与函数有关的新定义题型

合集下载

数学九年级上册-二次函数中的新定义问题专项训练30道人教版解析版

数学九年级上册-二次函数中的新定义问题专项训练30道人教版解析版

专题22.7 二次函数中的新定义问题专项训练(30道)【人教版】考卷信息:本套训练卷共30题,选择10题,填空10题,解答10题,题型针对性较高,覆盖面广,选题有深度,可加强学生对新定义函数的理解!一.选择题(共10小题)1.(2022•市中区校级模拟)定义:在平面直角坐标系中,点P (x ,y )的横、纵坐标的绝对值之和叫做点P (x ,y )的勾股值,记[P ]=|x |+|y |.若抛物线y =ax 2+bx +1与直线y =x 只有一个交点C ,已知点C 在第一象限,且2≤[C ]≤4,令t =2b 2﹣4a +2020,则t 的取值范围为( )A .2017≤t ≤2018B .2018≤t ≤2019C .2019≤t ≤2020D .2020≤t ≤20212.(2022•市中区二模)定义:对于已知的两个函数,任取自变量x 的一个值,当x ≥0时,它们对应的函数值相等;当x <0时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y =x ,它的相关函数为.已知点M ,N 的坐标分别为,,连结y ={x(x ≥0)−x(x <0)(−12,1)(92,1)MN ,若线段MN 与二次函数y =﹣x 2+4x +n 的相关函数的图象有两个公共点,则n 的取值范围为( )A .﹣3≤n ≤﹣1或B .﹣3<n <﹣1或1<n ≤541<n ≤54C .﹣3<n ≤﹣1或D .﹣3≤n ≤﹣1或1≤n ≤541≤n ≤543.(2022•青秀区校级一模)新定义:若一个点的纵坐标是横坐标的2倍,则称这个点为二倍点.若二次函数y =x 2﹣x +c (c 为常数)在﹣2<x <4的图象上存在两个二倍点,则c 的取值范围是( )A .﹣2<cB .﹣4<cC .﹣4<cD .﹣10<c <14<94<14<944.(2022秋•汉阳区期中)我们定义:若点A 在某一个函数的图象上,且点A 的横纵坐标相等,我们称点A 为这个函数的“好点”.若关于x 的二次函数y =ax 2+tx ﹣2t 对于任意的常数t 恒有两个“好点”,则a 的取值范围为( )A .0<a <1B .0C .D .<a <1213<a <1212<a <15.(2022秋•和平区校级月考)对于实数a ,b ,定义运算“*”:a *b ,例如:4*2,因={a 2−ab(a ≥b)b 2−ab(a <b)为4>2,所以4*2=42﹣4×2=8.若函数y =(2x )*(x +1),则下列结论:①方程(2x )*(x +1)=0的解为﹣1和1;②关于x 的方程(2x )*(x +1)=m 有三个解,则0<m ≤1;③当x >1时,y 随x 的增大而增大;④直线y =kx ﹣k 与函数y =(2x )*(x +1)图象只有一个交点,则k =﹣2;⑤当x <1时,函数y =(2x )*(x +1)的最大值为1.其中正确结论的序号有( )A .②④⑤B .①②⑤C .②③④D .①③⑤6.(2022•莱芜区二模)定义:平面直角坐标系中,点P (x ,y )的横坐标x 的绝对值表示为|x |,纵坐标y 的绝对值表示为|y |,我们把点P (x ,y )的横坐标与纵坐标的绝对值之和叫做点P (x ,y )的折线距离,记为|M |=|x |+|y |(其中的“+”是四则运算中的加法),若抛物线y =ax 2+bx +1与直线y =x 只有一个交点M ,已知点M 在第一象限,且2≤|M |≤4,令t =2b 2﹣4a +2022,则t 的取值范围为( )A .2018≤t ≤2019B .2019≤t ≤2020C .2020≤t ≤2021D .2021≤t ≤20227.(2022•岳阳模拟)在平面直角坐标系中,对于点P (m ,n )和点P ′(m ,n ′),给出如下新定义,若n ',则称点P ′(m ,n ′)是点P (m ,n )的限变点,例如:点P 1(1,4)的限={|n|(当m <0时)n−2(当m ≥0时)变点是P ′1(1,2),点P 2(﹣2,﹣1)的限变点是P ′2(﹣2,1),若点P (m ,n )在二次函数y =﹣x 2+4x +1的图象上,则当﹣1≤m ≤3时,其限变点P ′的纵坐标n '的取值范围是( )A .﹣1≤n '<3B .1≤n '<4C .1≤n '≤3D .﹣1≤n '≤48.(2022•自贡模拟)定义:若抛物线的顶点与x 轴的两个交点构成的三角形是直角三角形,则这种抛物线就称为:“美丽抛物线”.如图,直线l :y x +b 经过点M (0,),一组抛物线的顶点=1314B 1(1,y 1),B 2(2,y 2),B 3(3,y 3),…B n (n ,y n ) (n 为正整数),依次是直线l 上的点,这组抛物线与x 轴正半轴的交点依次是:A 1(x 1,0),A 2(x 2,0),A 3(x 3,0),…A n +1(x n +1,0)(n 为正整数).若x 1=d (0<d <1),当d 为( )时,这组抛物线中存在美丽抛物线.A .或B .或C .或D .512712512111271211127129.(2022秋•诸暨市期中)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有交点时m 的最大值和最小值之差为( )A .5B .C .4D .7+1727−17210.(2022秋•亳州月考)定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做和谐点,所围成的矩形叫做和谐矩形.已知点P 是抛物线y =x 2+k 上的和谐点,所围成的和谐矩形的面积为16,则k 的值可以是( )A .16B .4C .﹣12D .﹣18二.填空题(共10小题)11.(2022•芦淞区模拟)定义[a ,b ,c ]为函数y =ax 2+bx +c 的特征数,下面给出特征数位[2m ,1﹣m ,﹣1﹣m ]的函数的一些结论:①当m =﹣3时,函数图象的顶点坐标是(,);1383②当m =1时,函数图象截x 轴所得的线段长度等于2;③当m =﹣1时,函数在x 时,y 随x 的增大而减小;>14④当m ≠0时,函数图象经过同一个点.上述结论中所有正确的结论有 .(填写所有正确答案的序号)12.(2022秋•浦东新区期末)定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段MN 长就是抛物线关于直线的“割距”.已知直线y =﹣x +3与x 轴交于点A ,与y 轴交于点B ,点B 恰好是抛物线y =﹣(x ﹣m )2+n 的顶点,则此时抛物线关于直线y 的割距是 .13.(2022•宣州区校级自主招生)对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足﹣m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.将函数y =﹣x 2+1(﹣2≤x ≤t ,t ≥0)的图象向上平移t 个单位,得到的函数的边界值n 满足n 时,则t 的取值范围是 .94≤≤5214.(2022秋•德清县期末)定义:在平面直角坐标系中,我们将横、纵坐标都是整数的点称为“整点”.若抛物线y =ax 2﹣2ax +a +3与x 轴围成的区域内(不包括抛物线和x 轴上的点)恰好有8个“整点”,则a 的取值范围是 .15.(2022秋•鄞州区校级期末)定义:在平面直角坐标系中,若点A 满足横、纵坐标都为整数,则把点A 叫做“整点”.如:B (3,0)、C (﹣1,3)都是“整点”.当抛物线y =ax 2﹣4ax +1与其关于x 轴对称的抛物线围成的封闭区域内(包括边界)共有9个整点时,a 的取值范围 .16.(2022秋•思明区校级期中)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:若y ′,则称点Q 为点P 的“可控变点”.={y(x ≥0)−y(x <0)请问:若点P 在函数y =﹣x 2+16(﹣5≤x ≤a )的图象上,其“可控变点”Q 的纵坐标y ′的取值范围是﹣16<y ′≤16,则实数a 的取值范围是 .17.(2022•徐汇区模拟)定义:将两个不相交的函数图象在竖直方向上的最短距离称为这两个函数的“和谐值”.如果抛物线y =ax 2+bx +c (a ≠0)与抛物线y =(x ﹣1)2+1的“和谐值”为2,试写出一个符合条件的函数解析式: .18.(2022•二道区校级模拟)定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A (0,2),点C (2,0),则互异二次函数y =(x ﹣m )2﹣m 与正方形OABC 有公共点时m 的最大值是 .19.(2022•郫都区模拟)定义:由a ,b 构造的二次函数y =ax 2+(a +b )x +b 叫做一次函数y =ax +b 的“滋生函数”,一次函数y =ax +b 叫做二次函数y =ax 2+(a +b )x +b 的“本源函数”(a ,b 为常数,且a ≠0).若一次函数y =ax +b 的“滋生函数”是y =ax 2﹣3x +a +1,那么二次函数y =ax 2﹣3x +a +1的“本源函数”是 .20.(2022•亭湖区校级开学)定义{a ,b ,c }=c (a <c <b ),即(a ,b ,c )的取值为a ,b ,c 的中位数,例如:{1,3,2}=2,{8,3,6}=6,已知函数y ={x 2+1,﹣x +2,x +3}与直线yx +b 有3个交点时,=13则b 的值为 .三.解答题(共10小题)21.(2022•工业园区模拟)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”.例如,点(﹣1,1)是函数y =x +2的图象的“好点”.(1)在函数①y =﹣x +3,②y ③y =x 2+2x +1的图象上,存在“好点”的函数是 ;(填序号)=3x (2)设函数y (x <0)与y =kx +3的图象的“好点”分别为点A 、B ,过点A 作AC ⊥y 轴,垂足=−4x 为C .当△ABC 为等腰三角形时,求k 的值;(3)若将函数y =x 2+2x 的图象在直线y =m 下方的部分沿直线y =m 翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m 的值.22.(2022春•荷塘区校级期中)如图1,若关于x的二次函数y=ax2+bx+c(a,b,c为常数且a<0)与x轴交于两个不同的点A(x1,0),B(x2,0)(x1<0<x2),与y轴交于点C,抛物线的顶点为M,O是坐标原点.(1)若a =﹣1,b =2,c =3.①求此二次函数图象的顶点M 的坐标;②定义:若点G 在某一个函数的图象上,且点G 的横纵坐标相等,则称点G 为这个函数的“好点”.求证:二次函数y =ax 2+bx +c 有两个不同的“好点”.(2)如图2,连接MC ,直线MC 与x 轴交于点P ,满足∠PCA =∠PBC ,且的tan∠PBC =12,△PBC 面积为,求二次函数的表达式.1323.(2022春•海门市期中)定义:在平面直角坐标系xOy 中,若某函数的图象上存在点P (x ,y ),满足y =mx +m ,m 为正整数,则称点P 为该函数的“m 倍点”.例如:当m =2时,点(﹣2,﹣2)即为函数y =3x +4的“2倍点”.(1)在点A (2,3),B (﹣2,﹣3),C (﹣3,﹣2)中, 是函数y的“1倍点”;=6x (2)若函数y =﹣x 2+bx 存在唯一的“4倍点”,求b 的值;(3)若函数y =﹣x +2m +1的“m 倍点”在以点(0,10)为圆心,半径长为2m 的圆外,求m 的所有值.24.(2022•费县一模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”,例如,点(2,2)是函数y =2x ﹣2的图象的“等值点”.(1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;y =5x ,y =x +2如果不存在,说明理由;(2)写出函数y =﹣x 2+2的等值点坐标;(3)若函数y =﹣x 2+2(x ≤m )的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,请写出m 的取值范围.25.(2022春•武侯区校级月考)如图1,在平面直角坐标系xOy 中,已知抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),B (5,0)两点,与y 轴交于点C (0,﹣5).(1)求抛物线解析式;(2)如图2,作出如下定义:对于矩形DEFG,其边长EF=1,DE=2k(k为常数,且k>0),其矩形长和宽所在直线平行于坐标轴,矩形可以在平面内自由的平移,且EG所在直线与抛物线无交点,则称该矩形在“游走”,每一个位置对应的矩形称为“悬浮矩形”;对与每一个“悬浮矩形”,若抛物线上有一点P,使得△PEG的面积最小,则称点P是该“悬浮矩形”的核心点.①请说明“核心点”P不随“悬浮矩形”的“游走”而变化,并求出“核心点”P的坐标(用k表示);②若k=1,DF所在直线与抛物线交于点M和N(M在N的右侧),是否存在这样的“悬浮矩形”,使得△PMN是直角三角形,若存在,并求出“悬浮矩形”中对角线DF所在直线的表达式;若不存在,说明理由.v26.(2022•武侯区模拟)【阅读理解】定义:在平面直角坐标系xOy中,点P为抛物线C的顶点,直线l与抛物线C分别相交于M,N两点(其中点M在点N的右侧),与抛物线C的对称轴相交于点Q,若记S(l,C)=PQ•MN,则称S(l,C)是直线l与抛物线C的“截积”.【迁移应用】根据以上定义,解答下列问题:如图,若直线l的函数表达式为y=x+2.(1)若抛物线C的函数表达式为y=2x2﹣1,分别求出点M,N的坐标及S(l,C)的值;(2)在(1)的基础上,过点P作直线l的平行线l',现将抛物线C进行平移,使得平移后的抛物线C'的顶点P′落在直线l'上,试探究S(l,C')是否为定值?若是,请求出该定值;若不是,请说明理由;22(3)设抛物线C的函数表达式为y=a(x﹣h)2+k,若S(l,C)=6,MN=4,且点P在点Q的下方,求a的值.27.(2022•南关区校级模拟)在平面直角坐标系xOy中,对于点P给出如下定义:若点P到两坐标轴的距离之和等于3,则称点P为三好点.(1)在点R(0,﹣3),S(1,2),T(6,﹣3)中,属于三好点的是 (填写字母即可);(2)若点A在x轴正半轴上,且点A为三好点,直线y=2x+b经过点A,求该直线与坐标轴围成的三角形的面积;(3)若直线y=a(a>0)与抛物线y=x2﹣x﹣2的交点为点M,N,其中点M为三好点,求点M的坐标;(4)若在抛物线y=﹣x2﹣nx+2n上有且仅有两个点为三好点,直接写出n的取值范围.28.(2022秋•长沙期中)定义:在平面直角坐标系中,图形G 上的点P (x ,y )的横坐标x 和纵坐标y 的和x +y 称为点P 的“横纵和”,而图形G 上所有点的“横纵和”中最小的值称为图形的“极小和”.(1)抛物线y =x 2﹣2x ﹣2的图象上点P (1,﹣3)的“横纵和”是  ;该抛物线的“极小和”是 .(2)记抛物线y =x 2﹣(2m +1)x ﹣2的“极小和”为s ,若﹣2021≤s ≤﹣2020,求m 的取值范围.(3)已知二次函数y =x 2+bx +c (c ≠0)的图象上的点A (,2c )和点C (0,c )的“横纵和”相等,m 2求该二次函数的“极小和”.这个“极小和”是否有最大值?如果有,请求出这个最大值;如果没有,请说明理由.29.(2022•泰兴市二模)定义:在平面直角坐标系xOy 中,若P 、Q 的坐标分别为(x 1,y 1)、Q (x 2,y 2),则称|x 1﹣x 2|+|y 1﹣y 2|为若P 、Q 的“绝对距离”,表示为d PQ .【概念理解】(1)一次函数y =﹣2x +6图象与x 轴、y 轴分别交于A 、B 点.①d AB 为 ;②点N 为一次函数y =﹣2x +6图象在第一象限内的一点,d AN =5,求N 的坐标;③一次函数的图象与y 轴、AB 分别交于C 、D 点,P 为线段CD 上的任意一点,试说明:y =x +32d AP =d BP .【问题解决】(2)点P (1,2)、Q (a ,b )为二次函数y =x 2﹣mx +n 图象上的点,且Q 在P 的右边,当b =2时,d PQ =4.若b <2,求d PQ 的最大值;(3)已知P 的坐标为(1,1),点Q 为反比例函数(x >0)图象上一点,且Q 在P 的右边,y =3x d PQ =2,试说明满足条件的点Q 有且只有一个.30.(2022•开福区校级一模)定义:当x 取任意实数,函数值始终不小于一个常数时,称这个函数为“恒心函数”,这个常数称为“恒心值”.(1)判断:函数y =x 2+2x +2是否为“恒心函数”,如果是,求出此时的“恒心值”,如果不是,请说明理由;(2)已知“恒心函数”y =3|ax 2+bx +c |+2.①当a >0,c <0时,此时的恒心值为 ;②若三个整数a 、b 、c 的和为12,且,求a 的最大值与最小值,并求出此时相应的b 、c 的值;b a =c b (3)恒心函数y =ax 2+bx +c (b >a )的恒心值为0,且恒成立,求m 的取值范围.a +b +c a +b >m。

