 2-2x +c ,x ∈[-1,2],由(1)知,当x =-23时,f ⎝⎛⎭⎫-23=2227+c 为极大值, 而f (2)=2+c ,则f (2)=2+c 为最大值, 要使f (x )<c 2,x ∈[-1,2]恒成立,则只需要c 2>f (2)=2+c ,得c <-1或c >2.19.解 设每次订购电脑的台数为x ,则开始库存量为x 台,经过一个周期的正常均匀销售后,库存量变为零,这样又开始下一次的订购,因此平均库存量为12x 台,所以每年的保管费用为12x ·4 000·10%元,而每年的订货电脑的其它费用为5 000x·1 600元,这样每年的总费用为5 000x ·1 600+12x ·4 000·10%元.令y =5 000x ·1 600+12x ·4 000·10%,y ′=-1x 2·5 000·1 600+12·4 000·10%.令y ′=0,解得x =200(台).也就是当x =200台时,每年订购电脑的其它费用及保管费用总费用达到最小值,最小值为80 000元.20.解 (1)对函数f (x )求导数,得 f ′(x )=(x 2-2ax )e x +(2x -2a )e x =[x 2+2(1-a )x -2a ]e x .令f ′(x )=0,得[x 2+2(1-a )x -2a ]e x =0, 从而x 2+2(1-a )x -2a =0.解得x 1=a -1-1+a 2,x 2=a -1+1+a 2, 其中x 1<x 2.当x 变化时,f ′(x )、f (x )的变化如下表:12当a ≥0时,x 1<-1,x 2≥0.f (x )在(x 1,x 2)为减函数,在(x 2,+∞)为增函数. 而当x <0时,f (x )=x (x -2a )e x >0;当x =0时,f (x )=0,所以当x =a -1+1+a 2时,f (x )取得最小值.(2)当a ≥0时,f (x )在[-1,1]上为单调函数的充要条件是x 2≥1,即a -1+1+a 2≥1,解得a ≥34.综上,f (x )在[-1,1]上为单调函数的充分必要条件为a ≥34.即a 的取值范围是⎣⎡⎭⎫34,+∞.21.(1)解 由f (x )=e x -2x +2a ,x ∈R 知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2. 于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2(1-ln 2+a ).(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R , 于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0. 于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增. 于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0). 而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0, 即e x -x 2+2ax -1>0, 故e x >x 2-2ax +1.22.(1)解 ∵f (x )=x 2+ln x ,∴f ′(x )=2x +1x.∵x >1时,f ′(x )>0,∴f (x )在[1,e]上是增函数,∴f (x )的最小值是f (1)=1,最大值是f (e)=1+e 2. (2)证明 令F (x )=f (x )-g (x ) =12x 2-23x 3+ln x , ∴F ′(x )=x -2x 2+1x =x 2-2x 3+1x=x 2-x 3-x 3+1x =(1-x )(2x 2+x +1)x.∵x >1,∴F ′(x )<0,∴F (x )在(1,+∞)上是减函数,∴F (x )<F (1)=12-23=-16<0.∴f (x )<g (x ).∴当x ∈(1,+∞)时,函数f (x )的图象在g (x )=23x 3+12x 2的下方.小课堂:如何培养中学生的自主学习能力?自主学习是与传统的接受学习相对应的一种现代化学习方式。