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练-中考数学考前30天迅速提分复习方案(上海专用)(解析版)

专题2.4新定义的四种题型与真题训练题型一:函数中新定义问题1.(2022青浦一模18)如图,一次函数y =ax +b (a <0,b >0)的图象与x 轴,y 轴分别相交于点A ,点B ,将它绕点O 逆时针旋转90°后,与x 轴相交于点C ,我们将图象过点A ,B ,C 的二次函数叫做与这个一次函数关联的二次函数.如果一次函数y =﹣kx +k (k >0)的关联二次函数是y =mx 2+2mx +c (m ≠0),那么这个一次函数的解析式为.【解答】解:对y =﹣kx +k ,当x =0时,y =k ,当y =0时,x =1,∴A (1,0),B (0,k ),∴C (﹣k ,0),将A 、B 、C 的坐标代入y =mx 2+2mx +c 得,,解得:或或,∵m ≠0,k >0,∴m =﹣1,k =3,c =3,∴一次函数的解析式为y =﹣3x +3,故答案为:y =﹣3x +3.2.(2022黄埔一模18)若抛物线2111y ax b x c =++的顶点为A ,抛物线2222y ax b x c =-++的顶点为B ,且满足顶点A 在抛物线2y 上,顶点B 在抛物线1y 上,则称抛物线1y 与抛物线2y 互为“关联抛物线”,已知顶点为M 的抛物线()223y x =-+与顶点为N 的抛物线互为“关联抛物线”,直线MN 与x 轴正半轴交于点D ,如果3tan 4MDO ∠=,那么顶点为N 的抛物线的表达式为_________【详解】设顶点为N 的抛物线顶点坐标N 为(a ,b )已知抛物线()223y x =-+的顶点坐标M 为(2,3)∵3tan 4MDO ∠=,∴34M M N y x x =-,即3324Dx =-,解得24D x =±∵直线MN 与x 轴正半轴交于点D,∴D 点坐标为(6,0)则直线MD 解析式为3(6)4y x =--N 点在直线MD 3(6)4y x =--上,N 点也在抛物线()223y x =-+故有()23(6)423b a b a ⎧=--⎪⎨⎪=-+⎩,化简得2394247b a b a a ⎧=-+⎪⎨⎪=-+⎩联立得2394742a a a --=-+,化简得2135042a a -+=解得a =54或a =2(舍),将a =54代入3942b a =-有359157257442161616b =-⨯+=-+=解得545716a b ⎧=⎪⎪⎨⎪=⎪⎩,故N 点坐标为(54,5716)则顶点为N 的抛物线的表达式为2557()416y a x =-+将(2,3)代入2557()416y a x =-+有,25573(2416a =-+化简得95731616a =+,解得a =-1故顶点为N 的抛物线的表达式为2557(416y x =--+故答案为:2557()416y x =--+.3.(2020杨浦二模)定义:对于函数y =f (x ),如果当a ≤x ≤b 时,m ≤y ≤n ,且满足n ﹣m =k (b ﹣a )(k 是常数),那么称此函数为“k 级函数”.如:正比例函数y =﹣3x ,当1≤x ≤3时,﹣9≤y ≤﹣3,则﹣3﹣(﹣9)=k (3﹣1),求得k =3,所以函数y =﹣3x 为“3级函数”.如果一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”,那么k 的值是.【分析】根据一次函数y =2x ﹣1(1≤x ≤5)为“k 级函数”解答即可.【解答】解:因为一次函数y=2x﹣1(1≤x≤5)为“k级函数”,可得:k=2,故答案为:2.题型二:三角形中的新定义1.(2022嘉定一模18)如图,在△ABC中,∠C=90°,BC=2,,点D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.【解答】解:过点E作EF⊥BC,垂足为F,∵∠ACB=90°,BC=2,,∴AC===4,∵CD:AD=1:3,∴CD=1,∵∠BCE=∠A,∠ACB=∠CFE=90°,∴△ABC∽△CEF,∴===2,∴设EF为a,则CF为2a,BF为2﹣2a,∵∠ACB=∠BFE=90°,∠CBD=∠FBE,∴△BFE∽△BCD,∴=,∴=,∴a=,∴EF=,CF=1,∴CE===,故答案为:.2、(2022杨浦一模17)新定义:已知三条平行直线,相邻两条平行线间的距离相等,我们把三个顶点分别在这样的三条平行线上的三角形称为格线三角形.如图,已知等腰Rt△ABC为“格线三角形”,且∠BAC=90°,那么直线BC与直线c的夹角α的余切值为.【解答】解:过B 作BE ⊥直线a 于E ,延长EB 交直线c 于F ,过C 作CD ⊥直线a 于D ,则∠CDA =∠AEB =90°,∵直线a ∥直线b ∥直线c ,相邻两条平行线间的距离相等(设为d ),∴BF ⊥直线c ,CD =2d ,∴BE =BF =d ,∵∠CAB =90°,∠CDA =90°,∴∠DCA +∠DAC =90°,∠EAB +∠DAC =90°,∴∠DCA =∠EAB ,在△CDA 和△AEB 中,,∴△CDA ≌△AEB (AAS ),∴AE =CD =2d ,AD =BE =d ,∴CF =DE =AE +AD =2d +d =3d ,∵BF =d ,∴cotα===3,故答案为:3.3.(2022长宁一模17)定义:在△A 中,点D 和点E 分别在AB 边、AC 边上,且DE //BC ,点D 、点E 之间距离与直线DE 与直线BC 间的距离之比称为DE 关于BC 的横纵比.已知,在△A 中,4,BC BC =上的高长为3,DE 关于BC 的横纵比为2:3,则DE =_______.【详解】如图,AF BC ⊥于F ,交DE 于点G ,//DE BC ,ADE ABC ∴△△∽,AG DE ⊥,DE AGBC AF∴=,3AF = DE 关于BC 的横纵比为2:3,4BC =,23DE GF ∴=设2DE a =,则3GF a =,33AG AF GF a∴=-=-23343a a -∴=,解得23a =,43DE ∴=,故答案为:434.(2022虹口一模17)在网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形称为“格点三角形”.如图,在4×4的网格中,△ABC 是一个格点三角形,如果△DEF 也是该网格中的一个格点三角形,它与△ABC 相似且面积最大,那么△DEF 与△ABC 相似比的值是.【解答】解:由表格可得:AB =,BC =2,AC =,如图所示:作△DEF ,DE =,DF =,EF =5,∵===,∴△DEF ∽△ABC ,则△DEF 与△ABC 相似比的值是.故答案为:.5.(2020松江二模)如果一个三角形中有一个内角的度数是另外两个内角度数差的2倍,我们就称这个三角形为“奇巧三角形”.已知一个直角三角形是“奇巧三角形”,那么该三角形的最小内角等于度.【分析】设直角三角形的最小内角为x ,另一个内角为y ,根据三角形的内角和列方程组即可得到结论.【解答】解:设直角三角形的最小内角为x ,另一个内角为y ,由题意得,,解得:,答:该三角形的最小内角等于22.5°,故答案为:22.5.6.(2020嘉定二模)定义:如果三角形的两个内角∠α与∠β满足∠α=2∠β,那么,我们将这样的三角形称为“倍角三角形”,如果一个等腰三角形是“倍角三角形”,那么这个等腰三角形的腰长与底边长的比值为【考查内容】新定义题型,黄金三角形【评析】中等【解析】当∠α为底角时,用内角和公式求得∠β= 36,此时为黄金三角形,腰长与底边长的比值215+;当当∠α为顶角时,用内角和公式求得∠β= 45,此时为等腰直角三角形,腰长与底边长的比值22。

42 二次函数创新题及新定义问题

42 二次函数创新题及新定义问题

二次函数创新题及新定义问题二次函数与新定义问题在二次函数与新定义问题中,重点是将题中给出的定义“翻译”成学过的知识,再结合二次函数的性质综合进行处理,其难点就在于“翻译定义”的过程,对学生的理解能力和初中知识的运用能力要求较高.典例1.若两个二次函数图象的顶点,开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1,和y2=x2+bx+c,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求当0≤x≤3时,y2的取值范围.【答案】解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0,解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+x2+bx+c=3x2+(b﹣4)x+(c+3),∵y1+y2与y1为“同簇二次函数”,∴y1+y2=3(x﹣1)2+1=3x2﹣6x+4,∴函数y2的表达式为:y2=x2﹣2x+1.∴y2=x2﹣2x+1=(x﹣1)2,∴函数y2的图象的对称轴为x=1.∵1>0,∴函数y2的图象开口向上.当0≤x≤3时,∵函数y2的图象开口向上,∴y2的取值范围为0≤y2≤4.【精准解析】(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y 1的图象经过点A (1,1)可以求出m 的值,然后根据y 1+y 2与y 1为“同簇二次函数”就可以求出函数y 2的表达式,然后将函数y 2的表达式转化为顶点式,再利用二次函数的性质就可以解决问题.练习1.设二次函数y 1,y 2的图象的顶点分别为(a ,b )、(c ,d ),当a=﹣c ,b=2d ,且开口方向相同时,则称y 1是y 2的“反倍顶二次函数”.(1)请写出二次函数y=x 2+x+1的一个“反倍顶二次函数”;(2)已知关于x 的二次函数y 1=x 2+nx 和二次函数y 2=nx 2+x ,函数y 1+y 2恰是y 1﹣y 2的“反倍【答案】解:(1)∵y=x 2+x+1,∴y=,∴二次函数y=x 2+x+1的顶点坐标为(﹣,),∴二次函数y=x 2+x+1的一个“反倍顶二次函数”的顶点坐标为(,),∴反倍顶二次函数的解析式为y=x 2﹣x+;(2)y 1+y 2=x 2+nx+nx 2+x=(n+1)x 2+(n+1)x ,y 1+y 2=(n+1)(x 2+x+)﹣,顶点坐标为(﹣,﹣),y 1﹣y 2=x 2+nx ﹣nx 2﹣x=(1﹣n )x 2+(n ﹣1)x ,y 1﹣y 2=(1﹣n )(x 2﹣x+)﹣,顶点坐标为(,﹣),由于函数y 1+y 2恰是y 1﹣y 2的“反倍顶二次函数”,则﹣2×=﹣,解得n=.1.小爱同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是.(2)延伸思考:将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?写出平移过程,并直接写出当123y < 时,自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|2|1)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①该函数的一条性质为:函数图象关于y 轴对称;②方程2(||1)1x --=-的解为:2x =-或0x =或2x =;③若方程2(||1)x a --=有四个实数根,则a 的取值范围是10a -<<.故答案为函数图象关于y 轴对称;2x =-或0x =或2x =;10a -<<.(2)将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,当123y < 时,自变量x 的取值范围是04x <<且2x ≠.2.(2021•长沙)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y 轴对称,则把该函数称之为“T 函数”,其图象上关于y 轴对称的不同两点叫做一对“T 点”.根据该约定,完成下列各题.(1)若点(1,)A r 与点(,4)B s 是关于x 的“T 函数”()24(0)0,0,x y x tx x t t ⎧-<⎪=⎨⎪≠⎩是常数 的图象上的一对“T 点”,则r =,s =,t =(将正确答案填在相应的横线上);(2)关于x 的函数(y kx p k =+,p 是常数)是“T 函数”吗?如果是,指出它有多少对“T 点”如果不是,请说明理由;(3)若关于x 的“T 函数”2(0y ax bx c a =++>,且a ,b ,c 是常数)经过坐标原点O ,且与直线:(0l y mx n m =+≠,0n >,且m ,n 是常数)交于1(M x ,1)y ,2(N x ,2)y 两点,当1x ,2x 满足112(1)1x x --+=时,直线l 是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.【分析】(1)由A ,B 关于y 轴对称求出r ,s ,由“T 函数”的定义求出t ;(2)分0k =和0k ≠两种情况考虑即可;(3)先根据过原点得出0c =,再由“T 函数”得出b 的值,确定二次函数解析式后,和直线联立求出交点的横坐标,写出l 的解析式,确定经过的定点即可.【解答】解:(1)A ,B 关于y 轴对称,1s ∴=-,4r =,A ∴的坐标为(1,4),把(1,4)A 代入是关于x 的“T 函数”中,得:4t =,故答案为4r =,1s =-,4t =;(2)当0k =时,有y p =,此时存在关于y 轴对称得点,y kx p ∴=+是“T 函数”,且有无数对“T ”点,当0k ≠时,不存在关于y 轴对称的点,y kx p ∴=+不是“T 函数”;(3)2y ax bx c =++过原点,0c ∴=,2y ax bx c =++是“T 函数”,0b ∴=,2y ax ∴=,联立直线l 和抛物线得:2y ax y mx n ⎧=⎨=+⎩,即:20ax mx n --=,12m x x a +=,12n x x a-=,又112(1)1x x --+=,化简得:1212x x x x +=,∴m n a a-=,即m n =-,y mx n mx m ∴=+=-,当1x =时,0y =,∴直线l 必过定点(1,0).3.(2021•杭州)在直角坐标系中,设函数21(y ax bx a =++,b 是常数,0)a ≠.(1)若该函数的图象经过(1,0)和(2,1)两点,求函数的表达式,并写出函数图象的顶点坐标;(2)写出一组a ,b 的值,使函数21y ax bx =++的图象与x 轴有两个不同的交点,并说明理由.(3)已知1a b ==,当x p =,(q p ,q 是实数,)p q ≠时,该函数对应的函数值分别为P ,Q .若2p q +=,求证:6P Q +>.【分析】(1)考查使用待定系数法求二次函数解析式,属于基础题,将两点坐标代入,解二元一次方程组即可;(2)写出一组a ,b ,使得240b ac ->即可;(3)已知1a b ==,则21y x x =++.容易得到2211P Q p p q q +=+++++,利用2p q +=,即2p q =-代入对代数式P Q +进行化简,并配方得出22(1)66P Q q +=-+ .最后注意利用p q ≠条件判断1q ≠,得证.【解答】解:(1)由题意,得104211a b a b ++=⎧⎨++=⎩,解得12a b =⎧⎨=-⎩,所以,该函数表达式为221y x x =-+.并且该函数图象的顶点坐标为(1,0).(2)例如1a =,3b =,此时231y x x =++,2450b ac -=>,∴函数231y x x =++的图象与x 轴有两个不同的交点.(3)由题意,得21P p p =++,21Q q q =++,所以2211P Q p p q q +=+++++224p q =++22(2)4q q =-++22(1)66q =-+ ,由条件p q ≠,知1q ≠.所以6P Q +>,得证.4.(2021•衡阳)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,2021)⋯都是“雁点”.(1)求函数4y x=图象上的“雁点”坐标;(2)若抛物线25y ax x c =++上有且只有一个“雁点”E ,该抛物线与x 轴交于M 、N 两点(点M 在点N 的左侧).当1a >时.①求c 的取值范围;②求EMN ∠的度数;(3)如图,抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左侧),P 是抛物线223y x x =-++上一点,连接BP ,以点P 为直角顶点,构造等腰Rt BPC ∆,是否存在点P ,使点C 恰好为“雁点”?若存在,求出点P 的坐标;若不存在,请说明理由.【分析】(1)由题意得:4x x=,解得2x =±,即可求解;(2)①抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,而1a >,04c <<;由M 、N 的存在,则△2540ac =->,而1a >,则254c <,即可求解;②求出点M 的坐标为4(a -,0)、点E 的坐标为2(a -,2a-,即可求解;(3)分两种情形:点C 在PB 的下方或上方,分别根据全等三角形解决问题.【解答】解:(1)由题意得:4x x=,解得2x =±,当2x =±时,42y x ==±,故“雁点”坐标为(2,2)或(2,2)--;(2)①“雁点”的横坐标与纵坐标相等,故“雁点”的函数表达式为y x =,抛物线25y ax x c =++上有且只有一个“雁点”E ,则25ax x c x ++=,则△1640ac =-=,即4ac =,1a >,故04c <<;M 、N 的存在,则△2540ac =->,而1a >,则254c <,综上,04c <<;②4ac =,则250ax x c ++=为2450ax x a ++=,解得4x a =-或1a -,即点M 的坐标为4(a-,0),由25ax x c x ++=,4ac =,解得2x a =-,即点E 的坐标为2(a -,2)a-,过点E 作EH x ⊥轴于点H ,则2HE a =,242(E M MH x x HE a a a=-=---==,故EMN ∠的度数为45︒;(3)存在,理由:当点C 在PB 的下方时,由题意知,点C 在直线y x =上,故设点C 的坐标为(,)t t ,过点P 作x 轴的平行线交过点C 与y 轴的平行线于点M ,交过点B 与y 轴的平行线于点N ,设点P 的坐标为2(,23)m m m -++,则223BN m m =-++,3PN m =-,PM m t =-,223CM m m t =-++-,90NPB MPC ∠+∠=︒,90MCP CPM ∠+∠=︒,NPB PCM ∴∠=∠,90CMP PNB ∠=∠=︒,PC PB =,()CMP PNB AAS ∴∆≅∆,PM BN ∴=,CM PN =,即2|23|m t m m -=-++,223|3|m m t m -++-=-,解得101m =101-,当点C 在PB 的上方时,过点P 作PK OB ⊥于K ,CH KP ⊥交KP 的延长线于H .同法可证,CHP PKB ∆≅∆,可得CH PK =,HP BK =,t m n -=,3t n m -=-,223n m m =-++32m ∴=,154n =,3(2P ∴,15)4,故点P 的坐标为2(2-,32或(12+,3)2或3(2,15)4.5.(2021•江西)二次函数22y x mx =-的图象交x 轴于原点O 及点A .感知特例(1)当1m =时,如图1,抛物线2:2L y x x =-上的点B ,O ,C ,A ,D 分别关于点A 中心对称的点为B ',O ',C ',A ',D ',如表:⋯(1,3)B -(0,0)O (1,1)C -(A 2,)(3,3)D ⋯⋯(5,3)B '-(4,0)O '(3,1)C '(2,0)A '(1,3)D '-⋯①补全表格;②在图1中描出表中对称后的点,再用平滑的曲线依次连接各点,得到的图象记为L '.形成概念我们发现形如(1)中的图象L '上的点和抛物线L 上的点关于点A 中心对称,则称L '是L 的“孔像抛物线”.例如,当2m =-时,图2中的抛物线L '是抛物线L 的“孔像抛物线”.探究问题(2)①当1m =-时,若抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,则x 的取值范围为;②在同一平面直角坐标系中,当m 取不同值时,通过画图发现存在一条抛物线与二次函数22y x mx =-的所有“孔像抛物线”L '都有唯一交点,这条抛物线的解析式可能是(填“2y ax bx c =++”或“2y ax bx =+”或“2y ax c =+”或“2y ax =”,其中0)abc ≠;③若二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点,求m 的值.【分析】(1)①根据中点公式即可求得答案;②根据题意先描点,再用平滑的曲线从左到右依次连接即可;(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,当1x - 时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,当3x - 时,L '的函数值随着x 的增大而减小,找出公共部分即可;②设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,分下面两种情形:)i 当1a '=-时,)ii 当1a '≠-时,分别讨论计算即可;③观察图1和图2,可知直线y m =与抛物线22y x mx =-及“孔像抛物线”L '有且只有三个交点,即直线y m =经过抛物线L 的顶点或经过抛物线L '的顶点或经过公共点A ,分别建立方程求解即可.【解答】解:(1)①(1,3)B -、(5,3)B '-关于点A 中心对称,∴点A 为BB '的中点,设点(,)A m n ,1522m -+∴==,3302n -==,故答案为:(2,0);②所画图象如图1所示,(2)①当1m =-时,抛物线22:2(1)1L y x x x =+=+-,对称轴为直线1x =-,开口向上,当1x - 时,L 的函数值随着x 的增大而减小,抛物线22:68(3)1L y x x x '=---=-++,对称轴为直线3x =-,开口向下,当3x - 时,L '的函数值随着x 的增大而减小,∴当31x -- 时,抛物线L 与它的“孔像抛物线”L '的函数值都随着x 的增大而减小,故答案为:31x -- ;②抛物线22y x mx =-的“孔像抛物线”是2268y x mx m =-+-,∴设符合条件的抛物线M 解析式为2y a x b x c ='+'+',令22268a x b x c x mx m '+'+'=-+-,整理得22(1)(6)(8)0a x b m x c m '++'-+'+=,抛物线M 与抛物线L '有唯一交点,∴分下面两种情形:)i 当1a '=-时,无论b '为何值,都会存在对应的m 使得60b m '-=,此时方程无解或有无数解,不符合题意,舍去;)ii 当1a '≠-时,△22(6)4(1)(8)0b m a c m ='--'+'+=,即22212364(1)84(1)0b b m m a m c a '-'+-'+⋅-''+=,整理得22[3632(1)]124(1)0a m b m b c a -'+-'+'-''+=,当m 取不同值时,两抛物线都有唯一交点,∴当m 取任意实数,上述等式都成立,即:上述等式成立与m 取值无关,∴23632(1)01204(1)0a b b c a -'+=⎧⎪-'=⎨⎪'-''+=⎩,解得18a '=,0b '=,0c '=,则218y x =,故答案为:2y ax =;③抛物线222:2()L y x mx x m m =-=--,顶点坐标为2(,)M m m -,其“孔像抛物线”L '为:22(3)y x m m =--+,顶点坐标为2(3,)N m m ,抛物线L 与其“孔像抛物线”L '有一个公共点(2,0)A m ,∴二次函数22y x mx =-及它的“孔像抛物线”与直线y m =有且只有三个交点时,有三种情况:①直线y m =经过2(,)M m m -,2m m ∴=-,解得:1m =-或0m =(舍去),②直线y m =经过2(3,)N m m ,2m m ∴=,解得:1m =或0m =(舍去),③直线y m =经过(2,0)A m ,0m ∴=,但当0m =时,2y x =与2y x =-只有一个交点,不符合题意,舍去,综上所述,1m =±.6.(2021•云南)已知抛物线22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小.设r 是抛物线22y x bx c =-++与x 轴的交点(交点也称公共点)的横坐标,97539521601r r r r r m r r +-++-=+-.(1)求b 、c 的值;(2)求证:4222160r r r -+=;(3)以下结论:1m <,1m =,1m >,你认为哪个正确?请证明你认为正确的那个结论.【分析】(1)当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,可得对称轴为直线4x =-,且抛物线22y x bx c =-++经过点(0,2)-,列出方程组即可得答案;(2)由r 是抛物线22162y x x =---与x 轴的交点的横坐标,可得2810r r ++=,218r r +=-,两边平方得222(1)(8)r r +=-,4222164r r r ++=,即可得结果4222160r r r -+=;(3)1m >正确,可用比差法证明,由(2)可得426210r r -+=,即753620r r r -+=,而975395952111601601r r r r r r m r r r r +-++--=-=+-+-,再由2810r r ++=,判断0r <,956010r r +-<,故950601r r r >+-,从而1m >.【解答】(1)解:22y x bx c =-++经过点(0,2)-,当4x <-时,y 随x 的增大而增大,当4x >-时,y 随x 的增大而减小,即对称轴为直线4x =-,∴244c b =-⎧⎪⎨-=-⎪⎩-,解得162b c =-⎧⎨=-⎩;(2)证明:由题意,抛物线的解析式为22162y x x =---,r 是抛物线22162y x x =---与x 轴的交点的横坐标,221620r r ∴++=,2810r r ∴++=,218r r∴+=-222(1)(8)r r ∴+=-,4222164r r r ∴++=,4222160r r r ∴-+=;(3)1m >正确,理由如下:由(2)知:4222160r r r -+=;426210r r ∴-+=,753620r r r ∴-+=,而9753952111601r r r r r m r r +-++--=-+-9753959521(601)601r r r r r r r r r +-++--+-=+-7539562601r r r r r r -++=+-95601r r r =+-,由(2)知:2810r r ++=,281r r ∴=--,210r --<,80r ∴<,即0r <,956010r r ∴+-<,∴950601r r r >+-,即10m ->,1m ∴>.7.(2021•南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数1122y x =+的图象的“等值点”.(1)分别判断函数2y x =+,2y x x =-的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数3(0)y x x=>,y x b =-+的图象的“等值点”分别为点A ,B ,过点B 作BC x ⊥轴,垂足为C .当ABC ∆的面积为3时,求b 的值;(3)若函数22()y x x m =- 的图象记为1W ,将其沿直线x m =翻折后的图象记为2W .当1W ,2W 两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.【分析】(1)根据“等值点”的定义建立方程求解即可得出答案;(2)先根据“等值点”的定义求出函数3(0)y x x=>的图象上有两个“等值点”A ,同理求出1(2B b ,1)2b ,根据ABC ∆的面积为3可得111|||3222b b ⨯⨯=,求解即可;(3)先求出函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),再利用翻折的性质分类讨论即可.【解答】解:(1)在2y x =+中,令2x x =+,得02=不成立,∴函数2y x =+的图象上不存在“等值点”;在2y x x =-中,令2x x x -=,解得:10x =,22x =,∴函数2y x x =-的图象上有两个“等值点”(0,0)或(2,2);(2)在函数3(0)y x x =>中,令3x x=,解得:x =A ∴,在函数y x b =-+中,令x x b =-+,解得:12x b =,1(2B b ∴,1)2b ,BC x ⊥轴,1(2C b ∴,0),1||2BC b ∴=,ABC ∆的面积为3,∴111|||3222b b ⨯⨯=,当0b <时,2240b --=,解得b =-当0b < 时,2240b -+=,△2(4124840=--⨯⨯=-<,∴方程2240b -+=没有实数根,当b 时,2240b --=,解得:b =综上所述,b 的值为-;(3)令22x x =-,解得:11x =-,22x =,∴函数22y x =-的图象上有两个“等值点”(1,1)--或(2,2),①当1m <-时,1W ,2W 两部分组成的图象上必有2个“等值点”(1,1)--或(2,2),21:2()W y x x m =- ,22:(2)2()W y x m x m =--<,令2(2)2x x m =--,整理得:22(41)420x m x m -++-=,2W 的图象上不存在“等值点”,∴△0<,22(41)4(42)0m m ∴+--<,98m ∴<-,②当1m =-时,有3个“等值点”(2,2)--、(1,1)--、(2,2),③当12m -<<时,1W ,2W 两部分组成的图象上恰有2个“等值点”,④当2m =时,1W ,2W 两部分组成的图象上恰有1个“等值点”(2,2),⑤当2m >时,1W ,2W 两部分组成的图象上没有“等值点”,综上所述,当1W ,2W 两部分组成的图象上恰有2个“等值点”时,98m <-或12m -<<.8.(2021•大连)已知函数2211()22()x x m x m y x mx m x m ⎧-++<⎪=⎨⎪-+⎩ ,记该函数图象为G .(1)当2m =时,①已知(4,)M n 在该函数图象上,求n 的值;②当02x 时,求函数G 的最大值.(2)当0m >时,作直线12x m =与x 轴交于点P ,与函数G 交于点Q ,若45POQ ∠=︒时,求m 的值;(3)当3m 时,设图象与x 轴交于点A ,与y 轴交与点B ,过点B 作BC BA ⊥交直线x m =于点C ,设点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,求m 的值.【分析】(1)先把2m =代入函数y 中,①把(4,)M n 代入222y x x =-+中,可得n 的值;②将02x 分为两部分确定y 的最大值,当02x < 时,将211222y x x =-++配方可得最值,再将2x =代入222y x x =-+中,可得2y =,对比可得函数G 的最大值;(2)分两种情况:Q 在x 轴的上方和下方;证明POQ ∆是等腰直角三角形,得OP PQ =,列方程可得结论;(3)分两种情况:①03m ,如图2,过点C 作CD y ⊥轴于D ,证明()ABO BCD ASA ∆≅∆,得OA BD =,列方程可得结论;②3m <,如图3,同理可得结论.【解答】解:(1)当2m =时,22112(2)2222(2)x x x y x x x ⎧-++<⎪=⎨⎪-+⎩ ,①(4,)M n 在该函数图象上,2424210n ∴=-⨯+=;②当02x < 时,22111112(222228y x x x =-++=--+,102-<,∴当12x =时,y 有最大值是128,当2x =时,222222y =-⨯+=,1228<,∴当02x 时,函数G 的最大值是128;(2)分两种情况:①如图1,当Q 在x 轴上方时,由题意得:12OP m =,45POQ ∠=︒,90OPQ ∠=︒,POQ ∴∆是等腰直角三角形,OP PQ ∴=,∴211111()22222m m m m =-⋅+⋅+,解得:10m =,26m =,0m >,6m ∴=;②当Q 在x 轴下方时,同理得:211111()22222m m m m =⋅-⋅-解得:10m =,214m =,0m >,14m ∴=;综上,m 的值是6或14;(3)分两种情况:①如图2,当03m 时,过点C 作CD y ⊥轴于D ,当0x =时,y m =,OB m ∴=,CD m =,CD OB ∴=,AB BC ⊥,90ABC ABO CBD ∴∠=∠+∠=︒,90CBD BCD ∠+∠=︒,ABO BCD ∴∠=∠,90AOB CDB ∠=∠=︒,()ABO BCD ASA ∴∆≅∆,OA BD ∴=,当x m <时,0y =,即211022x x m -++=,220x x m --=,解得:112x =,212x +=,12OA ∴=,且138m - ,点A 的横坐标为a ,C 点的纵坐标为c ,若3a c =-,13OD c a ∴==-,13BD m OD m a ∴=-=+,OA BD =,∴13m =+,解得:10m =(此时,A ,B ,C 三点重合,舍),2209m =;②当0m <时,如图3,过点C 作CD y ⊥轴于D ,同理得:OA BD =,当x m 时,0y =,则20x mx m -+=,解得:1x =,2m =(舍),2m OA a +∴==,∴13c m a m =-=--,解得:10m=,216 21m=-;综上,m的值是209或1621-.。

专题31中考热点新定义问题专项训练(原卷版)

专题31中考热点新定义问题专项训练(原卷版)