高中数学人教A版选修1-1习题:第三章3.3-3.3.2函数的极值与导数 Word版含答案

高中数学人教A版选修1-1习题:第三章3.3-3.3.2函数的极值与导数 Word版含答案

第三章导数及其应用3.3 导数在研究函数中的应用3.3.2 函数的极值与导数A级基础巩固一、选择题1.可导“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取得极值”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:对于f(x)=x3,f′(x)=3x2,f′(0)=0,不能推出f(x)在x=0处取极值,反之成立.答案:B2.已知可导函数f(x),x∈R,且仅在x=1处,f(x)存在极小值,则( )A.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0B.当x∈(-∞,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)>0C.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)>0D.当x∈(-∞,1)时,f′(x)<0;当x∈(1,+∞)时,f′(x)<0解析:因为f(x)在x=1处存在极小值,所以x<1时,f′(x)<0,x>1时,f′(x)>0.答案:C3.函数y=x3-3x2-9x(-2<x<2)有( )A.极大值5,极小值-27B.极大值5,极小值-11C.极大值5,无极小值D.极小值-27,无极大值解析:由y′=3x2-6x-9=0,得x=-1或x=3,当x<-1或x>3时,y′>0;当-1<x<3时,y′<0.故当x=-1时,函数有极大值5;x取不到3,故无极小值.答案:C4.已知f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则a的取值范围为( ) A.-1<a<2 B.-3<a<6C.a<-1或a>2 D.a<-3或a>6解析:f′(x)=3x2+2ax+(a+6),因为f(x)既有极大值又有极小值,那么Δ=(2a)2-4×3×(a+6)>0,解得a>6或a<-3.答案:D5.设a∈R,若函数y=e x+ax,x∈R有大于零的极值点,则( )A.a<-1 B.a>-1C.a>-1eD.a<-1e解析:y′=e x+a=0,e x=-a,因为x>0,所以 e x>1,即-a>1,所以a<-1.答案:A二、填空题6.函数f(x)=x3-6x+a的极大值为________,极小值为________.解析:f′(x)=x2-6令f′(x)=0,得x=-2或x=2,所以f(x)极大值=f(-2)=a+42,f(x)极小值=f(2)=a-4 2.答案:a+42,a-4 2.7.已知函数y=x3+ax2+bx+27在x=-1处取极大值,在x=3处取极小值,则a=________,b=________.解析:y′=3x2+2ax+b,根据题意知,-1和3是方程3x2+2ax+b=0的两根,由根与系数的关系可求得a=-3,b=-9.经检验,符合题意.答案:-3 -98.已知函数f(x)=ax3+bx2+cx,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示.则下列说法中不正确的是________.①当x =32时,函数取得极小值;②f (x )有两个极值点;③当x =2时,函数取得极小值; ④当x =1时,函数取得极大值.解析:由图象可知当x ∈(-∞,1)时,f ′(x )>0;当x ∈(1,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )有两个极值点1和2,且当x =2时,函数取得极小值,当x =1时,函数取得极大值.故只有①不正确.答案:① 三、解答题9.已知f (x )=13x 3-12x 2-2x ,求f (x )的极大值与极小值.解:由已知得f (x )的定义域为R.f ′(x )=x 2-x -2=(x +1)(x -2).令f ′(x )=0,得x =-1或x =2.当x 变化时,f ′(x )与f (x )的变化情况如下表:↗↘↗因此,当x =-1时,f (x )取得极大值,且极大值为f (-1)=3×(-1)3-2×(-1)2-2×(-1)=76;当x =2时,f (x )取得极小值,且极小值为f (2)=13×23-12×22-2×2=-103.从而f (x )的极大值为76,极小值为-103.10.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,求f (2)的值. 解:f ′(x )=3x 2+2ax +b .由题意得⎩⎪⎨⎪⎧f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧a 2+a +b +1=10,2a +b +3=0, 解得⎩⎪⎨⎪⎧a =4,b =-11或⎩⎪⎨⎪⎧a =-3,b =3. 当a =4,b =-11时,令f ′(x )=0,得x 1=1,x 2=-113.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗当a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0, 所以 f (x )在x =1处没有极值,不合题意. 综上可知f (2)=18.B 级 能力提升1.等差数列{a n }中的a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -1的极值点,则log 2a 2 016的值为( )A .2B .3C .4D .5解析:因为f ′(x )=x 2-8x +6,且a 1,a 4 031是函数f (x )=13x 3-4x 2+6x -1的极值点,所以a 1,a 4 031是方程x 2-8x +6=0的两个实数根,则a 1+a 4 031=8.而{a n }为等差数列,所以a 1+a 4 031=2a 2 016,即a 2 016=4,从而log 2a 2 016=log 24=2.故选A.答案:A2.若函数f (x )=x 3+3ax 2+3(a +2)x +1有极大值和极小值,则实数a 的取值范围是________.解析:函数f (x )为三次函数,其导函数f ′(x )=3x 2+6ax +3(a +2)为二次函数,要使函数f (x )既有极大值又有极小值,需f ′(x )=0有两个不等的实数根,所以Δ=(6a )2-4×3×3(a +2)>0,解得a <-1或a >2.答案:(-∞,-1)∪(2,+∞)3.设a 为实数,函数f (x )=x 3-x 2-x +a . (1)求f (x )的极值;(2)当a 在什么范围内取值时,曲线y =f (x )与x 轴仅有一个交点? 解:(1)f ′(x )=3x 2-2x -1. 令f ′(x )=0,则x =-13或x =1.当x 变化时,f ′(x ),f (x )的变化情况如下表:↗↘↗所以f (x )的极大值是f ⎝ ⎛⎭⎪⎫-3=27+a ,极小值是f (1)=a -1.(2)函数f (x )=x 3-x 2-x +a =(x -1)2(x +1)+a -1, 由此可知,x 取足够大的正数时, 有f (x )>0,x 取足够小的负数时, 有f (x )<0,所以曲线y =f (x )与x 轴至少有一个定点.由(1)知f (x )最大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f (x )极小值=f (1)=a -1.因为曲线y =f (x )与x 轴仅有一个交点, 所以f (x )极大值<0或f (x )极小值>0, 即527+a <0或a -1>0,所以a <-527或a >1, 所以当a ∈⎝ ⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f (x )与x 轴仅有一个交点.。