专题31 中考热点新定义问题专项训练(原卷版)专题诠释:新定义题型是近几年来中考的热点问题。

它常集合数形结合思想,类比思想,转化思想,分类讨论思想,方程思想,函数思想于一体。

常以压轴题身份出现。

本专题精选新定义问题共20条,欢迎使用。

一.选择题1.(2021•河北模拟)对于实数x,y,我们定义符号max{x,y}的意义:当x≥y时,max{x,y}=x,当x<y时,max{x,y}=y.例如max{﹣1,﹣2}=﹣1,max{3,π}=π,则关于x的函数y=max{3x,x+2}的图象为()A.B.C.D.二.填空题2.(2021•深圳模拟)用“●”“□”定义新运算:对于数a,b,都有a●b=a和a□b=b.例如3●2=3,3□2=2,则(2020□2021)●(2021□2020)=.3.(2021•碑林区校级模拟)(正多边形的每个内角都相等)如图,在正八边形ABCDEFGH中,对角线BF 的延长线与边DE的延长线交于点M,则∠M的大小为.4.(2019•福田区三模)对于m,n(n≥m)我们定义运算A n m=n(n﹣1)(n﹣2)(n﹣3)…(n﹣(m﹣1)),A73=7×6×5=210,请你计算A42=.6.(2022秋•魏县期中)若x是不等于1的实数,我们把11−x 称为x的差倒数,如2的差倒数是11−2=−1,﹣1的差倒数为11−(−1)=12,现已知x1=13,x2是x1的差倒数,x3是x2的差倒数,x4是x3的差倒数,…,依此类推,则x2022的值为.三.解答题7.(2021秋•汉阳区期中)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出两个“极数”,;(2)猜想任意一个“极数”是否是99的倍数,请说明理由;(3)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=m33,则满足D(m)是完全平方数的所有m的值是.8.(2022秋•胶州市期末)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特殊的自然数——“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”.例如:32是“纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2022是否是“纯数”?请说明理由;(2)请直接写出2023到2050之间的“纯数”;(3)不大于100的“纯数”的个数为.9.(2021•任城区二模)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做“半高三角形”.这条高称为“半高”.如图1,对于△ABC,BC边上的高AD等于BC的一半,△ABC就是“半高三角形”.此时,称△ABC是“BC边半高三角形”,AD是“BC边半高”;如图2,对于△EFG,EF边上的高GH等于EF的一半,△EFG就是半高三角形,此时,称△EFG是EF边半高三角形,GH 是“EF边半高”.(1)在Rt△ABC中,∠ACB=90°,AB=10cm,若ABC是“BC边半高三角形”,则AC=cm;(2)若一个三角形既是等腰三角形又是半高三角形,且“半高”长为2cm,则该等腰三角形底边长的所有可能值为.(3)如图3,平面直角坐标系内,直线y=x+2与抛物线y=x2交于R,S两点,点P是抛物线y=x2上的一个动点,点Q是坐标系内一点,且使得△RSQ为“RS边半高三角形”.当点P介于点R与点S之间,且PQ取得最小值时,求点P的坐标.10.(2022春•梁平区期末)在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=a+c3,y=b+d3那么称点T是点A,B的融合点.例如:A=(﹣1,8),B=(4,﹣2),当点T(x,y)满足x=−1+43=1,y=8+(−2)3=2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l:y=2x+3上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H,当∠TDH为直角时,求直线ET的解析式.11.(2019•浙江)如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横、纵坐标均为整数的点称为好点.点P为抛物线y=﹣(x ﹣m)2+m+2的顶点.(1)当m=0时,求该抛物线下方(包括边界)的好点个数.(2)当m=3时,求该抛物线上的好点坐标.(3)若点P在正方形OABC内部,该抛物线下方(包括边界)恰好存在8个好点,求m的取值范围.12.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.13.(2021•南丰县模拟)如果一个四边形的对角线把四边形分成两个三角形,一个是等边三角形,另一个是该对角线所对的角为60°的三角形,我们把这条对角线叫做这个四边形的理想对角线,这个四边形称为理想四边形.(1)如图1,在Rt△ABC中,∠ACB=90°,∠B=30°,CD⊥AB,E为BC中点,连接DE.求证:四边形ADEC为理想四边形;(2)如图2,△ABD是等边三角形,若BD为理想对角线,为使四边形ABCD为理想四边形,小明同学给出了他的设计图(见设计后的图),其中圆心角∠BOD=120°;请你解释他这样设计的合理性.(3)在(2)的条件下,①若△BCD为直角三角形,BC=3,求AC的长度;②如图3,若CD=x,BC=y,AC=z,请直接写出x,y,z之间的数量关系.14.(2020•朝阳区一模)在平面直角坐标系xOy中,点A(t,0),B(t+2,0),C(n,1),若射线OC上存在点P,使得△ABP是以AB为腰的等腰三角形,就称点P为线段AB关于射线OC的等腰点.(1)如图,t=0,①若n=0,则线段AB关于射线OC的等腰点的坐标是;②若n<0,且线段AB关于射线OC的等腰点的纵坐标小于1,求n的取值范围;(2)若n=√33,且射线OC上只存在一个线段AB关于射线OC的等腰点,则t的取值范围是.15.(2022•房山区模拟)对于平面直角坐标系xOy中的图形W1和图形W2,给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N(点M,N可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系.(1)如图1,点C(√3,0),D(0,﹣1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为,最大值为;线段DP的取值范围是;②在点O,点D中,点与线段DE满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H 和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.16.(2022•西城区校级模拟)点P (x 1,y 1),Q (x 2,y 2)是平面直角坐标系中不同的两个点,且x 1≠x 2.若存在一个正数k ,使点P ,Q 的坐标满足|y 1﹣y 2|=k |x 1﹣x 2|,则称P ,Q 为一对“限斜点”,k 叫做点P ,Q 的“限斜系数”,记作k (P ,Q ).由定义可知,k (P ,Q )=k (Q ,P ).例:若P (1,0),Q (3,12),有|0−12|=14|1﹣3|,所以点P ,Q 为一对“限斜点”,且“限斜系数”为14. 已知点A (1,0),B (2,0),C (2,﹣2),D (2,12). (1)在点A ,B ,C ,D 中,找出一对“限斜点”: ,它们的“限斜系数”为 ;(2)若存在点E ,使得点E ,A 是一对“限斜点”,点E ,B 也是一对“限斜点”,且它们的“限斜系数”均为1.求点E 的坐标;(3)⊙O 半径为3,点M 为⊙O 上一点,满足MT =1的所有点T ,都与点C 是一对“限斜点”,且都满足k (T ,C )≥1,直接写出点M 的横坐标x M 的取值范围.17.(2020•密云区一模)对于平面直角坐标系xOy 中的任意一点P ,给出如下定义:经过点P 且平行于两坐标轴夹角平分线的直线,叫做点P 的“特征线”.例如:点M (1,3)的特征线是y =x +2和y =﹣x +4;(1)若点D 的其中一条特征线是y =x +1,则在D 1(2,2)、D 2(﹣1,0)、D 3(﹣3,4)三个点中,可能是点D 的点有 ;(2)已知点P (﹣1,2)的平行于第二、四象限夹角平分线的特征线与x 轴相交于点A ,直线y =kx +b (k ≠0)经过点P ,且与x 轴交于点B .若使△BP A 的面积不小于6,求k 的取值范围;(3)已知点C (2,0),T (t ,0),且⊙T 的半径为1.当⊙T 与点C 的特征线存在交点时,直接写出t 的取值范围.18.(2022秋•西城区校级期中)已知函数y=x2+bx+c(x≥2)的图象过点A(2,1),B(5,4).(1)直接写出y=x2+bx+c(x≥2)的解析式;(2)如图,请补全分段函数y={−x2+2x+1(x<2)x2+bx+c(x≥2)的图象(不要求列表).并回答以下问题:①写出此分段函数的一条性质:;②若此分段函数的图象与直线y=m有三个公共点,请结合函数图象直接写出实数m的取值范围;(3)横、纵坐标都是整数的点叫做整点,记(2)中函数的图象与直线y=12x−1围成的封闭区域(不含边界)为“W区域”,请直接写出区域内所有整点的坐标.20.(2021春•丰台区校级月考)在平面直角坐标系xOy中,过⊙T(半径为r)外一点P引它的一条切线,切点为Q,若0<PQ≤2r,则称点P为⊙T的伴随点.(1)当⊙O的半径为1时,①在点A(﹣3,0),B(﹣1,√3),C(2,﹣1)中,⊙O的伴随点是;②点D在直线y=﹣x+3上,且点D是⊙O的伴随点,求点D的横坐标d的取值范围;(2)⊙M的圆心为M(m,0),半径为3,直线y=2x+3与x轴,y轴分别交于点E,F.若线段EF上的所有点都是⊙M的伴随点,直接写出m的取值范围.19.(2020•丰台区校级开学)已知:点P为图形M上任意一点,点Q为图形N上任意一点,若点P与点Q 之间的距离PQ始终满足PQ>0,则称图形M与图形N相离.(1)已知点A(1,2)、B(0,﹣5)、C(2,﹣1)、D(3,4).①与直线y=3x﹣5相离的点是;②若直线y=3x+b与△ABC相离,求b的取值范围;(2)设直线y=x+3、直线y=﹣x+3及直线y=﹣3围成的图形为W,正方形T的对角线长为2,两条对角线分别平行于坐标轴,该正方形对角线的交点坐标为(t,0),直接写出正方形T与图形W相离的t 的取值范围.。

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

专题02 函数与导数(新定义)(解析版)-新高考数学创新题型微专题

2 时,等号成立,
所以 m 2 2 2 ,即 m , 2 2 2 .
故选:C.
【点睛】关键点睛:本题突破口是理解“隐对称点”的定义,将问题转化为 g(x) 与 f (x) 在 0, 上有交点的
问题,从而得解.
5.(2023·高二单元测试)能够把椭圆 x2 y2 1的周长和面积同时分为相等的两部分的函数称为椭圆的“可 4
f
3 1
2

当t
1 时, 2
f
t
max
f
1 2
21 8.
所以
f
x
的值域为
1 2
,
21 8
.
当 1 f x 0 时, y INT f x 1,
2
当 0 f x 1时, y INT f x 0 ,
当1 f x 2 时, y INT f x 1, 当 2 f x 21 时, y INT f x 2 ,
对选项
B:
f
x
ln
5 5
x x
,函数定义域满足
5 5
x x
0 ,解得
5
x
5 ,且
f
x
ln
5 5
x x
f
x ,函数为
奇函数,满足;
对选项 C: f x sin x 为奇函数,满足;
对选项 D: f x ex ex , f x ex ex f x ,函数为偶函数,且 f 0 2 0 ,不满足.
f
x
ex ex
1 1
,得
ex
f
1
x 1 f x
.
因为 ex
f x1 0 ,所以 1 f x
0 ,解得 1
f

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

2023年新高考数学创新题型微专题04 三角函数(新定义)(解析版)