人教A版高中数学选修1-1第三章《导数及其应用》单元检测题(含答案).docx

人教A版高中数学选修1-1第三章《导数及其应用》单元检测题(含答案).docx

第三章《导数及其应用》检测题一、选择题(每小题只有一个正确答案)1.已知曲线y = |x2-2上一点P(屈一$,则过点P切线的倾斜角为()乙乙A.30°B. 45°C. 60°D. 120°2.设P为曲线C: y = F+2x + 3上的点,且曲线c在点P处切线倾斜角的取值范围7T 7T为则点P横坐标的取值范围为()4 2( JiA. —co,—B. [—1,0]1D. , + 823.定义在(0, +8)上的函数f(x)的导函数为广(无),且对VxG (0,+oo)都有c. [0,1]/z(x)lnx<^/'(x),则(A. 4/(e) > e3/(e4) > 2e/(e2) C. e3/(e4) > 4/(e) > 2e/(e2) )(其中e«2. 7)B.e3/(e4) > 2e/(e2) > 4/(e) D. 4/(e) > 2e/(e2) > e3/(e4)4.曲线/(x) = (x + l)e x在点(0, f(0))处的切线方程为()A. y = % 4- 1B. y = 2x 4- 1C. y = + 1D.y 弓x+15.对于函数/(x)=—,下列说法正确的有()①f(兀)在x = €处取得极大值》②f(x)有两个不同的零点;③门4) < f (兀)< /(3); @7T4 < 4兀.A.4个B.3个C.2个D. 1个6.定义在R上的奇函数f (x)满足f (・1)=0,且当x>0时,f (x) >xf (x),则下列关系式中成立的是()A. 4f (i) >f (2)B. 4f (2) <f (2)C. f (i) >4f (2)D. f (i) f (2) > 2 2 2 27.定义在[0, +oo)的函数fO)的导函数为f(x),对于任意的%>0,恒有/Xx) </(%),m = n = 则m, zi的大小关系是()・e e zA. m > nB. m < nC. m = nD.无法确定&函数/(x) = e x + x3 - 2在区间(0,1)内的零点个数是().A. 0B. 1C. 2D. 39 .在平面直角坐标系xOy中,已知好一In%! - = 0 , x2 - y2 ~ 2 = 0 ,则(%i -x2)2 +(7i -y2)2的最小值为()A. 1B. 2C. 3D. 410.已知直线2是曲线y = e x与曲线y = e2x-2的一条公切线,2与曲线y =/x 一2切于点(a,b),且a是函数£仗)的零点,贝”仗)的解析式可能为()A. /(%) = e2x(2x + 21n2 -1)-1B. f(x) = e2x(2x + 21n2 -1)-2C.f(x) = e2x(2x一21n2 -1)-1D. /(x) = e2x(2x一21n2 -1)-2二、填空题设函数fd)的导数为f f (x),且f(x)=f‘(^sinx + cosx,则f' (? = _____________________ 12.如图,函数y = f(x)的图象在点P处的切线方程是y = -兀+ 5,则/'⑶+厂⑶=_. Array13._____ 函数y=f (x)的导函数y = f(jc)的图象如图所示,则函数y=f (x)的图象可能是_________ (填序号).(D ②③④14.已知函数/(x)=xlnx + i%2, %是函数f(x)的极值点,给出以下几个命题:乙@0 < %0 < -;②尢o>2;+ X o < 0;④fOo) + Xo>0;e e其中正确的命题是______________ •(填出所有正确命题的序号)、215 .已知函数/(X)= X3 +OT2 +/?JC+C在X =——与兀=1时都取得极值,若对xe[-l,2],不等式f(x)<c2恒成立,则c的取值范围为___________________________ o三、解答题16.求下列函数的导函数®y = X4—3x2—5x + 6 ③y = x2cos x ②y二x+古@y = tan x17.已知函数/'(兀)=|%2一(a + l)x + a\nx.(1)当a VI时,讨论函数f(x)的单调性;(2)若不等式f(X) + (a + l)x n牛+対+ 1 一对于任意x G [e~1,e]成立,求正实数a 的取值范围.18.已知函数f (尤)=^x3— ax1 2 + l(a 6 /?).(1)若曲线y = /(%)在(l,f(l))处的切线与直线x-y + l = 0垂直,求a的值.(2)若a>0,函数y = /(%)在区间(a,a2 - 3)±存在极值,求a的取值范圉.(3)若a >2,求证:函数y = f(x)在(0,2)上恰有一个零点.19.已知函数f^x) = a x^-x2-x\na (a>0,且aHl).(I )求函数/(兀)的单调区间;(II)求函数/(兀)在[-2,2]上的最大值.20.现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P~A\B\G从, 下部的形状是正四棱柱ABCD-A限Cd (如图所示),并要求正四棱柱的高"0是正以棱锥的高%的4倍.1 若AB=6 m, n =2 m,则仓库的容积是多少?2 若正四棱锥的侧棱长为6 m,则当〃为多少时,仓库的容积最大?参考答案I.C2. D3. D4・ B5. C6. A7. B8. B9. B10・ BII.- A/212. 113.④14.①③15.(-00,-1) U(2,4-oo)16.解析:(l)y z = 4x3— 6x — 5(2)y‘ = % 4- x~2(3)y‘ = (x2ycosx + x2(cosx)f = 2xcosx-x2sinx, sinx , (sinx),cosx — sinx(cosx)' cos2% + sin2% 1(4)-------------- y =( ----------------- )= ----- = = :—cos2%cosx cos2%cos2% cos2%17.(1)当a<0时,函数门切在(1,+8)上单调递增,在(0,1)上单调递减;当ova VI时, 函数f(x)在@,1)上单调递减,在(0卫)和(1,+8)上单调递增.(2) (0,1]解析:(1)函数/'仗)的定义域为(0,+s),广(%)=兀 _ @ + 1)+ 兰=*一@+1央+。

高中数学选修1-1第三章课后习题解答

高中数学选修1-1第三章课后习题解答

新课程标准数学选修1—1第三章课后习题解答第三章 导数及其应用 3.1变化率与导数 练习(P76)在第3 h 和5 h 时,原油温度的瞬时变化率分别为1-和3. 它说明在第3 h 附近,原油温度大约以1 ℃/h 的速度下降;在第5 h 时,原油温度大约以3 ℃/h 的速率上升. 练习(P78)函数()h t 在3t t =附近单调递增,在4t t =附近单调递增. 并且,函数()h t 在4t 附近比在3t 附近增加得慢. 说明:体会“以直代曲”的思想. 练习(P79)函数()r V =(05)V ≤≤的图象为根据图象,估算出(0.6)0.3r '≈,(1.2)0.2r '≈.说明:如果没有信息技术,教师可以将此图直接提供给学生,然后让学生根据导数的几何意义估算两点处的导数. 习题3.1 A 组(P79)1、在0t 处,虽然1020()()W t W t =,然而10102020()()()()W t W t t W t W t t t t--∆--∆≥-∆-∆.所以,单位时间里企业甲比企业乙的平均治污率大,因此企业甲比企业乙略好一筹. 说明:平均变化率的应用,体会平均变化率的内涵.2、(1)(1) 4.9 3.3h h t h t t t∆+∆-==-∆-∆∆,所以,(1) 3.3h '=-. 这说明运动员在1t =s 附近以3.3 m /s 的速度下降. 3、物体在第5 s 的瞬时速度就是函数()s t 在5t =时的导数.(5)(5)10s s t s t t t∆+∆-==∆+∆∆,所以,(5)10s '=. 因此,物体在第5 s 时的瞬时速度为10 m /s ,它在第5 s 的动能213101502k E =⨯⨯= J. 4、设车轮转动的角度为θ,时间为t ,则2(0)kt t θ=>.由题意可知,当0.8t =时,2θπ=. 所以258k π=,于是2258t πθ=. 车轮转动开始后第3.2 s 时的瞬时角速度就是函数()t θ在 3.2t =时的导数.(3.2)(3.2)25208t t t t θθθππ∆+∆-==∆+∆∆,所以(3.2)20θπ'=. 因此,车轮在开始转动后第3.2 s 时的瞬时角速度为20π弧度/秒. 说明:第2,3,4题是对了解导数定义及熟悉其符号表示的巩固. 5、由图可知,函数()f x 在5x =-处切线的斜率大于0,所以函数在5x =-附近单调递增. 同理可得,函数()f x 在4x =-,2-,0,2附近分别单调递增,几乎没有变化,单调递减,单调递减. 说明:“以直代曲”思想的应用.6、函数(1)是一条直线,其斜率是一个小于0的常数;函数(2)的()f x '均大于0,并且随着x 的增加,()f x '的值也在增加;对于函数(3),当x 小于0时,()f x '小于0,当x 大于0时,()f x '大于0,并且随着x 的增加,()f x '的值也在增加. 以下给出了满足上述条件的导函数图象中的一种.说明:本题意在让学生将导数与曲线的切线斜率相联系. 习题3.1 B 组(P80)1、高度关于时间的导数刻画的是运动变化的快慢,即速度;速度关于时间的导数刻画的是速度变化的快慢,根据物理知识,这个量就是加速度.2、说明:由给出的()v t 的信息获得()s t 的相关信息,并据此画出()s t 的图象的大致形状. 这个过程基于对导数内涵的了解,以及数与形之间的相互转换.3、由题意可知,函数()f x 的图象在点(1,5)-处的切线斜率为1-,所以此点附近曲线呈下降趋势. 首先画出切线的图象,然后再画出此点附近函数的图象. 同理可得(2)(3)某点处函数图象的大致形状.说明:这是一个综合性问题,包含了对导数内涵、导数几何意义的了解,以及对以直代曲思3.2导数的计算 练习(P85)1、()27f x x '=-,所以,(2)3f '=-,(6)5f '=.2、(1)1ln 2y x '=; (2)2x y e '=; (3)41065y x x '=-+; (4)3sin 4cos y x x '=--习题3.2 A 组(P85)1、()()2S S r r S r r r r r π∆+∆-==+∆∆∆,所以,0()lim(2)2r S r r r r ππ∆→'=+∆=.2、()9.8 6.5h t t '=-+.3、()r V '=4、(1)213ln 2y x x '=+; (2)1n x n x y nx e x e -'=+; (3)21sin y x'=-.5、()8f x '=-+. 由0()4f x '=有 048=-+,解得0x =.6、(1)ln 1y x '=+; (2)1y x =-.7、1xy π=-+.8、(1)氨气的散发速度()500ln0.8340.834t A t '=⨯⨯.(2)(7)25.5A '=-,它表示氨气在第7天左右时,以25.5克/天的速率减少. 习题3.2 B 组(P86)1、当0y =时,0x =. 所以函数图象与x 轴交于点(0,0)P . x y e '=-,所以01x y ='=-.所以,曲线在点P 处的切线的方程为y x =-.2、()4sin d t t '=-. 所以,上午6:00时潮水的速度为0.42-m /h ;上午9:00时潮水的速度为0.63-m /h ;中午12:00时潮水的速度为0.83-m /h ;下午6:00时潮水的速度为 1.24-m /h.3.3导数在研究函数中的应用 练习(P93)当()0f x '>,即1x >时,函数2()24f x x x =-+单调递增; 当()0f x '<,即1x <时,函数2()24f x x x =-+单调递减. (2)因为()x f x e x =-,所以()1x f x e '=-.当()0f x '>,即0x >时,函数()x f x e x =-单调递增; 当()0f x '<,即0x <时,函数()x f x e x =-单调递减. (3)因为3()3f x x x =-,所以2()33f x x '=-.当()0f x '>,即11x -<<时,函数3()3f x x x =-单调递增; 当()0f x '<,即1x <-或1x >时,函数3()3f x x x =-单调递减. (4)因为32()f x x x x =--,所以2()321f x x x '=--.当()0f x '>,即13x <-或1x >时,函数32()f x x x x =--单调递增;当()0f x '<,即113x -<<时,函数32()f x x x x =--单调递减.2、3、因为2()(0)f x ax bx c a =++≠,所以()2f x ax b '=+. (1)当0a >时,()0f x '>,即2bx a >-时,函数2()(0)f x ax bx c a =++≠单调递增; ()0f x '<,即2bx a<-时,函数2()(0)f x ax bx c a =++≠单调递减.(2)当0a <时,()0f x '>,即2bx a <-时,函数2()(0)f x ax bx c a =++≠单调递增;()0f x '<,即2bx a>-时,函数2()(0)f x ax bx c a =++≠单调递减.4、证明:因为32()267f x x x =-+,所以2()612f x x x '=-. 当(0,2)x ∈时,2()6120f x x x '=-<,因此函数32()267f x x x =-+在(0,2)内是减函数. 练习(P96)注:图象形状不唯一.令()1210f x x '=-=,得112x =. 当112x >时,()0f x '>,()f x 单调递增;当112x <时,()0f x '<,()f x 单调递减. 所以,当112x =时,()f x 有极小值,并且极小值为211149()6()212121224f =⨯--=-.(2)因为3()27f x x x =-,所以2()327f x x '=-. 令2()3270f x x '=-=,得3x =±. 下面分两种情况讨论:①当()0f x '>,即3x <-或3x >时;②当()0f x '<,即33x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当3x =时,()f x 有极小值,并且极小值为54-;当3x =-时,()f x 有极大值,并且极大值为54.(3)因为3()612f x x x =+-,所以2()123f x x '=-. 令2()1230f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即22x -<<时;②当()0f x '<,即2x <-或2x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极小值,并且极小值为10-;当2x =时,()f x 有极大值,并且极大值为22(4)因为3()3f x x x =-,所以2()33f x x '=-.令2()330f x x '=-=,得1x =±. 下面分两种情况讨论:①当()0f x '>,即11x -<<时;②当()0f x '<,即1x <-或1x >时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当1x =-时,()f x 有极小值,并且极小值为2-;当1x =时,()f x 有极大值,并且极大值为22、2x ,4x 是函数()y f x =的极值点,其中2x x =是函数()y f x =的极大值点,其中4x x =是函数()y f x =的极小值点. 