专题04 三角函数(新定义)一、单选题1.(2023秋·山东临沂·高一统考期末)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为2π3,则角θ的正弦值为( ) A.2B .12C .12−D. 【答案】D【分析】根据面度数的定义,可求得角θ的弧度数,继而求得答案. 【详解】设角θ所在的扇形的半径为r ,则2212π23r r θ=, 所以4π3θ=,所以4ππsin sin sin 33θ==−=, 故选:D .2.(2023秋·江苏苏州·高一统考期末)定义:正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x +≥对任意的实数,2x x k k Z ππ∈⎛⎫≠+ ⎪⎝⎭均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】利用已知条件先化简,分离参数,转化恒成立求最值问题【详解】由已知可得22222sin csc tan 15sin cos xx x xm m x +=+≥,即422sin 15sin cos xx xm ≥−. 因为()2x k k Z ππ≠+∈,所以2cos (0,1]x ∈,则422sin 15sin cos x x x −()222222(1-cos )1=151cos =17+16cos cos cos x x x x x −−−⎛⎫ ⎪⎝⎭ 21716cos 9x x≤−=,当且仅当21cos 4x =时等号成立,故9m ≥, 故选:D.3.(2022·全国·高一专题练习)密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.若2(sin cos )2sin cos αααα−=,则角α可取的值用密位制表示错误..的是( ) A .12-50 B .2-50 C .13-50 D .32-50【答案】C【分析】根据同角三角函数的基本关系及二倍角公式求出α,再根据所给算法一一计算各选项,即可判断; 【详解】解:因为2(sin cos )2sin cos αααα−=, 即22sin 2sin cos cos 2sin cos αααααα−+=, 即4sin cos 1αα=,所以1sin 22α=,所以22,6k k Z παπ=+∈,或522,6k k Z παπ=+∈, 解得,12k k Z παπ=+∈或5,12k k Z παπ=+∈ 对于A :密位制1250−对应的角为125052600012ππ⨯=,符合题意; 对于B :密位制250−对应的角为2502600012ππ⨯=,符合题意; 对于C :密位制1350−对应的角为135092600020ππ⨯=,不符合题意; 对于D :密位制3250−对应的角为3250132600012ππ⨯=,符合题意; 故选:C4.(2022秋·山东青岛·高三山东省青岛第五十八中学校考阶段练习)计算器是如何计算sin x ,cos x ,πx ,ln x 些函数,通过计算多项式的值求出原函数的值,如357sin 3!5!7!x x x x x =−+−+,246cos 12!4!6!x x x x =−+−+,其中!12n n =⨯⨯⨯,英国数学家泰勒发现了这些公式,可以看出,右边的项用得越多,计算得出的sin x 和cos x 的值也就越精确.运用上述思想,可得到3sin 12π⎛⎫−+ ⎪⎝⎭的近似值为( )A .0.50B .0.52C .0.54D .0.56【答案】C【分析】将3sin 12π⎛⎫−+ ⎪⎝⎭化为cos1,根据新定义,取1x =代入公式246cos 12!4!6!x x x x =−+−+⋅⋅⋅中,直接计算取近似值即可.【详解】由题意可得,3sin 1cos12π⎛⎫−+= ⎪⎝⎭,故246111111cos1112!4!6!224720=−+−+=−+−+10.50.0410.0010.54=−+−+⋯≈,故选:C .5.(2022春·广东中山·高二统考期末)密位制是度量角与弧的常用制度之一,周角的16000称为1密位.用密位作为角的度量单位来度量角与弧的制度称为密位制.在密位制中,采用四个数字来记角的密位,且在百位数字与十位数字之间加一条短线,单位名称可以省去,如15密位记为“00—15”,1个平角=30—00,1个周角=60—00,已知函数()2cos f x x =−,3,22x ππ⎡⎤∈⎢⎥⎣⎦,当()f x 取到最大值时对应的x 用密位制表示为( ) A .15—00 B .35—00 C .40—00 D .45—00【答案】C【分析】利用导数研究()f x 在给定区间上的最大值,结合题设密位制定义确定()f x 取到最大时x 用密位制.【详解】由题设,()2sin f x x '=,在4[,)23x ππ∈时()0f x '>,在43(,]32x ππ∈时()0f x '<,所以()f x 在4[,)23x ππ∈上递增,在43(,]32x ππ∈上递减,即max 4()()3f x f π=,故()f x 取到最大值时对应的x 用密位制表示为40—00. 故选:C6.(2022春·云南昆明·高二校考期末)在平面直角坐标系xOy 中,P (x ,y )(xy ≠0)是角α终边上一点,P与原点O 之间距离为r ,比值rx 叫做角α的正割,记作sec α;比值r y 叫做角α的余割,记作csc α;比值x y 叫做角α的余切,记作cot α.四名同学计算同一个角β的不同三角函数值如下:甲:5sec 4β=−;乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=.如果只有一名同学的结果是错误的,则错误的同学是( ) A .甲 B .乙C .丙D .丁【答案】D【分析】当甲错误时,乙一定正确,从而推导出丙、丁均错误,与题意不符,故甲一定正确;再由丙丁必有一个错误,得到乙一定正确,由此利用三角函数的定义能求出结果.【详解】解:当甲:5sec 4β=−错误时,乙:5csc 3β=正确,此时53r y =,r =5k ,y =3k ,则|x |=4k ,(k >0), 4tan 3y x β∴==或4tan 3β=−,∴丙:3tan 4β=−不正确,丁:4cot 3β=不正确,故错误的同学不是甲;甲:5sec 4β=−,从而r =5k ,x =﹣4k ,|y |=3k ,(k >0),此时,乙:5csc 3β=;丙:3tan 4β=−;丁:4cot 3β=必有两个正确,一个错误,∵丙和丁应该同号,∴乙正确,丙和丁中必有一个正确,一个错误,∴y =3k >0,x =﹣4k <0,34tan ,cot 43ββ∴=−=−,故丙正确,丁错误, 综上错误的同学是丁. 故选:D .7.(2023秋·湖南邵阳·高一统考期末)设,a b R ∈,定义运算,,a a ba b b a b ≥⎧⊗=⎨<⎩,则函数()sin cos f x x x =⊗的最小值为( )A .1−B .C .12−D .0【答案】B【分析】由定义先得出sin sin cos ()cos cos sin x x xf x x x x ≥⎧=⎨>⎩,然后分sin cos x x ≥,cos sin x x >两种情况分别求出()f x 的最小值,从而得出答案.【详解】由题意可得sin sin cos ()sin cos cos cos sin x x xf x x x x x x ≥⎧=⊗=⎨>⎩当sin cos x x ≥时,即sin cos 04x x x π⎛⎫−=−≥ ⎪⎝⎭则22,4k x k k Z ππππ≤−≤+∈,即522,44k x k k Z ππππ+≤≤+∈此时当52,4x k k Z ππ=+∈时,sin x 有最小值为当cos sin x x >时,即sin cos 04x x x π⎛⎫−=−< ⎪⎝⎭则222,4k x k k Z πππππ+<−<+∈,即5922,44k x k k Z ππππ+<<+∈此时,cos x >所以()f x 的最小值为故选:B8.(2023秋·浙江杭州·高一浙江大学附属中学校考期末)正割()secant 及余割()cos ecant 这两个概念是由伊朗数学家阿布尔⋅威发首先引入的.定义正割1sec cos αα=,余割1csc sin αα=.已知m 为正实数,且22csc tan 15m x x ⋅+≥对任意的实数π,2k x x k ⎛⎫≠∈ ⎪⎝⎭Z 均成立,则m 的最小值为( )A .1B .4C .8D .9【答案】D【分析】由参变量分离法可得出2211716cos cos m x x ⎛⎫≥−+ ⎪⎝⎭,利用基本不等式可求得m 的取值范围,即可得解.【详解】由已知可得22222sin csc tan 15sin cos m x m x x x x ⋅+=+≥,可得422sin 15sin cos x m x x≥−, 因为()Z 2x k k ππ≠+∈,则(]2cos 0,1x ∈,因为()()2242222221cos sin 115sin 151cos 1716cos cos cos cos x x x x x xxx −⎛⎫−=−−=−+ ⎪⎝⎭179≤−=, 当且仅当21cos 4x =时,等号成立,故9m ≥. 故选:D.9.(2022春·江西景德镇·高二景德镇一中校考期中)对集合{}12,,,k a a a ⋯和常数m ,把()()()222122sin sin sin k a m a m a m kσ−+−++−=定义为集合{}12,,,k a a a ⋯相对于m 的“正弦方差",则集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为( )A .32B C .12D .与m 有关的值【答案】C【分析】先确定集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”的表达式,再利用半角公式,两角和与差的余弦公式化简可得结果.【详解】由题知,集合,,626πππ⎧⎫−⎨⎬⎩⎭相对于m 的“正弦方差”为2222sin sin sin 6263m m m πππσ⎛⎫⎛⎫⎛⎫−−+−++− ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=()1cos 21cos 21cos 21333222m m m πππ⎛⎫⎛⎫⎛⎫−−−−− ⎪ ⎪ ⎪−−⎝⎭⎝⎭ ⎪=++ ⎪ ⎪⎝⎭ ()13cos 2cos 2cos 2633m m m πππ⎡⎤⎛⎫⎛⎫⎛⎫=−++−+−⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦把()()1cos 2cos 2232m m m π⎛⎫+= ⎪⎝⎭,()()cos 2cos 2m m π−=−, ()()1cos 2cos 2232m m m π⎛⎫−= ⎪⎝⎭,代入上式整理得,212σ=.故选:C.10.(2022秋·山东·高三山东聊城一中校联考阶段练习)现有如下信息:(1)黄金分割比(简称:黄金比)是指把一条线段分割为两部分,较短部分与较长部分的长度之比等于较(2)黄金三角形被誉为最美三角形,是较短边与较长边之比为黄金比的等腰三角形. (3)有一个内角为36o 的等腰三角形为黄金三角形, 由上述信息可求得126sin =( ) AB12CD【答案】D【分析】如图作三角形,先求出5cos364=126sin 的值. 【详解】如图,等腰三角形ABC ,36ABC ∠=,,AB BC a AC b ===,取AC 中点,D 连接BD .b a =, 由题意可得1511512sin 22224bABC b a a ∠−−====,所以22cos 12sin 12ABC ABC ∠∠=−=−= 所以5cos364=所以5126364sin cos ︒==. 故选:D. 11.(2021秋·四川巴中·高一校联考期末)定义运算a bad bc c d=−,如果()()105,(0,0)2sin 2f x x πωϕωϕ=><<+的图像的一条对称轴为,4x πϕ=满足等式2cos 3tan ϕϕ=,则ω取最小值时,函数()f x 的最小正周期为( ) A .2πB .πC .3π2D .2π【答案】C【分析】根据2cos 3tan ϕϕ=,利用切化弦和同角三角函数关系转化成sin ϕ的二次方程,可求出ϕ的值,结合对称轴可求出ω,最后利用周期公式进行求解即可. 【详解】105()10sin()102sin()f x x x ωϕωϕ==+−+,因为2cos 3tan ϕϕ=,所以sin 2cos 3cos ϕϕϕ=,即22cos 3sin ϕϕ=,22(1sin )3sin ϕϕ−=, 所以(sin 2)(2sin 1)0ϕϕ+−=,解得1sin 2ϕ=或2−(舍去), 而02πϕ<<,所以6πϕ=,即()10sin()106f x x πω=+−,而()y f x =的图象的一条对称轴为4x π=,所以10sin 1046ππω⎛⎫⨯+=± ⎪⎝⎭,即462k πππωπ⨯+=+,Z k ∈,解得443k ω=+,Z k ∈,所以正数ω取最小值为43,此时函数()f x 的最小正周期为23423ππ=.故选:C .12.(2020·全国·高三校联考阶段练习)对于集合{}12,,,n x x x ⋅⋅⋅,定义:()()()22210200cos cos cos n x x x x x x n−+−+⋅⋅⋅+−Ω=为集合{}12,,,n x x x ⋅⋅⋅相对于0x 的“余弦方差”,则集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”为( ) A .14B .12CD【答案】B【解析】根据所给“余弦方差”定义公式,代入集合中的各元素,即可得Ω的表达式,结合余弦降幂公式及诱导公式化简,即可求解.【详解】由题意可知,集合32,,,105105ππππ⎧⎫−−⎨⎬⎩⎭相对于0x 的“余弦方差”代入公式可得2222000032cos cos cos cos 1051054x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭Ω=0000321cos 21cos 21cos 21cos 210510522224x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+−−+−−+−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+++=0000321cos 21cos 21cos 21cos 21051058x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++++−++− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=00002344cos 2cos 2cos 2cos 255558x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫+++++−+− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=因为0000423cos 2cos 20,cos 2cos 205555x x x x ππππ⎛⎫⎛⎫⎛⎫⎛⎫++−=++−= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以原式4182Ω==, 故选:B.【点睛】本题考查了新定义应用,降幂公式及诱导公式化简三角函数式的应用,属于中档题.13.(2020秋·江西宜春·高三奉新县第一中学校考阶段练习)已知函数()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π,若定义{},max ,,a a b a b b a b⎧=⎨<⎩…,则函数()max{()h x f x =,()cos }f x x 在区间3,22ππ⎛⎫⎪⎝⎭内的图象是 A . B .C .D .【答案】A【分析】由题知()2tan()(0)f x x ωω=>,利用T πω=求出ω,再根据题给定义,化简求出()h x 的解析式,结合正弦函数和正切函数图象判断,即可得出答案.【详解】根据题意,()2tan()(0)f x x ωω=>的图象与直线2y =的相邻交点间的距离为π, 所以()2tan()(0)f x x ωω=> 的周期为π, 则1T ππωπ===, 所以{}2sin ,,2()max 2tan ,2sin 32tan ,,2x x h x x x x x ππππ⎧⎛⎤∈ ⎪⎥⎪⎝⎦==⎨⎛⎫⎪∈ ⎪⎪⎝⎭⎩,由正弦函数和正切函数图象可知A 正确. 故选:A.【点睛】本题考查三角函数中正切函数的周期和图象,以及正弦函数的图象,解题关键是对新定义的理解. 14.(2022春·陕西延安·高一校考阶段练习)对于函数()f x ,在使()f x M ≥成立的所有常数M 中,我们把M的最大值称为函数()f x 的“下确界”.若函数()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的“下确界”为12−,则m 的取值范围是( ) A .,62ππ⎛⎤− ⎥⎝⎦B .,62ππ⎛⎫− ⎪⎝⎭C .5,66ππ⎛⎤− ⎥⎝⎦D .5,66ππ⎛⎫− ⎪⎝⎭【答案】A【分析】由下确界定义,()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,由余弦函数性质可得.【详解】由题意()3cos 213f x x π⎛⎫=−+ ⎪⎝⎭,,6x m π⎡⎫∈−⎪⎢⎣⎭的最小值是12−,又21()3cos()13cos163332f ππππ−=−−+=+=−, 由13cos(2)132x π−+≥−,得1cos(2)32x π−≥−,22222333k x k πππππ−≤−≤+,,62k x k k Z ππππ−≤≤+∈,0k =时,62x ππ−≤≤,所以62m ππ−<≤.故选:A .【点睛】本题考查新定义,由新定义明确本题中的下确界就是函数的最小值.可通过解不等式确定参数的范围.15.(2020·全国·高一假期作业)如果函数()f x 在区间D 上是凸函数,那么对于区间D 内的任意1x ,2x ,…,n x ,都有()()()1212n n f x f x f x x x x f nn ++++++⎛⎫≤ ⎪⎝⎭,若sin y x =在区间()0,π上是凸函数,那么在ABC ∆中,sin sin sin A B C ++的最大值是( )A .32B .3CD 【答案】D【分析】利用“凸函数”的定义得到恒成立的不等式,利用三角形的内角和为π,即可求出最大值. 【详解】因为sin y x =在区间[0,]π上是“凸函数”,所以sin sin sin sin sin 333A B C A B C π++++=…得sin sin sin A B C ++…即:sin sin sin A B C ++的最大值是2故选:D.【点睛】本题考查理解题中的新定义,并利用新定义求最值,还运用三角形的内角和.二、多选题16.(2022·全国·高一专题练习)定义:()()()22210200cos cos cos n nθθθθθθμ−+−++−=为集合{}12,,,n A θθθ=相对常数0θ的“余弦方差”.若0,2πθ⎡⎤∈⎢⎥⎣⎦,则集合,03A π⎧⎫=⎨⎬⎩⎭相对θ的“余弦方差”的取值可能为( ) A .38B .12C .34D .45【答案】ABC【分析】根据所给定义及三角恒等变换公式将函数化简,再根据0θ的取值范围,求出026θπ+的取值范围,再根据正弦函数的性质计算可得.【详解】解:依题意()2200cos cos 0πθθμ⎛⎫−+− ⎪ 22000cos cos sin cos 332sin ππθθθ=+⎛⎫+ ⎪⎝⎭220001cos cos 22θθθ⎛⎫+ ⎝⎪⎭=2220000013cos sin sin cos 4242θθθθθ++=200013cos sin 2242θθθ+= 001cos 221442θθ+=00111cos 224222θθ⎛⎫=+ ⎪⎝⎭+⎪ 011sin 2462πθ⎛⎫=+ ⎪⎝⎭+, 因为00,2πθ⎡⎤∈⎢⎥⎣⎦,所以02,7666πππθ⎡⎤+∈⎢⎥⎣⎦,所以01s 22n 1i 6,πθ⎛⎫⎡⎤+∈ ⎪⎢⎥⎣−⎝⎭⎦,所以33,84μ⎡⎤∈⎢⎥⎣⎦;故选:ABC17.(2021秋·全国·高三校联考期中)数学中一般用{}min ,a b 表示a ,b 中的较小值,{}max ,a b 表示a ,b 中的较大值;关于函数:(){}min sin ,sin f x x x x x =;(){}max sin ,sin g x x x x x =,有如下四个命题,其中是真命题的是( ) A .()f x 与()g x 的最小正周期均为π B .()f x 与()g x 的图象均关于直线32x π=对称 C .()f x 的最大值是()g x 的最小值 D .()f x 与()g x 的图象关于原点中心对称 【答案】BD【分析】先求出()f x ,()g x ,结合函数()f x 与()g x 的图象即可求解【详解】设()sin 2sin(),()sin 2sin(),33h x x x x t x x x x ππ==+==−则{}32sin(),22,322()min (),()2sin(),22,322x k x k f x h x t x x k x k ππππππππππ⎧++≤≤+⎪⎪==⎨⎪−−+<<+⎪⎩,{}32sin(),22,322()max (),()2sin(),22,322x k x k g x h x t x x k x k ππππππππππ⎧−+≤≤+⎪⎪==⎨⎪+−+<<+⎪⎩函数()f x 与()g x 的大致图象如下所示:对A ,由图知,()f x 与()g x 的最小正周期均为2π;故A 错误; 对B ,由图知,32x π=为函数()f x 与()g x 的对称轴,故B 正确. 对C ,12f π⎛⎫= ⎪⎝⎭,由图知∶函数()f x 的值域为[]2,1−,函数()g x 的值域为[]1,2−,故C 错误;对D ,由图知,()f x 与()g x 的图象关于原点中心对称,故D 正确; 故选:BD.18.(2022·江苏·高一专题练习)已知角θ和ϕ都是任意角,若满足2,2k k Z πθϕπ+=+∈,则称θ与ϕ“广义互余”.若()1sin 4πα+=−,则下列角β中,可能与角α“广义互余”的有( )A .sin β=B .()1cos 4πβ+=C .tan β=D .tan β=【答案】AC【分析】由题可得1sin 4α=,根据诱导公式化简计算判断每个选项即可. 【详解】若α与β广义互余,则2()2k k Z παβπ+=+∈,即2()2k k Z πβπα=+−∈.又由()1sin 4πα+=−,可得1sin 4α=.对于A ,若α与β广义互余,则sin sin(2)cos 24k πβπαα=+−===±,由sin β=可得α与β可能广义互余,故A 正确;对于B ,若α与β广义互余,则1cos cos(2)sin 24k πβπαα=+−==,由()1cos 4πβ+=可得 1cos 4β=−,故B 错误;对于C ,综上可得sin β=1cos 4β=,所以sin tan cos βββ==C 正确,D 错误. 故选:AC .19.(2022春·辽宁沈阳·高一沈阳市第一二〇中学校考阶段练习)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:定义1cos θ−为角θ的正矢,记作sin ver θ,定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题正确的是( ) A .161sin32ver π= B .sin sin 2ver cover πθθ⎛⎫−= ⎪⎝⎭C .若sin 12sin 1cover x ver x −=−,则()21sin sin 5cover x ver x −=D .函数()sin 2020sin 202036f x ver x cover x ππ⎛⎫⎛⎫=−++ ⎪ ⎪⎝⎭⎝⎭的最大值为2【答案】BC【分析】利用诱导公式化简可得A 错误,B 正确;化简已知等式得到tan x ,将所求式子化简为正余弦齐次式,由此可配凑出tan x 求得结果,知C 正确;利用诱导公式化简整理得到()22sin 20206f x x π⎛⎫=−+ ⎪⎝⎭,由此可知最大值为4,知D 错误.【详解】对于A ,16163sin 1cos 1cos 51cos 33332ver πππππ⎛⎫=−=−+=+= ⎪⎝⎭,A 错误; 对于B ,sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,B 正确;对于C ,sin 11sin 1tan 2sin 11cos 1cover x x x ver x x −−−===−−−, ()()22222sin cos sin sin 1sin 1cos 12sin cos 1sin cos x xcover x ver x x x x x x x∴−=−−+=−=−+22tan 411tan 15x x =−=−+15=,C 正确; 对于D ,()1cos 20201sin 202036f x x x ππ⎛⎫⎛⎫=−−+−+= ⎪ ⎪⎝⎭⎝⎭2cos 2020sin 2020266x x πππ⎡⎤⎛⎫⎛⎫−−++−+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22sin 20206x π⎛⎫=−+ ⎪⎝⎭,∴当sin 202016x π⎛⎫+=− ⎪⎝⎭时,()max 224f x =+=,D 错误.故选:BC.【点睛】关键点点睛:本题考查了三角函数的新定义的问题,解题关键是能够充分理解已知所给的定义,结合三角函数的诱导公式、正余弦齐次式的求解等知识来判断各个选项.20.(2022秋·河南濮阳·高一濮阳一高校考期末)在数学史上,为了三角计算的简便并且更加追求计算的精确性,曾经出现过下列两种三角函数:•定义1cos θ−为角θ的正矢,记作sin ver θ,•定义1sin θ−为角θ的余矢,记作sin cover θ,则下列命题中正确的是( ) A .函数sin y ver x =在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数B .函数sin sin ver xy cover x=的最小正周期为πC .sin(sin 2ver )cover πθθ−=D .sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+=⋅+⋅ 【答案】AC【分析】由余弦函数的单调性可判断A 选项;验证得()()y x y x π≠+,可判断B 选项;由定义的诱导公式可判断C 选项;取4παβ==,代入验证可判断D 选项.【详解】因为sin 1cos y ver x x ==−,而cos y x =在3,22ππ⎡⎤⎢⎥⎣⎦上是增函数,所以函数sin 1cos y ver x x ==−在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数,故A 正确; 函数versin 1cos 1cos ();()coversin 1sin 1sin π−+==+=−+x x xy x y x x x x,所以()()y x y x π≠+,所以B 错误;sin 1cos 1sin sin 22ver cover ππθθθθ⎛⎫⎛⎫−=−−=−= ⎪ ⎪⎝⎭⎝⎭,故C 正确;取4παβ==,sin(1cos12ver )παβ+=−=,sin sin sin sin ver cover cover ver αβαβ⋅+⋅1cos 1sin 1sin 1cos 34444+ππππ⎛⎫⎛⎫⎛⎫⎛⎫=−⋅−−⋅−=− ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以sin(sin sin sin sin ver )ver cover cover ver αβαβαβ+≠⋅+⋅, 故D 错误, 故选:AC.【点睛】本题考查函数的新定义,三角函数的诱导公式,同角三角函数间的关系,余弦函数的性质,属于中档题.三、填空题21.(2023·高一课时练习)我们规定把2221cos ()cos cos ()3y B A B B A ⎡⎤=+++−⎣⎦叫做B 对A 的余弦方差,那么对任意实数B ,B 对π3的余弦方差是______.【答案】12##0.5【分析】根据余弦方差的定义求得正确答案. 【详解】依题意,B 对π3的余弦方差是:2221ππcos ()cos cos ()333y B B B ⎡⎤=+++−⎢⎥⎣⎦2π2π1cos(2)1cos(2)11cos 2333222B B B ⎡⎤+++−⎢⎥+=++⎢⎥⎢⎥⎣⎦ 12π2π3cos(2)cos 2cos(2)633B B B ⎡⎤=++++−⎢⎥⎣⎦12π2π2π2π3cos 2cos sin 2sin cos 2cos 2cos sin 2sin 63333B B B B B ⎛⎫=+−+++ ⎪⎝⎭ 11113cos 2cos 2cos 26222B B B ⎛⎫=−+−= ⎪⎝⎭. 故答案为:1222.(2022·全国·高一专题练习)已知()(),f x g x 都是定义在R 上的函数,若存在实数,m n ,使得()()()h x mf x ng x =+,则称()h x 是()f x ,()g x 在R 上生成的函数.若()()22cossin ,sin 22=−=x xf xg x x ,以下四个函数中:①π6y x ⎛⎫=− ⎪⎝⎭;②ππcos 2424x x y ⎛⎫⎛⎫=++ ⎪ ⎪⎝⎭⎝⎭;③2π2cos 124xy ⎛⎫=−− ⎪⎝⎭; ④22sin 2=y x .所有是()(),f x g x 在R 上生成的函数的序号为________. 【答案】①②③.【详解】()()22cossin cos ,sin 22x xf x xg x x =−==.①:πππcos sin sin )666y x x x x x ⎛⎫=−=+= ⎪⎝⎭,因此有m n ==()(),f x g x 在R 上生成的函数;②:πππcos )24242x x y x x ⎛⎫⎛⎫=++=+= ⎪ ⎪⎝⎭⎝⎭,因此有0m n ==,本函数是()(),f x g x 在R 上生成的函数; ③:2ππ2cos 1cos()sin 242xy x x ⎛⎫=−−=−= ⎪⎝⎭,因此有0,1m n ==,本函数是()(),f x g x 在R 上生成的函数; ④:2222sin 28sin cos y x x x ==,显然不存在实数,m n ,使得228sin cos cos sin x x m x n x =+成立,因此本函数不是()(),f x g x 在R 上生成的函数, 故答案为:①②③23.(2021春·江苏淮安·高一校联考阶段练习)形如a bc d 的式子叫做行列式,其运算法则为a b ad bc c d=−,则行列式sin15cos15︒︒的值是___________. 【答案】12−【分析】根据新定义计算即可.【详解】由题意sin151sin 45sin15cos 45cos15cos 602cos15︒=︒︒=︒︒−︒︒=−︒=−︒. 故答案为12−.24.(2023·高一课时练习)若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数.给出下列四个函数:①()1sin cos f x x x =+;②()2f x x =()3sin f x x =;④())4sin cos f x x x =+.其中“同形”函数有__________.(选填序号)【答案】①②【分析】利用三角恒等变换转化函数解析式,对比各函数的最小正周期及振幅即可得解.【详解】由题意,()1sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,())4sin cos 2sin 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,四个函数的最小正周期均相同,但振幅相同的只有①,②, 所以“同形”函数有①②. 故答案为:①②.25.(2023·高一课时练习)在直角坐标系中,横、纵坐标均为整数的点叫格点.若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数.在[],x ππ∈−上,下列函数中,为一阶格点函数的是___________.(选填序号)①sin y x =;②e 1x y =−;③ln y x =;④2y x = 【答案】①②③【分析】根据题目定义以及各函数的图象与性质即可判断.【详解】当[],x ππ∈−时,函数sin y x =,e 1x y =−的图象只经过一个格点()0,0,符合题意; 函数ln y x =的图象只经过一个格点()1,0,符合题意;函数2y x =的图象经过七个格点,()()()()()()()3,9,2,4,1,1,0,0,1,1,2,4,3,9−−−,不符合题意.故答案为:①②③.26.(2022春·河南商丘·高一商丘市第一高级中学校考开学考试)在平面直角坐标系xoy 中,已知任意角θ以坐标原点o 为顶点,x 轴的非负半轴为始边,若终边经过点00(,)p x y ,且(0)op r r =>,定义:00y x sos rθ+=,称“sos θ”为“正余弦函数”,对于“正余弦函数y sosx =”,有同学得到以下性质:①该函数的值域为⎡⎣; ②该函数的图象关于原点对称;③该函数的图象关于直线34x π=对称; ④该函数为周期函数,且最小正周期为2π;⑤该函数的递增区间为32,244k k k z ππππ⎡⎤−+∈⎢⎥⎣⎦.其中正确的是__________.(填上所有正确性质的序号) 【答案】①④⑤.【详解】分析:根据“正余弦函数”的定义得到函数)4y sosx x π==+,然后根据三角函数的图象与性质分别进行判断即可得到结论.详解:①中,由三角函数的定义可知00cos ,sin x r x y r x ==,所以00sin cos )[4y x y sosx x x x r π+===+=+∈,所以是正确的;②中,)4y sosx x π==+,所以()0)104f π=+=≠,所以函数关于原点对称是错误的;③中,当34x π=时,33()sin()0444f ππππ+==≠34x π=对称是错误的;④中,)4y sosx x π==+,所以函数为周期函数,且最小正周期为2π,所以是正确的;⑤中,因为)4y sosx x π==+,令22242k x k πππππ−≤+≤+,得322,44k x k k Z ππππ−≤≤+∈,即函数的单调递增区间为3[2,2],44k k k Z ππππ−+∈,所以是正确的,综上所述,正确命题的序号为①④⑤.点睛:本题主要考查了函数的新定义的应用,以及三角函数的图象与性质的应用,其中解答中根据函数的新定义求出函数y sosx =的表达式是解答的关键,同时要求熟练掌握三角函数的图象与性质是解答额基础,着重考查了分析问题和解答问题的能力,属于中档试题.27.(2015秋·广东揭阳·高一统考期中)定义一种运算,令,且,则函数的最大值是_______________【答案】54【详解】试题分析::∵,∴0≤sinx≤1∴()22255cos sin sin sin 1sin 144y x x x x x =+=−++=−−+≤ 由题意可得,()22215cos sin ,sin cos cos 224f x x x f x x x x π⎛⎫⎛⎫=+−=−=−++ ⎪ ⎪⎝⎭⎝⎭函数的最大值54考点:三角函数的最值四、解答题28.(2023春·云南文山·高一校考阶段练习)人脸识别技术在各行各业的应用改变着人类的生活,所谓人脸人脸识别中为了检测样本之间的相似度主要应用距离的测试,常用测量距离的方式有曼哈顿距离和余弦距离.若二维空间有两个点()11,A x y ,()22,B x y ,则曼哈顿距离为:()1212,d A B x x y y =−+−,余弦相似度为:()cos ,A B =()1cos ,A B −(1)若()1,2A −,34,55B ⎛⎫⎪⎝⎭,求A ,B 之间的曼哈顿距离(),d A B 和余弦距离;(2)已知()sin ,cos M αα,()sin ,cos N ββ,()sin ,cos Q ββ−,若()1cos ,5M N =,()2cos ,5M Q =,求tan tan αβ的值【答案】(1)145,15−(2)3−【分析】(1)根据公式直接计算即可.(2)根据公式得到1sin sin cos cos 5αβαβ+=,2sin sin cos cos 5αβαβ−=,计算得到答案.【详解】(1)()3414,12555d A B =−−+−=,()34cos ,55A B ==,故余弦距离等于()1cos ,15A B −=−; (2)()cos ,M N =1sin sin cos cos 5αβαβ=+=;()cos ,M Q =2sin sin cos cos 5αβαβ=−=故3sin sin 10αβ=,1cos cos 10αβ=−,则sin sin tan tan 3cos cos αβαβαβ==−. 29.(2023·高一课时练习)知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.与之类似,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对()sad .如图,在ABC 中,AB AC =.顶角A 的正对记作sad A ,这时sad BCA AB==底边腰.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.根据上述对角的正对定义,解下列问题: (1)sad60的值为( )A .12 B .1 C D .2 (2)对于0180A <∠<,A ∠的正对值sad A 的取值范围是______. (3)已知3sin 5α=,其中α为锐角,试求sad α的值. 【答案】(1)B(2)()0,2(3)sad α=【分析】(1)在等腰ABC 中,取60A ∠=,AB AC =,利用正对的定义可得出sad60sad A =的值; (2)在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,推导出sad 2sin 2AA =,结合正弦函数的基本性质可求得sad A 的取值范围;(3)利用同角三角函数的基本关系求出cos α,利用二倍角公式可求得sin 2α,由此可得出sad 2sin2αα=的值.【详解】(1)解:在等腰ABC 中,60A ∠=,AB AC =,则ABC 为等边三角形, 所以,sad60sad 1BCA AB===, 故选:B.(2)解:在等腰ABC 中,AB AC =,取BC 的中点D ,连接AD ,则AD BC ⊥,则2sad 2cos 2cos 902sin 22BC BD A A A B AB AB ⎛⎫====−= ⎪⎝⎭, 因为0180A <∠<,则0902A <<,故()sad 2sin 0,22AA =∈. 故答案为:()0,2.(3)解:π02α<<,则π024α<<,所以,24cos 12sin 52αα===−,所以,sin2α=sad 2sin 2αα==. 30.(2020秋·全国·高三校联考阶段练习)若函数()()sin cos ,f x a x b x a b =+∈R ,平面内一点坐标(),M a b ,我们称M 为函数()f x 的“相伴特征点”,()f x 为(),M a b 的“相伴函数”.(1)已知()1sin sin cos 2222x x x f x ⎛⎫=+− ⎪⎝⎭,求函数()f x 的“相伴特征点”;(2)记122M ⎛' ⎝⎭的“相伴函数”为()g x ,将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),再将所得的图象上所有点向右平移4π个单位长度,得到函数()h x ,作出()h x 在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象.【答案】(1)11,22⎛⎫− ⎪⎝⎭;(2)作图见解析.【分析】(1)利用二倍角的降幂公式化简得出()11sin cos 22f x x x =−,由此可得出函数()y f x =的“相伴特征点”的坐标;(2)由题中定义可得出()sin 3g x x π⎛⎫=+ ⎪⎝⎭,利用三角函数图象变换得出()52sin 312h x x π⎛⎫=− ⎪⎝⎭,然后通过列表、描点、连线,可得出函数)y h x =在区间529,3636ππ⎡⎤⎢⎥⎣⎦上的图象. 【详解】(1)()211cos sin 111sinsin cos sin cos 222222222x x x x x f x x x −=+−=+−=−Q , 故函数()y f x =的“相伴特征点”为11,22⎛⎫− ⎪⎝⎭;(2)由题意可得()1sin sin 23g x x x x π⎛⎫==+ ⎪⎝⎭, 将函数()y g x =图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得图象上所有点横坐标缩短为原来的13(纵坐标不变),可得到函数2sin 33y x π⎛⎫=+ ⎪⎝⎭的图象,再将所得的图象上所有点向右平移4π个单位长度,可得到函数()52sin 32sin 34312h x x x πππ⎡⎤⎛⎫⎛⎫=−+=− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,当529,3636x ππ⎡⎤∈⎢⎥⎣⎦时,503212x ππ≤−≤,列表如下:故函数()y h x =在529,3636ππ⎡⎤⎢⎥⎣⎦上的图象如下图所示.【点睛】本题考查三角函数的新定义、利用三角函数图象变换求解析式,同时也考查了五点作图法,考查分析问题和解决问题的能力,属于中等题. 五、双空题31.(2022秋·内蒙古包头·高一统考期末)对任意闭区间I ,I M 表示函数sin 6y x π⎛⎫=+ ⎪⎝⎭在区间I 上的最大值,则0,2M π⎡⎤⎢⎥⎣⎦=______,若[0,][,2]2t t t M M =,则t 的值为______.【答案】 1;23π或π 【分析】由题可得2,663x πππ⎡⎤+∈⎢⎥⎣⎦,故0,2M π⎡⎤⎢⎥⎣⎦=1;对t 分类讨论,利用正弦函数的性质得出符合条件的t 即可.【详解】当0,2x π⎡⎤∈⎢⎥⎣⎦时,2,663x πππ⎡⎤+∈⎢⎥⎣⎦,∴当62x ππ+=时,max 1y =,∴0,2M π⎡⎤⎢⎥⎣⎦=1;当62t ππ+<,即3t π<时,[0,]sin 6t M t π⎛⎫=+ ⎪⎝⎭,[,2][0,]sin 6t t t M t M π⎛⎫+= ⎪>⎝⎭, 这与[0,][,2]2t t t M M =矛盾, 当62t ππ+≥且5262t ππ+<,即736t ππ≤<时,[0,]1t M =,[,2]sin 6t t M t π=⎛⎫+ ⎪⎝⎭或[,2]sin 26t t M t π=⎛⎫+ ⎪⎝⎭,由[0,][,2]2t t t M M =可得,1sin 62t π⎛⎫+= ⎪⎝⎭或1sin 262t π⎛⎫+= ⎪⎝⎭,所以23t π=或t π=, 当5262t ππ+≥,即76t π≥时,[0,]1t M =,[,2]1t t M =,这与[0,][,2]2t t t M M =矛盾; 综上所述,t 的值为23π或π. 故答案为:1;23π或π.32.(2019秋·北京海淀·高三人大附中校考阶段练习)已知集合M 是满足下列性质的函数()f x 的全体,存在非零常数T ,对任意x ∈R ,有()()f x T Tf x +=成立.(1)给出下列两个函数:()1f x x =,()()2201f x a a =<<,其中属于集合M 的函数是__________.(2)若函数()sin f x kx M =∈,则实数k 的取值集合为__________. 【答案】 2()f x {|,}k k m m Z π=∈ 【分析】(1)根据集合M 的性质判断.(2)根据集合M 的性质求解,由sin ()sin k x T T kx +=恒成立成立,只有1T =±,【详解】(1)若1()f x M ∈,则存在非零点常数T ,使得11()()f x T Tf x +=,则x T Tx +=,(1)0T x T −+=对x R ∈恒成立,这是不可能的,1()f x M ∉;若2()f x M ∈,则存在非零点常数T ,使得22()()f x T Tf x +=,则22a Ta =,对x R ∈恒成立,1T =,2()f x M ∈; (2)函数()sin f x kx M =∈,则存在非零点常数T ,使得()()f x T T f x +=,即sin ()sin k x T T kx +=,0k =时,()0f x M =∈,0k ≠时,由x R ∈知kx R ∈,()k x T k R +∈,sin [1,1]kx ∈−,sin ()[1,1]k x T +∈−,因此要使sin ()sin k x T T kx+=成立,只有1T =±,若1T =,则sin()sin kx k kx +=,2,T m m Z π=∈,若1T =−,则sin()sin kx k kx −=−,即sin()sin kx k kx π−+=,2k m ππ−+=,(21),k m m Z π=−−∈, 综上实数k 的取值范围是{|,}k k m m Z π=∈. 故答案为:2(),f x {|,}k k m m Z π=∈.【点睛】本题考查新定义问题,此类问题的特点是解决问题只能以新定义规则为依据,由新定义规则把问题转化,转化为熟悉的问题进行解决.。