练习(P98)(1)在[0,2]上,当112x =时,2()62f x x x =--有极小值,并且极小值为149()1224f =-. 又由于(0)2f =-,(2)20f =.因此,函数2()62f x x x =--在[0,2]上的最大值是20、最小值是4924-. (2)在[4,4]-上,当3x =-时,3()27f x x x =-有极大值,并且极大值为(3)54f -=;当3x =时,3()27f x x x =-有极小值,并且极小值为(3)54f =-;又由于(4)44f -=,(4)44f =-.因此,函数3()27f x x x =-在[4,4]-上的最大值是54、最小值是54-.(3)在1[,3]3-上,当2x =时,3()612f x x x =+-有极大值,并且极大值为(2)22f =.又由于155()327f -=,(3)15f =.因此,函数3()612f x x x =+-在1[,3]3-上的最大值是22、最小值是5527.(4)在[2,3]上,函数3()3f x x x =-无极值. 因为(2)2f =-,(3)18f =-.因此,函数3()3f x x x =-在[2,3]上的最大值是2-、最小值是18-. 习题3.3 A 组(P98)1、(1)因为()21f x x =-+,所以()20f x '=-<. 因此,函数()21f x x =-+是单调递减函数.(2)因为()cos f x x x =+,(0,)2x π∈,所以()1sin 0f x x '=->,(0,)2x π∈.因此,函数()cos f x x x =+在(0,)2π上是单调递增函数. (3)因为()24f x x =-,所以()20f x '=>. 因此,函数()24f x x =-是单调递增函数. (4)因为3()24f x x x =+,所以2()640f x x '=+>. 因此,函数3()24f x x x =+是单调递增函数. 2、(1)因为2()24f x x x =+-,所以()22f x x '=+.当()0f x '>,即1x >-时,函数2()24f x x x =+-单调递增. 当()0f x '<,即1x <-时,函数2()24f x x x =+-单调递减. (2)因为2()233f x x x =-+,所以()43f x x '=-.当()0f x '>,即34x >时,函数2()233f x x x =-+单调递增. 当()0f x '<,即34x <时,函数2()233f x x x =-+单调递减.(3)因为3()3f x x x =+,所以2()330f x x '=+>. 因此,函数3()3f x x x =+是单调递增函数. (4)因为32()f x x x x =+-,所以2()321f x x x '=+-. 当()0f x '>,即1x <-或13x >时,函数32()f x x x x =+-单调递增. 当()0f x '<,即113x -<<时,函数32()f x x x x =+-单调递减.3、(1)图略. (2)加速度等于0.4、(1)在2x x =处,导函数()y f x '=有极大值; (2)在1x x =和4x x =处,导函数()y f x '=有极小值;(3)在3x x =处,函数()y f x =有极大值; (4)在5x x =处,函数()y f x =有极小值. 5、(1)因为2()62f x x x =++,所以()121f x x '=+. 令()1210f x x '=+=,得112x =-. 当112x >-时,()0f x '>,()f x 单调递增; 当112x <-时,()0f x '<,()f x 单调递减.所以,112x =-时,()f x 有极小值,并且极小值为211149()6()212121224f -=⨯---=-.(2)因为3()12f x x x =-,所以2()312f x x '=-. 令2()3120f x x '=-=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为16;当2x =时,()f x 有极小值,并且极小值为16-.(3)因为3()612f x x x =-+,所以2()123f x x '=-+. 令2()1230f x x '=-+=,得2x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当2x =-时,()f x 有极大值,并且极大值为22;当2x =时,()f x 有极小值,并且极小值为10-.(4)因为3()48f x x x =-,所以2()483f x x '=-. 令2()4830f x x '=-=,得4x =±. 下面分两种情况讨论:①当()0f x '>,即2x <-或2x >时;②当()0f x '<,即22x -<<时. 当x 变化时,()f x ',()f x 变化情况如下表:因此,当4x =-时,()f x 有极小值,并且极小值为128-;当4x =时,()f x 有极大值,并且极大值为128.6、(1)当112x =-时,()f x 有极小值,并且极小值为4924-. 由于(1)7f -=,(1)9f =,所以,函数2()62f x x x =++在[1,1]-上的最大值和最小值分别为9,4924-. (2)在[3,3]-上,当2x =-时,函数3()12f x x x =-有极大值,并且极大值为16; 当2x =时,函数3()12f x x x =-有极小值,并且极小值为16-. 由于(3)9f -=,(3)9f =-,所以,函数3()12f x x x =-在[3,3]-上的最大值和最小值分别为16,16-.(3)函数3()612f x x x =-+在1[,1]3-上无极值.因为3()612f x x x =-+在1[,1]3-上单调递减,且1269()327f -=,(1)5f =-,所以,函数3()612f x x x =-+在1[,1]3-上的最大值和最小值分别为26927,5-.(4)当4x =时,()f x 有极大值,并且极大值为128.. 由于(3)117f -=-,(5)115f =,所以,函数3()48f x x x =-在[3,5]-上的最大值和最小值分别为128,128-. 习题3.3 B 组(P99)(1)证明:设()sin f x x x =-,(0,)x π∈. 因为()cos 10f x x '=-<,(0,)x π∈ 所以()sin f x x x =-在(0,)π内单调递减因此()sin (0)0f x x x f =-<=,(0,)x π∈,即sin x x <,(0,)x π∈. 图略 (2)证明:设2()f x x x =-,(0,1)x ∈. 因为()12f x x '=-,(0,1)x ∈所以,当1(0,)2x ∈时,()120f x x '=->,()f x 单调递增,2()(0)0f x x x f =->=;当1(,1)2x ∈时,()120f x x '=-<,()f x 单调递减,2()(1)0f x x x f =->=;又11()024f =>. 因此,20x x ->,(0,1)x ∈. 图略(3)证明:设()1x f x e x =--,0x ≠. 因为()1x f x e '=-,0x ≠所以,当0x >时,()10x f x e '=->,()f x 单调递增,()1(0)0x f x e x f =-->=;当0x <时,()10x f x e '=-<,()f x 单调递减,()1(0)0x f x e x f =-->=;综上,1x e x ->,0x ≠. 图略 (4)证明:设()ln f x x x =-,0x >.因为1()1f x x'=-,0x ≠ 所以,当01x <<时,1()10f x x'=->,()f x 单调递增, ()ln (1)10f x x x f =-<=-<;当1x >时,1()10f x x'=-<,()f x 单调递减, ()ln (1)10f x x x f =-<=-<;当1x =时,显然ln11<. 因此,ln x x <. 由(3)可知,1x e x x >+>,0x >.. 综上,ln x x x e <<,0x > 图略 3.4生活中的优化问题举例 习题3.4 A 组(P104)1、设两段铁丝的长度分别为x ,l x -,则这两个正方形的边长分别为4x ,4l x -,两个正方形的面积和为 22221()()()(22)4416x l x S f x x lx l -==+=-+,0x l <<. 令()0f x '=,即420x l -=,2lx =.当(0,)2l x ∈时,()0f x '<;当(,)2lx l ∈时,()0f x '>.因此,2lx =是函数()f x 的极小值点,也是最小值点.所以,当两段铁丝的长度分别是2l时,两个正方形的面积和最小.2、如图所示,由于在边长为a 的正方形铁片的四角截去 四个边长为x 的小正方形,做成一个无盖方盒,所以无 盖方盒的底面为正方形,且边长为2a x -,高为x .(1)无盖方盒的容积2()(2)V x a x x =-,02ax <<.(2)因为322()44V x x ax a x =-+, 所以22()128V x x ax a '=-+.令()0V x '=,得2a x =(舍去),或6a x =. 当(0,)6a x ∈时,()0V x '>;当(,)62a ax ∈时,()0V x '<.因此,6ax =是函数()V x 的极大值点,也是最大值点.所以,当6ax =时,无盖方盒的容积最大.(第2题)因此,R =是函数()S R 的极小值点,也是最小值点. 