中考数学专题训练:关于二次函数的新定义(附参考答案)

中考数学专题训练:关于二次函数的新定义(附参考答案)

1 / 2中考数学专题训练:关于二次函数的新定义(附参考答案)1.若将抛物线平移,有一个点既在平移前的抛物线上,又在平移后的抛物线上,则称这个点为“平衡点”.现将抛物线C1:y =(x -2)2-4向右平移m(m >0)个单位长度后得到新的抛物线C2,若(4,n)为“平衡点”,则m 的值为( )A .2B .1C .4D .32.新定义:[a ,b ,c]为二次函数y =ax2+bx +c(a ≠0,a ,b ,c 为实数)的“图象数”,如:y =x2-2x +3的“图象数”为[1,-2,3].若“图象数”是[m ,2m +4,2m +4]的二次函数的图象与x 轴只有一个交点,则m 的值为( )A .-2B .14C .-2或2D .23.定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做“和谐点”,所围成的矩形叫做“和谐矩形”.已知点P 是抛物线y =x2+k 上的“和谐点”,所围成的“和谐矩形”的面积为16,则k 的值可以是( )A .16B .4C .-12D .-184.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A(0,2),点C(2,0),则互异二次函数y =(x -m)2-m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1 C .4,0 D .5+√172,-15.定义:[a ,b ,c]为二次函数y =ax2+bx +c(a ≠0)的特征数,下面给出特征数为[m ,1-m ,2-m]的二次函数的一些结论:①当m =1时,函数图象的对称轴是y 轴;②当m =2时,函数图象过原点;③当m >0时,函数有最小值;④如果m <0,当x >12时,y 随x 的增大而减小.其中所有正确结论的序号是__________.6.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y),当x <0时,点P 的变换点P ′的坐标为(-x ,y);当x ≥0时,点P 的变换点P ′的坐标为(-y ,x).抛物线y =(x -2)2+n 与x 轴交于点C ,D(点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P ′在抛物线的对称轴上,且四边形ECP ′D 是菱形,则满足该条件的所有n 值的和为________.7.对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,2 / 2 如图中的函数是有界函数,其边界值是1.将函数y =-x2+1(-2≤x ≤t ,t ≥0)的图象向上平移t 个单位长度,得到的函数的边界值n 满足94≤n ≤52时,则t 的取值范围是________________________.参考答案1.C 2.C3.C 4.D 5.①②③ 6.-13 7.≤t ≤34或54≤t ≤32。