此时,22V h R R π===. 所以,当罐高与底面直径相等时,所用材料最省.4、证明:由于211()()n i i f x x a n ==-∑,所以12()()n i i f x x a n ='=-∑.令()0f x '=,得11ni i x a n ==∑,可知,11ni i x a n ==∑是函数()f x 的极小值点,也是最小值点.这个结果说明,用n 个数据的平均值11ni i a n =∑表示这个物体的长度是合理的,这就是最小二乘法的基本原理.5、设矩形的底宽为x m ,则半圆的半径为2x m ,半圆的面积为28x π2m , 矩形的面积为28x a π-2m ,矩形的另一边长为()8a xx π-m 因此铁丝的长为22()(1)244xa x a l x x x x x πππ=++-=++,0x <<令22()104a l x x π'=+-=,得x =.当x ∈时,()0l x '<;当x ∈时,()0l x '>.因此,x =()l x 的极小值点,也是最小值点.时,所用材料最省. 6、利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格. 由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润.收入211(25)2588R q p q q q q =⋅=-=-,利润2211(25)(1004)2110088L R C q q q q q =-=--+=-+-,0200q <<.1214L q '=-+令0L '=,即12104q -+=,84q =.当(0,84)q ∈时,0L '>;当(84,200)q ∈时,0L '<;因此,84q =是函数L 的极大值点,也是最大值点.所以,产量为84时,利润L 最大,习题3.4 B 组(P105)1、设每个房间每天的定价为x 元,那么宾馆利润21801()(50)(20)7013601010x L x x x x -=--=-+-,180680x <<. 令1()7005L x x '=-+=,解得350x =.因为()L x 只有一个极值,所以350x =为最大值点.因此,当每个房间每天的定价为350元时,宾馆利润最大. 2、设销售价为x 元/件时,利润4()()(4)()(5)b x L x x a c c c x a x b b -=-+⨯=--,54ba x <<. 令845()0c ac bc L x xb b +'=-+=,解得458a bx +=.当45(,)8a b x a +∈时,()0L x '>;当455(,)84a b bx +∈时,()0L x '<. 所以,销售价为458a b+元/件时,可获得最大利润.第三章 复习参考题A 组(P110)1、(1)3; (2)4y =-.2、(1)22sin cos 2cos x x x y x +'=; (3)ln x xe y e x x '=+. 3、32GMm F r'=-. 4、(1)()0f t '<. 因为红茶的温度在下降.(2)(3)4f '=-表明在3℃附近时,红茶温度约以4℃/min 的速度下降. 图略. 5、因为()f x =()f x '=.当()0f x '=>,即0x >时,()f x 单调递增;当()0f x '=<,即0x <时,()f x 单调递减.6、因为2()f x x px q =++,所以()2f x x p '=+. 当()20f x x p '=+=,即12px =-=时,()f x 有最小值. 由12p-=,得2p =-. 又因为(1)124f q =-+=,所以5q =. 7、因为2322()()2f x x x c x cx c x =-=-+, 所以22()34(3)()f x x cx c x c x c '=-+=--. 当()0f x '=,即3cx =,或x c =时,函数2()()f x x x c =-可能有极值. 由题意当2x =时,函数2()()f x x x c =-有极大值,所以0c >. 由于所以,当3c x =时,函数2()()f x x x c =-有极大值. 此时,23c=,6c =. 8、设当点A 的坐标为(,0)a 时,AOB ∆的面积最小. 因为直线AB 过点(,0)A a ,(1,1)P ,所以直线AB 的方程为001y x a x a --=--,即1()1y x a a =--. 当0x =时,1a y a =-,即点B 的坐标是(0,)1aa -. 因此,AOB ∆的面积21()212(1)AOBa a S S a a a a ∆===--. 令()0S a '=,即2212()02(1)a aS a a -'=⋅=-.当0a =,或2a =时,()0S a '=,0a =不合题意舍去. 由于所以,当2a =,即直线AB 的倾斜角为135︒时,AOB ∆的面积最小,最小面积为2. 9、D .10、设底面一边的长为x m ,另一边的长为(0.5)x +m. 因为钢条长为14.8m. 所以,长方体容器的高为14.844(0.5)12.88 3.2244x x xx --+-==-.设容器的容积为V ,则32()(0.5)(3.22)2 2.2 1.6V V x x x x x x x ==+-=-++.令()0V x '=,即26 4.4 1.60x x -++=,0 1.6x <<. 所以,415x =-(舍去),或1x =. 1x =是函数()V x 在(0,1.6)内唯一极值点,且为极大值点,从而是最大值点. 所以,当长方体容器的高为1 m 时,容器最大,最大容器为1.8 m 3. 11、设旅游团人数为100x +时,旅行社费用为2()(100)(10005)5500100000y f x x x x ==+-=-++(080,)x x N ≤≤∈. 令()0f x '=,即105000x -+=,50x =.又(0)100000f =,(80)108000f =,(50)112500f =. 所以,50x =是函数()f x 的最大值点.所以,当旅游团人数为150时,可使旅行社收费最多. 12、设打印纸的长为x cm 时,可使其打印面积最大.因为打印纸的面积为623.7,长为x ,所以宽为623.7x, 打印面积623.7()(2 2.54)(2 3.17)S x x x=-⨯-⨯ 23168.396655.9072 6.34x x=--,5.0898.38x <<.令()0S x '=,即23168.3966.340x -=,22.36x ≈(负值舍去),623.727.8922.36≈. 22.36x =是函数()S x 在(5.08,98.38)内唯一极值点,且为极大值,从而是最大值点. 所以,打印纸的长、宽分别约为27.89cm ,22.36cm 时,可使其打印面积最大. 13、设每年养q 头猪时,总利润为y 元.则 21()20000100300200002y R q q q q =--=-+-(0400,)q q N <≤∈.令0y '=,即3000q -+=,300q =.当300q =时,25000y =;当400q =时,20000y =.300q =是函数()y p 在(0,400]内唯一极值点,且为极大值点,从而是最大值点. 所以,每年养300头猪时,可使总利润最大,最大总利润为25000元.第三章 复习参考题B 组(P111)1、(1)43()10210b t t '=-⨯. 所以,细菌在5t =与10t =时的瞬时速度分别为0和410-.(2)当05t ≤<时,细菌在增加;当55t <<+时,细菌在减少. 2、设扇形的半径为r ,中心角为α弧度时,扇形的面积为S .因为212S r α=,2l r r α-=,所以2lrα=-.222111(2)(2)222l S r r lr r r α==-=-,02l r <<.令0S '=,即40l r -=,4lr =,此时α为2弧度.4l r =是函数()S r 在(0,)2l内唯一极值点,且是极大值点,从而是最大值点.所以,扇形的半径为4l、中心角为2弧度时,扇形的面积最大.3、设圆锥的底面半径为r ,高为h ,体积为V ,那么222r h R +=.因此,222231111()3333V r h R h h R h h ππππ==-=-,0h R <<.令22103V R h ππ'=-=,解得3h R =.3h R =是函数()V h 在(0,)R 内唯一极值点,且是极大值点,从而是最大值点.把3h R =代入222r h R +=,得3r R =.由2R r απ=,得α=.所以,圆心角为α=时,容积最大. 4、由于28010k =⨯,所以45k =. 设船速为x km /h 时,总费用为y ,则2420204805y x x x=⨯+⨯ 960016x x=+,0x >令0y '=,即29600160x -=,24x ≈.24x =是函数y 在(0,)+∞上唯一极值点,且是极小值点,从而是最小值点.当24x =时,9600162478424⨯+=(元). 于是20780()940.824÷=(元/时) 所以,船速约为24km /h 时,总费用最少,此时每小时费用约为941元. 5、设汽车以x km /h 行驶时,行车的总费用2390130(3)14360x y x x =++⨯,50100x ≤≤ 令0y '=,解得53x ≈,114y ≈;当50x =,114y ≈;当100x =,138y ≈.因此,当53x ≈时,行车总费用最少.所以,最经济的车速约为53km /h ;如果不考虑其他费用,这次行车的总费用约是114元.。

高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第三章导数及其应用3.3知识点总结含同步练习题及答案

三、知识讲解
1.利用导数研究函数的单调性 描述: 一般地,函数的单调性与其导数的正负有如下关系: 在某个区间 (a, b) 内,如果 f ′ (x) > 0 ,那么函数 y = f (x) 在这个区间内单调递增;如果 f ′ (x) < 0 ,那么函数 y = f (x) 在这个区间内单调递减. 注:在 (a, b) 内可导的函数 f (x) 在 (a, b) 上递增(或递减)的充要条件是 f ′ (x) ⩾ 0 (或 f ′ (x) ⩽ 0 ),x ∈ (a, b) 恒成立,且 f ′ (x) 在 (a, b) 的任意子区间内都不恒等于 0 . 例题: 求下列函数的单调区间: (1)f (x) = x 3 − 3x 2 − 9x + 5 ;(2)f (x) = x 函数的极值定义 已知函数 y = f (x) ,设 x 0 是定义域 (a, b) 内任一点,如果对 x0 附近的所有点 x,都有 f (x) < f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极大值,记作
y 极大 = f (x0 ).
并把 x 0 称为函数 f (x) 的一个极大值点. 如果在 x 0 附近都有 f (x) > f (x0 ) 成立,则称函数 f (x) 在点 x0 处取得极小值,记作
1 3 x − x2 + 2x + 1 . 3 解:(1)函数的定义域为 R.
(3)f (x) =
f ′ (x) = 3x2 − 6x − 9 = 3(x − 3)(x + 1),
令 f ′ (x) > 0 ,解得
x < −1或x > 3,
令 f ′ (x) < 0 ,解得
−1 < x < 3.

高中数学选修1-1(人教B版)第三章导数及其应用3.5知识点总结含同步练习题及答案

高中数学选修1-1(人教B版)第三章导数及其应用3.5知识点总结含同步练习题及答案

x2 ) L/h ,司 360
130 130 x2 h ,耗油量为 ⋅ (2 + ) L ,耗油费用为 x x 360 130 130 x2 元. 2⋅ ⋅ (2 + ) 元,司机的工资为 14 ⋅ x 360 x
解:汽车行驶的时间为 故这次行车的总费用为
y =2⋅
所以
130 130 x 18 x2 ⋅ (2 + ) + 14 ⋅ = 130( + )元, x 360 x 180 x 1 18 − ). 180 x2
8 x − (0 < x < 4√2 ), x 4
3 16 √2 x = ( + √2 )x + . 2 2 x 3 16 L ′ = + √2 − 2 Байду номын сангаас 2 x L = 2x + 2y + 2 ⋅
令 L ′ = 0 ,即
3 16 + √2 − = 0, 2 x2
解得
x1 = 8 − 4√2 ,x2 = 4√2 − 8(舍去),
(1)求面积 S 以 x 为自变量的函数式,并写出定义域; (2)求面积 S 的最大值.
解:(1)依题意,以 AB 的中点 O 为原点建立直角坐标系 O − xy(如图),
则点 C 的横坐标为 x .点 C 的纵坐标 y 满足方程
解得 y = 2√r2 − x 2 (0 < x < r) .
− − − − − −
高中数学选修1-1(人教B版)知识点总结含同步练习题及答案
第三章导数及其应用 2.5 利用导数处理生活中的优化问题(补充)
一、学习任务 能用导数方法求解有关利润最大、用料最省、效率最高等最优化问题;感受导数在解决实际问题 中的作用. 二、知识清单

高二数学选修11第三章导数及其应用试题精选

高二数学选修11第三章导数及其应用试题精选

高二数学选修1-1第三章导数及其应用试题精选如果函数f(x)在(a,b)中每一点处都可导,则称f(x)在(a,b)上可导,则可建立f(x)的导函数,简称导数,查字典数学网为大家推荐了高二数学选修1-1第三章导数及其应用试题,请大家仔细阅读,希望你喜欢。