人教版2023中考专题复习 解答题压轴题新定义题型

人教版2023中考专题复习 解答题压轴题新定义题型

专题17 解答题压轴题新定义题型(原卷版)模块一 2022中考真题集训类型一 函数中的新定义问题1.(2022•南通)定义:函数图象上到两坐标轴的距离都不大于n (n ≥0)的点叫做这个函数图象的“n 阶方点”.例如,点(13,13)是函数y =x 图象的“12阶方点”;点(2,1)是函数y =2x 图象的“2阶方点”. (1)在①(﹣2,−12);②(﹣1,﹣1);③(1,1)三点中,是反比例函数y =1x 图象的“1阶方点”的有 (填序号);(2)若y 关于x 的一次函数y =ax ﹣3a +1图象的“2阶方点”有且只有一个,求a 的值;(3)若y 关于x 的二次函数y =﹣(x ﹣n )2﹣2n +1图象的“n 阶方点”一定存在,请直接写出n 的取值范围.2.(2022•湘西州)定义:由两条与x 轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”,如图①,抛物线C 1:y =x 2+2x ﹣3与抛物线C 2:y =ax 2+2ax +c 组成一个开口向上的“月牙线”,抛物线C 1和抛物线C 2与x 轴有着相同的交点A (﹣3,0)、B (点B 在点A 右侧),与y 轴的交点分别为G 、H (0,﹣1).(1)求抛物线C 2的解析式和点G 的坐标.(2)点M 是x 轴下方抛物线C 1上的点,过点M 作MN ⊥x 轴于点N ,交抛物线C 2于点D ,求线段MN 与线段DM 的长度的比值.(3)如图②,点E 是点H 关于抛物线对称轴的对称点,连接EG ,在x 轴上是否存在点F ,使得△EFG 是以EG 为腰的等腰三角形?若存在,请求出点F 的坐标;若不存在,请说明理由.3.(2022•兰州)在平面直角坐标系中,P(a,b)是第一象限内一点,给出如下定义:k1=ab和k2=ba两个值中的最大值叫做点P的“倾斜系数”k.(1)求点P(6,2)的“倾斜系数”k的值;(2)①若点P(a,b)的“倾斜系数”k=2,请写出a和b的数量关系,并说明理由;②若点P(a,b)的“倾斜系数”k=2,且a+b=3,求OP的长;(3)如图,边长为2的正方形ABCD沿直线AC:y=x运动,P(a,b)是正方形ABCD上任意一点,且点P的“倾斜系数”k<√3,请直接写出a的取值范围.4.(2022•遵义)新定义:我们把抛物线y=ax2+bx+c(其中ab≠0)与抛物线y=bx2+ax+c称为“关联抛物线”.例如:抛物线y=2x2+3x+1的“关联抛物线”为:y=3x2+2x+1.已知抛物线C1:y=4ax2+ax+4a﹣3(a≠0)的“关联抛物线”为C2.(1)写出C2的解析式(用含a的式子表示)及顶点坐标;(2)若a>0,过x轴上一点P,作x轴的垂线分别交抛物线C1,C2于点M,N.①当MN=6a时,求点P的坐标;②当a﹣4≤x≤a﹣2时,C2的最大值与最小值的差为2a,求a的值.5.(2022•赤峰)阅读下列材料定义运算:min|a,b|,当a≥b时,min|a,b|=b;当a<b时,min|a,b|=a.例如:min|﹣1,3|=﹣1;min|﹣1,﹣2|=﹣2.完成下列任务(1)①min|(﹣3)0,2|=;②min|−√14,﹣4|=.(2)如图,已知反比例函数y1=kx和一次函数y2=﹣2x+b的图象交于A、B两点.当﹣2<x<0时,min|kx,﹣2x+b|=(x+1)(x﹣3)﹣x2,求这两个函数的解析式.6.(2022•泰州)定义:对于一次函数y1=ax+b、y2=cx+d,我们称函数y=m(ax+b)+n(cx+d)(ma+nc ≠0)为函数y1、y2的“组合函数”.(1)若m=3,n=1,试判断函数y=5x+2是否为函数y1=x+1、y2=2x﹣1的“组合函数”,并说明理由;(2)设函数y1=x﹣p﹣2与y2=﹣x+3p的图象相交于点P.①若m+n>1,点P在函数y1、y2的“组合函数”图象的上方,求p的取值范围;②若p≠1,函数y1、y2的“组合函数”图象经过点P.是否存在大小确定的m值,对于不等于1的任意实数p,都有“组合函数”图象与x轴交点Q的位置不变?若存在,请求出m的值及此时点Q的坐标;若不存在,请说明理由.类型二几何图形中的新定义问题7.(2022•青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形、例如:如图①,在△ABC和△A'B'C'中,AD,A'D'分别是BC和B'C'边上的高线,且AD=A'D'、则△ABC 和△A'B'C'是等高三角形.【性质探究】如图①,用S△ABC,S△A'B'C′分别表示△ABC和△A′B′C′的面积,则S△ABC=12BC•AD,S△A'B'C′=12B′C′•A′D′,∵AD=A′D′∴S△ABC:S△A'B'C′=BC:B'C'.【性质应用】(1)如图②,D是△ABC的边BC上的一点.若BD=3,DC=4,则S△ABD:S△ADC=;(2)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:2,CD:BC=1:3,S△ABC=1,则S△BEC=,S△CDE=;(3)如图③,在△ABC中,D,E分别是BC和AB边上的点.若BE:AB=1:m,CD:BC=1:n,S△ABC=a,则S△CDE=.8.(2022•北京)在平面直角坐标系xOy 中,已知点M (a ,b ),N .对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a |个单位长度,再向上(b ≥0)或向下(b <0)平移|b |个单位长度,得到点P ′,点P ′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M (1,1),点N 在线段OM 的延长线上.若点P (﹣2,0),点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t (12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在⊙O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).模块二 2023中考押题预测9.(2023•义乌市校级模拟)定义:在平面直角坐标系中,有一条直线x =m ,对于任意一个函数,作该函数自变量大于m 的部分关于直线x =m 的轴对称图形,与原函数中自变量大于或等于m 的部分共同构成一个新的函数图象,则这个新函数叫做原函数关于直线x =m 的“镜面函数”.例如:图①是函数y =x +1的图象,则它关于直线x =0的“镜面函数”的图象如图②所示,且它的“镜面函数”的解析式为y ={x +1(x ≥0)−x +1(x <0),也可以写成y =|x |+1.(1)在图③中画出函数y =﹣2x +1关于直线x =1的“镜面函数”的图象.(2)函数y =x 2﹣2x +2关于直线x =﹣1的“镜面函数”与直线y =﹣x +m 有三个公共点,求m 的值.(3)已知A (﹣1,0),B (3,0),C (3,﹣2),D (﹣1,﹣2),函数y =x 2﹣2nx +2(n >0)关于直线x =0的“镜面函数”图象与矩形ABCD 的边恰好有4个交点,求n 的取值范围.10.(2023•秦皇岛一模)定义:如果二次函数y=a1x2+b1x+c1,(a1≠0,a1、b1、c1是常数)与y=a2x2+ b2x+c2a2≠0,a2、b2、c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函致互为“旋转函数”.例如:求函数y=2x2﹣3x+1的“旋转函数”,由函数y=2x2﹣3x+1可知,a1=2,b1=3,c1=1.根据a1+a2=0,b1=b2,c1+c2=0求出a2、b2、c2就能确定这个函数的“旋转函数”.请思考并解决下面问题:(1)写出函数y=x2﹣4x+3的“旋转函数”;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2023的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A、B两点,与y轴交于点C,点A、B、C关于原点的对称点分别是A1、B1、C1,试求证:经过点A1、B1、C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.11.(2022•滨海县校级三模)定义:若一个函数的图象上存在横、纵坐标之和为零的点,则称该点为这个函数图象的“好点”,例如,点(﹣1,1)是函数y=x+2的图象的“好点”.(1)在函数①y=﹣x+5,②y=6x,③y=x2+2x+1的图象上,存在“好点”的函数是(填序号).(2)设函数y=4x(x<0)与y=kx﹣1的图象的“好点”分别为点A、B,过点A作AC⊥y轴,垂足为C.当△ABC为等腰三角形时,求k的值;(3)若将函数y=2x2+4x的图象在直线y=m下方的部分沿直线y=m翻折,翻折后的部分与图象的其余部分组成了一个新的图象.当该图象上恰有3个“好点”时,求m的值.12.(2022•婺城区模拟)定义:在平面直角坐标系中,对于任意一个函数,作该函数y轴右侧部分关于y 轴的轴对称图形,与原函数y轴的交点及y轴右侧部分共同构成一个新函数的图象,则这个新函数叫做原函数的“新生函数“例如:图①是函数y=x+l的图象,则它的“新生函数“的图象如图②所示,且它的“新生函数“的解析式为y={x+1(x≥0)−x+1(x<0),也可以写成y=|x|+1.(1)在图③中画出函数y=﹣2x+l的“新生函数“的图象.(2)函数y=x2﹣2x+2的“新生函数“与直线y=﹣x+m有三个公共点,求m的值.(3)已知A(﹣1,0),B(3,0),C(3,﹣2),D(﹣1,﹣2),函数y=x2﹣2nx+2(n>0)的“新生函数“图象与矩形ABCD的边恰好有4个交点,求n的取值范围.13.(2022•宁南县模拟)新定义:在平面直角坐标系xOy中,若一条直线与二次函数图象抛物线有且仅有一个公共点,且抛物线位于这条直线同侧,则称该直线与此抛物线相切,公共点为切点.现有一次函数y=﹣4x﹣1与二次函数y=x2+mx图象相切于第二象限的点A.(1)求二次函数的解析式及切点A的坐标;(2)当0<x<3时,求二次函数函数值的取值范围;(3)记二次函数图象与x轴正半轴交于点B,问在抛物线上是否存在点C(异于A)使∠OBC=∠OBA,若有则求出C坐标,若无则说明理由.14.(2022•天宁区校级二模)如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(t,0)与(t+6,0).对于坐标平面内的一动点P,给出如下定义:若∠APB=45°,则称点P为线段AB的“等角点”.(1)当t=1时,①若点P为线段AB在第一象限的“等角点”,且在直线x=4上,则点P的坐标为;②若点P为线段AB的“等角点”,并且在y轴上,则点P的坐标为;(2)已知直线y=﹣0.5x+4上总存在线段AB的“等角点”,则t的范围是.15.(2022•零陵区模拟)九年级数学兴趣小组在课外学习时遇到这样一个问题:定义:如果二次函数y=a1x2+b1x+c1(a1≠0,a1,b1,c1是常数)与y=a2x2+b2x+c2(a2≠0,a2,b2,c2是常数)满足a1+a2=0,b1=b2,c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的“旋转函数”.小组同学是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1=b2,c1+c2=0,求出a2,b2,c2就能确定这个函数的“旋转函数”.请参照小组同学的方法解决下面问题:(1)函数y=x2﹣4x+3的“旋转函数”是;(2)若函数y=5x2+(m﹣1)x+n与y=﹣5x2﹣nx﹣3互为“旋转函数”,求(m+n)2022的值;(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是A1,B1,C1,试求证:经过点A1,B1,C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.16.(2022•甘井子区校级模拟)定义:将函数C1的图象绕点P(m,0)旋转180o,得到新的函数C2的图象,我们称函数C2是函数C1关于点P的相关函数.例如:当m=1时,函数y=(x﹣3)2+9关于点P(1,0)的相关函数为y=﹣(x+1)2﹣9.(1)当m=0时,①一次函数y=﹣x+7关于点P的相关函数为.②点A(5,﹣6)在二次函数y=ax2﹣2ax+a(a≠0)关于点P的相关函数的图象上,求a的值.(2)函数y=(x﹣2)2+6关于点P的相关函数是y=﹣(x﹣10)2﹣6,则m=.(3)当m﹣1≤x≤m+2时,函数y=x2﹣6mx+4m2关于点P(m,0)的相关函数的最大值为8,求m的值.17.(2022•庐阳区校级三模)定义:对于给定的两个函数,任取自变量x的一个值;当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为关联函数.例如:一次函数y=x﹣1,它的关联函数为y={−x+1(x<0)x−1(x≥0).已知二次函数y=﹣x2+4x−12.(1)当第二象限点B(m,32)在这个函数的关联函数的图象上时,求m的值;(2)当﹣3≤x≤﹣1时求函数y=﹣x2+4x−12的关联函数的最大值和最小值.18.(2022•江都区二模)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“梅岭点”.(1)若点P (3,p )是一次函数y =mx +6的图象上的“梅岭点”,则m = ; 若点P (m ,m )是函数y =3x−2的图象上的“梅岭点”,则m = ;(2)若点P (p ,﹣2)是二次函数y =x 2+bx +c 的图象上唯一的“梅岭点”,求这个二次函数的表达式; (3)若二次函数y =ax 2+bx +c (a ,b 是常数,a >0)的图象过点(0,2),且图象上存在两个不同的“梅岭点”A (x 1,x 1),B (x 2,x 2),且满足﹣1<x 1<1,|x 1﹣x 2|=2,如果k =﹣b 2+2b +2,请直接写出k 的取值范围.19.(2022•海淀区校级模拟)在平面直角坐标系xOy 中,⊙O 的半径为1,对于线段AB ,给出如下定义:若将线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′(A ′,B ′分别为A ,B 的对应点),则称线段AB 是⊙O 的以直线l 为对称轴的对称的“反射线段”,直线l 称为“反射轴”.(1)如图1,线段CD 、EF 、GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点的坐标为(0,2),B 点坐标为(1,1).①如图2,若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,画出图形,反射轴l 与y 轴的交点M 的坐标是 .②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M ≤136,求S 的取值范围.(3)已知点M 、N 是在以(2,0)为圆心,半径为√13的圆上的两个动点,且满足MN =√2,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,反射轴l 与y 轴的交点的纵坐标的取值范围是 .20.(2022•亭湖区校级三模)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB 是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=4BE,QB=6,求邻余线AB的长.21.(2022•寻乌县二模)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”.例如:如图①,∠B=∠C,则四边形ABCD为“等邻角四边形”.(1)定义理解:以下平面图形中,是等邻角四边形得是.①平行四边形②矩形③菱形④等腰梯形(2)深入探究:①已知四边形ABCD为“等邻角四边形”,且∠A=120°,∠B=100°,则∠D=°.②如图②,在五边形ABCDE中,ED∥BC,对角线BD平分∠ABC,求证:四边形ABDE为等邻角四边形.(3)拓展应用:如图③,在等邻角四边形ABCD中,∠B=∠C,点P为边BC上的一动点,过点P作PM⊥AB,PN⊥CD,垂足分别为M,N.在点P的运动过程中,PM+PN的值是否会发生变化?请说明理由.22.(2022•东胜区二模)【概念理解】定义:我们把对角线互相垂直的四边形叫做垂美四边形如图①.我们学习过的四边形中是垂美四边形的是;(写出一种即可)【性质探究】利用图①,垂美四边形ABCD两组对边AB,CD的平方和与BC,AD的平方和之间的数量关系是;【性质应用】(1)如图②,在△ABC中,BC=6,AC=8,D,E分别是AB,BC的中点,连接AE,CD,若AE⊥CD,则AB的长为;(2)如图③,等腰Rt△BCE和等腰Rt△ADE中,∠BEC=∠AED=90°,AC与BD交于O点,BD与CE交于点F,AC与DE交于点G.若BE=6,AE=8,AB=12,求CD的长;【拓展应用】如图④,在▱ABCD中,点E、F、G分别是AD、AB、CD的中点,EF⊥CF,AD=6,AB =8,求BG的长.23.(2022•修水县一模)定义:有一组对角互补的四边形叫做“对补四边形”.例如:在四边形ABCD中,若∠A+∠C=180°或∠B+∠D=180°,则四边形ABCD是“对补四边形”.概念理解.(1)如图1,已知四边形ABCD是“对补四边形”.①若∠A:∠B:∠C=3:2:1,则∠D的度数为;②若∠B=90°,且AB=3,AD=2,则CD2﹣CB2=.拓展延伸.(2)如图2,已知四边形ABCD是“对补四边形”.当AB=CB,且∠EBF=12∠ABC时,试猜想AE,CF,EF之间的数量关系,并证明.24.(2022•盐城一模)对于平面内的两点K、L,作出如下定义:若点Q是点L绕点K旋转所得到的点,则称点Q是点L关于点K的旋转点;若旋转角小于90°,则称点Q是点L关于点K的锐角旋转点.如图1,点Q是点L关于点K的锐角旋转点.(1)已知点A(4,0),在点Q1(0,4),Q2(2,2√3),Q3(﹣2,2√3),Q4(2√2,﹣2√2)中,是点A关于点O的锐角旋转点的是.(2)已知点B(5,0),点C在直线y=2x+b上,若点C是点B关于点O的锐角旋转点,求实数b的取值范围.(3)点D是x轴上的动点,D(t,0),E(t﹣3,0),点F(m,n)是以D为圆心,3为半径的圆上一个动点,且满足n≥0.若直线y=2x+6上存在点F关于点E的锐角旋转点,请直接写出t的取值范围.25.(2022•寿阳县模拟)所谓“新定义”试题指给出一个从未接触过的新规定,源于中学数学内容但又是学生没有遇到过的新信息,它可以是新的概念、新的运算、新的符号、新的图形、新的定理或新的操作规则与程序等.在解决它们的过程中又可产生了许多新方法、新观念,增强了学生创新意识.主要包括以下类型:①概念的“新定义”;②运算的“新定义”;③新规则的“新定义”;④实验操作的“新定义”;⑤几何图形的新定义.如果我们新定义一种四边形:有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图1,在半对角四边形ABCD中,∠B=12∠D,∠C=12∠A,请你利用所学知识求出∠B与∠C的度数之和;(2)如图2,锐角△ABC内接于⊙O,若边AB上存在一点D,使得BD=BO.∠OBA的平分线交OA 于点E,连接DE并延长交AC于点F,若∠AFE=2∠EAF.请你判断四边形DBCF是不是半对角四边形?并说明理由.26.(2022•泗洪三模)定义:若一个圆内接四边形的两条对角线互相垂直,则称这个四边形为圆美四边形.(1)选择:下列四边形中,一定是圆美四边形的是A.平行四边形B.矩形C.菱形D.正方形(2)如图1,在等腰Rt△ABC中,∠BAC=90°,AB=1,经过点A,B的⊙O交AC边于点D,交BC 于点E,连接DE,若四边形ABED为圆美四边形,求DE的长;(3)如图2,AD是△ABC外接圆⊙O的直径,交BC于点E,点P在AD上,延长BP交⊙O于点F,已知PB2=PE•P A.问四边形ABFC是圆美四边形吗?为什么?27.(2022•淮阴区校级一模)定义:在平行四边形中,若有一条对角线长是一边长的两倍,则称这个平行四边形叫做和谐四边形,其中这条对角线叫做和谐对角线,这条边叫做和谐边.【概念理解】(1)如图1,四边形ABCD是和谐四边形,对角线AC与BD交于点G,BD是和谐对角线,AD是和谐边.①△ADG与△BCG的形状是三角形.②若AD=4,则BD=.【问题探究】(2)如图2,四边形ABCD是矩形,过点B作BE∥AC交DC的延长线于点E,连接AE交BC于点F,AD=4,AB=k.①当k=2时,请说明四边形ABEC是和谐四边形;②是否存在值k,使得四边形ABCD是和谐四边形,若存在,求出k的值,若不存在,请说明理由.【应用拓展】(3)如图3,四边形ABCD与四边形ABEC都是和谐四边形,其中BD与AE分别是和谐对角线,AD与AC分别是和谐边,AB=4,AD=k,请直接写出k的值.28.(2022•亭湖区校级模拟)问题:A4纸给我们矩形的印象,这个矩形是特殊矩形吗?思考:通过度量、上网查阅资料,小丽同学发现A4纸的长与宽的比是一个特殊值“√2”定义:如图1,点C把线段AB分成两部分,如果ACBC=√2,那么点C为线段AB的“白银分割点”如图2,矩形ABCD中,BCAB=√2,那么矩形ABCD叫做白银矩形.应用:(1)如图3,矩形ABCD是白银矩形,AD>AB,将矩形沿着EF对折,求证:矩形ABFE也是白银矩形.(2)如图4,矩形ABCD中,AB=1,BC=√2,E为CD上一点,将矩形ABCD沿BE折叠,使得点C 落在AD边上的点F处,延长BF交CD的延长线于点G,说明点E为线段GC的”白银分制点”.(3)已知线段AB(如图5),作线段AB的一个“白银分割点”.(要求:尺规作图,保留作图痕迹,不写作法)29.(2022•盐田区二模)定义:将图形M绕点P顺时针旋转90°得到图形N,则图形N称为图形M关于点P的“垂直图形”.例如:在图中,点D为点C关于点P的“垂直图形”.(1)点A关于原点O的“垂直图形”为点B.①若点A的坐标为(0,2),直接写出点B的坐标;②若点B的坐标为(2,1),直接写出点A的坐标;(2)已知E(﹣3,3),F(﹣2,3),G(a,0).线段EF关于点G的“垂直图形”记为E'F',点E的对应点为E',点F的对应点为F'.①求点E'的坐标;②当点G运动时,求FF'的最小值.30.(2022•高新区校级二模)在数学课上,当老师讲到直线与圆的位置关系时,张明同学突发奇想,特殊线与圆在不同的位置情况下会有怎样的数量关系呢?于是在课下他查阅了老师推荐他的《几何原本》,这本书是古希腊数学家欧几里得所著的一部数学著作.它是欧洲数学的基础,总结了平面几何五大公设,被广泛地认为是历史上学习数学几何部分最成功的教科书.其中第三卷命题36﹣2圆幂定理(切割线定理)内容如下:切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.(比例中项的定义:如果a、b、c三个量成连比例即a:b=b:c,则b叫做a和c的比例中项)(1)为了说明材料中定理的正确性,需要对其进行证明,下面已经写了不完整的“已知”和“求证”,请补充完整,并写出证明过程.已知:如图,A是圆O外一点,AB是圆O的切线,直线ACD为圆O的割线.求证:证明:(2)如图,已知AC=2,CD=4,则AB的长度是.31.(2022•江北区模拟)定义:若连结三角形一个顶点及其对边上一点的线段将该三角形分割成的两个小三角形中,有一个与原三角形相似,则称该线段为三角形的相似分割线;若分割成的两个小三角形都与原三角形相似,则称该线段为全相似分割线.(1)如图1,在△ABC中,∠ABC为钝角,相似分割线AD是BC边上的中线,求证:BC=√2AB.(2)如图2,在△ABC中,AD是△ABC的全相似分割线,求证:1AD2=1AB2+1AC2;(3)在△ABC中,AD是△ABC的全相似分割线,将△BAD绕B点顺时针旋转,D点旋转到E点,A点旋转到F点,当旋转到如图3的位置时,E,F,C三点共线,BF恰好是△BEC的相似分割线,求CDBD值.32.(2022•巢湖市二模)定义:如果一个三角形中有一个角是另一个角的2倍,那么我们称这样的三角形为倍角三角形.根据上述定义可知倍角三角形中有一个角是另一个角的2倍,所以我们就可以通过作出其中的2倍角的角平分线,得出一对相似三角形,再利用我们学过的相似三角形的性质解决相关问题.请通过这种方法解答下列问题:(1)如图1,△ABC中,AD是角平分线,且AB2=BD•BC,求证:△ABC是倍角三角形;(2)如图2,已知△ABC是倍角三角形,且∠A=2∠C,AB=8,BC=10,求AC的长;(3)如图3,已知△ABC中,∠A=3∠C,AB=8,BC=10,求AC的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