一、选择题1.(2019黄山调研)若曲线y=f(x)在点(x0,f(x0))处的切线方程为3x-y+1=0,则()A.f(x0)B.f(x0)0C.f(x0)=0D.f(x0)不存在2.(2019海口质检)函数f(x)=excosx的图像在点(0,f(0))处的切线的倾斜角为()A.0B.4C.1D.23.(2019九江模拟)已知f(x)=x3-ax在(-,-1]上递增,则a的取值范围是()A.aB.a3C.aD.a34.(2019东北师大附中模拟)已知函数f(x)在R上可导,且f(x)=x2+2xf(2),则f(-1)与f(1)的大小关系为()A.f(-1)=f(1)B.f(-1)f(1)C.f(-1)5.(2019新乡一模)若a2,则方程31x3-ax2+1=0在(0,2)上恰好有()A.0个根B.1个根C.2个根D.3个根6.(2019辽宁理)函数f(x)的定义域为R,f(-1)=2,对任意xR,f(x)2,则f(x)2x+4的解集为()A.(-1,1)B.(-1,+)C.(-,-1)D.(-,+)二、填空题7.(2019萍乡一模)已知函数f(x)=x3-12x+8在区间[-3,3]上的最大值与最小值分别为M、m,则M-m=________.8.(理)(2019萍乡一模)已知t0,若(2x-1)dx=6,则t=________.9.已知函数f(x)=x3-3a2x+a(a0)的极大值为正数,极小值为负数,则a的取值范围是________.10.(2019商丘调研)若点P是曲线y=x2-lnx上任意一点,则点P到直线y=x-2的最小距离为________.11.(2019广州一模)设曲线y=xn+1(nN*)在点(1,1)处的切线与x轴的交点的横坐标为xn,令an=lgxn,则a1+a2++a99的值为________.[答案] -2三、解答题12.设函数f(x)=x3-3ax2+3bx的图像与直线12x+y-1=0相切于点(1,-11).(1)求a、b的值;(2)讨论函数f(x)的单调性.13.(2019安徽理)设f(x)=1+ax2ex,其中a为正实数.(1)当a=34时,求f(x)的极值点;(2)若f(x)为R上的单调函数,求a的取值范围.14.(2019北京朝阳一模)已知函数f(x)=mx3+3x2-3x,mR. (1)若函数f(x)在x=-1处取得极值,试求m的值,并求f(x)在点M(1,f(1))处的切线方程;观察内容的选择,我本着先静后动,由近及远的原则,有目的、有计划的先安排与幼儿生活接近的,能理解的观察内容。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(数学选修1-1)第三章 导数及其应用综合训练
姓名:___________ 学号:____________ 班次:____________ 成绩:__________
一、选择题
1.函数323922y x x x x 有( )
A .极大值5,极小值27-
B .极大值5,极小值11-
C .极大值5,无极小值
D .极小值27-,无极大值
2.若'0()3f x =-,则000()(3)lim h f x h f x h h →+--=( )
A .3-
B .6-
C .9-
D .12-
3.曲线3()2f x x x 在0p 处的切线平行于直线41y x ,则0p 点的坐标为(
) A .(1,0) B .(2,8)
C .(1,0)和(1,4)--
D .(2,8)和(1,4)--
4.()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足''()()f x g x =,则
()f x 与()g x 满足( )
A .()f x =()g x
B .()f x -()g x 为常数函数
C .()f x =()0g x =
D .()f x +()g x 为常数函数
5.函数x x y 1
42+=单调递增区间是( )
A .),0(+∞
B .)1,(-∞
C .),21
(+∞ D .),1(+∞
6.函数x x
y ln =的最大值为( )
A .1-e
B .e
C .2e
D .310
二、填空题
1.函数2cos y x x =+在区间[0,
]2π上的最大值是 。

2.函数3()45f x x x =++的图像在1x =处的切线在x 轴上的截距为________________。

3.函数3
2x x y -=的单调增区间为 ,单调减区间为___________________。

4.若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是 。

5.函数322(),f x x ax bx a =+++在1=x 时有极值10,那么b a ,的值分别为________。

三、解答题
1. 已知曲线12-=x y 与31x y +=在0x x =处的切线互相垂直,求0x 的值。

2.如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去
四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长
为多少时,盒子容积最大?
3. 已知c bx ax x f ++=2
4)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-
(1)求)(x f y =的解析式;(2)求)(x f y =的单调递增区间。

4.平面向量13(3,1),(,2a b =-=,若存在不同时为0的实数k 和t ,使 2(3),,x a t b y ka tb =+-=-+且x y ⊥,试确定函数()k f t =的单调区间。

(数学选修1-1)第三章 导数及其应用综合训练参考答案
一、选择题
1.C '2
3690,1,3y x x x x =--==-=得,当1x <-时,'0y >;当1x >-时,'0y < 当1x =-时,5y =极大值;x 取不到3,无极小值
2.D '0000000()(3)()(3)lim 4lim 4()124h h f x h f x h f x h f x h f x h h
→→+--+--===- 3.C 设切点为0(,)P a b ,'2'2()31,()314,1f x x k f a a a =+==+==±,
把1a =-,代入到3()2f x x x 得4b =-;把1a =,代入到3()2f x x x 得0b =,所以0(1,0)P 和(1,4)--
4.B ()f x ,()g x 的常数项可以任意
5.C 令3'
222181180,(21)(421)0,2x y x x x x x x x -=-=>-++>> 6.A 令'''
22(ln )ln 1ln 0,x x x x x y x e x x -⋅-====,当x e >时,'0y <;当x e <时,'0y >,1()y f e e ==极大值,在定义域内只有一个极值,所以max 1y e
= 二、填空题
1.36+π '12sin 0,6y x x π=-==,比较0,,62ππ处的函数值,得max 6
y π
=+2.37- '2'3()34,(1)7,(1)10,107(1),0,7
f x x f f y x y x =+==-=-==-时 3.2(0,)3 2(,0),(,)3-∞+∞ '22320,0,3y x x x x =-+===或 4.20,3a b ac >≤且 '2
()320f x ax bx c =++>恒成立, 则220,0,34120a a b ac b ac >⎧><⎨
∆=-<⎩且 5.4,11- '2'2()32,(1)230,(1)110f x x ax b f a b f a a b =++=++==+++=
22334,,3119a b a a b b a a b +=-=-=⎧⎧⎧⎨⎨⎨==-++=⎩⎩⎩
或,当3a =-时,1x =不是极值点 三、解答题
1.解:00'''2'2
10202,|2;3,|3x x x x y x k y x y x k y x ========
312001,61,k k x x =-=-= 2.解:设小正方形的边长为x 厘米,则盒子底面长为82x -,宽为52x - 32(82)(52)42640V x x x x x x =--=-+
'2'10125240,0,1,3V x x V x x =-+===令得或,103x =(舍去) (1)18V V ==极大值,在定义域内仅有一个极大值,
18V ∴=最大值
3.解:(1)c bx ax x f ++=2
4)(的图象经过点(0,1),则1c =, '3'()42,(1)421,f x ax bx k f a b =+==+=
切点为(1,1)-,则c bx ax x f ++=24)(的图象经过点(1,1)- 得591,,22
a b c a b ++=-==-得 4259()122
f x x x =-+
(2)'3()1090,0,f x x x x x =-><<>或
单调递增区间为()+∞ 4.解:由13(3,1),(,)22a b =-=得0,2,1a b a b === 22222[(3)]()0,(3)(3)0a t b ka tb ka ta b k t a b t t b +--+=-+--+-=
33311430,(3),()(3)44k t t k t t f t t t -+-==-=- '233()0,1,144f t t t t =-><->得或;2330,1144
t t -<-<<得 所以增区间为(,1),(1,)-∞-+∞;减区间为(1,1)-。

相关文档
最新文档