与函数有关的新定义题型1.(2016长沙25题10分)若抛物线L :y =ax 2+bx +c(a ,b ,c 是常数,abc ≠0)与直线l 都经过y 轴上的一点P ,且抛物线L 的顶点Q 在直线l 上,则称此直线l 与该抛物线L 具有“一带一路”关系.此时直线l 叫做抛物线L 的“带线”,抛物线L 叫做直线l 的“路线”.(1)若直线y =mx +1与抛物线y =x 2-2x +n 具有“一带一路”关系,求m ,n 的值;(2)若某“路线”L 的顶点在反比例函数y =6x的图象上,它的“带线”l 的解析式为y =2x -4,求此“路线”L 的解析式;(3)当常数k 满足12≤k ≤2时,求抛物线L :y =ax 2+(3k 2-2k +1)x +k 的“带线”l 与x 轴,y 轴所围成的三角形面积的取值范围.2.(2015长沙25题10分)在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点......称之为“中国结”.(1)求函数y =3x +2的图象上所有“中国结”的坐标;(2)若函数y =k x(k ≠0,k 为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与相应“中国结”的坐标;(3)若二次函数y =(k 2-3k +2)x 2+(2k 2-4k +1)x +k 2-k (k 为常数)的图象与x 轴相交得到两个不同的“中国结”,试问该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?3.(2014长沙25题10分)在平面直角坐标系中,我们不妨把横坐标与纵坐标相等的点称为“梦之点”.例如点(-1,-1),(0,0),(2,2),…都是“梦之点”,显然,这样的“梦之点”有无数个.(1)若点P (2,m )是反比例函数y =n x(n 为常数,n ≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y =3kx +s -1(k ,s 是常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标;若不存在,请说明理由;(3)若二次函数y =ax 2+bx +1(a ,b 是常数,a >0)的图象上存在两个不同的“梦之点”A (x 1,x 1),B (x 2,x 2),且满足-2<x 1<2,|x 1-x 2|=2,令t =b 2-2b +15748,试求t 的取值范围.4.(2013长沙25题10分)设a ,b 是任意两个不等实数,我们规定:满足不等式a≤x≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.(1)反比例函数y =2013x是闭区间[1,2013]上的“闭函数”吗?请判断并说明理由; (2)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式;(3)若二次函数y =15x 2-45x -75是闭区间[a ,b ]上的“闭函数”,求实数a ,b 的值.5. (2017长沙25题10分)若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.(1)实数1,2,3可以构成“和谐三数组”吗?请说明理由;(2)若M(t ,y 1),N (t +1,y 2),R (t +3,y 3)三点均在函数y =k x(k 为常数,k ≠0)的图象上,且这三点的纵坐标y 1,y 2,y 3构成“和谐三数组”,求实数t 的值;(3)若直线y =2bx +2c(bc ≠0)与x 轴交于点A (x 1,0),与抛物线y =ax 2+3bx +3c(a ≠0)交于B (x 2,y 2),C (x 3,y 3)两点.①求证:A ,B ,C 三点的横坐标x 1,x 2,x 3构成“和谐三数组”;②若a >2b >3c ,x 2=1,求点P (c a ,b a)与原点O 的距离OP 的取值范围.6.(2011长沙25题10分)使得函数值为零的自变量的值称为函数的零点.例如,对于函数y =x -1,令y =0,可得x =1,我们就说1是函数y =x -1的零点.已知函数y =x 2-2mx -2(m +3)(m 为常数).(1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为x 1和x 2,且1x 1+1x 2=-14,此时函数图象与x 轴的交点分别为A 、B (点A 在点B 左侧),点M 在直线y =x -10上,当MA +MB 最小时,求直线AM 的函数解析式.7.(2018长沙26题10分)我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD 交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c <0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.5. (2017雅礼实验中学月考)已知y 是关于x 的函数,若其图象经过点P(t ,t ),则称点P 为函数图象上的“bingo 点”,例如:y =2x -1上存在“bingo 点”P (1,1).(1)直线____________(填写直线解析式)上的每一个点都是“bingo 点”;双曲线y =1x上的“bingo 点”是________;(2)若抛物线y =12x 2+(13a +1)x -19a 2-a +2上有“bingo 点”,且“bingo 点”A 、B (点A 和点B 可以重合)的坐标为A (x 1,y 1),B (x 2,y 2),求x 21+x 22的最小值;(3)若函数y =14x 2+(n -k +1)x +m +k -1的图象上存在唯一的一个“bingo 点”,且当-2≤n ≤1时,m 的最小值为k ,求k 的值.6. (2018原创)在平面直角坐标系内,若点P (x ,y)满足2x +y =0,则称点P 是“反倍点”,例如点P(2,-4)就是一个反倍点.(1)已知点A 是第二象限的一个“反倍点”,且点A 到x 轴的距离为2,求经过点A 的反比例函数y =k x的解析式; (2)已知“反倍点”B 在一次函数y =mx +2图像上,且点B 的纵、横坐标均为整数,求点B 的坐标;(3)已知二次函数y =-(x -h)2+c 的顶点D 是“反倍点”,当抛物线与y 轴的交点C 的纵坐标y C 取得最大值时,在抛物线上及抛物线内共有几个“反倍点”,并求出这些点的坐标.7. (2017雅礼实验中学一模)若直线l 与曲线L 相交于A 、B 两点,直线l 与y 轴交于点C ,且AC =2BC ,则称直线l 与曲线L 互为“倍数函数”,A 、B 两点间的水平距离为“倍长量”.(1)若直线l :y =ax +b 经过点C(0,1),与曲线L :y =k x其中一个交点为(1,2),那么直线l 与曲线L 是否互为“倍数函数”,请说明理由;(2)若当k >1时,直线l :y =kx +1与曲线L :y =x 2+2kx +k 互为“倍数函数”,求直线l 的解析式;(3)直线l :y =kx +d 与曲线L :y =2x 2+bx +c 互为“倍数函数”,且|b -k |=3,c ≠d ,AB 的“倍长量”是否为定值,若为定值,求出定值;若不为定值,说明理由.8. (2018原创)在平面直角坐标系xOy 中,对于点P (a ,b )和点Q(a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a≥1-b ,a<1,则称点Q 为点P 的限变点.如点(2,3)限变点坐标是(2,3),点(-2,5)限变点坐标是(-2,-5).(1)若点A (-1,2)是函数y =a x图象上某一个点的限变点,求a 的值; (2)若反比例函数y =p +2x和一次函数y =px +2(p≠0)同时过点B (p ,3)的限变点C ,求此时p 的值;(3)若点P 在二次函数y =x 2+4x -1(-3≤x ≤k ,k ≥-3)的图象上,其限变点Q 的纵坐标b′的取值范围是-1≤b ′≤5,求k 的取值范围.9. (2018原创)若抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于C 点,且△ABC恰好是直角三角形,则称抛物线y =ax 2+bx +c 是“勾股抛物线”,其中较短直角边所在直线为“勾线”,较长直角边所在直线为“股线”.(1)若“勾股抛物线”y =x 2+mx +n 的“勾线”经过点(1,1),求m 和n 的值;(2)已知“勾股抛物线”y =-12x 2+bx +c 与x 轴的一个交点为(-1,0),其“股线”与反比例函数y =k x的一个交点的横坐标是-2,求反比例函数解析式; (3)已知“勾股抛物线”y =33x 2+bx -3c (b≠0)的“勾线”、“股线”及x 轴围成的三角形面积S 的取值范围是23≤S ≤43,设t =-2b 4+4b 2+3,求t 的最大值.10. (2017雅礼教育集团期中考试)我们将自变量为x 的函数记作f (x),若点A (m ,n )和B (n ,t )都在函数f(x)的图象上,则称点B 是点A 在函数f(x )作用下的传承点.如点(1,3)是点(-1,1)在函数y =x +2作用下的传承点.(1)求点(2,-1)在函数y =-x +1作用下的传承点的坐标;(2)直线y =kx +2与双曲线y =k x交于C ,D 两点,且点D 是点C 在这两个函数作用下的传承点,求直线与双曲线的解析式;(3)抛物线y =ax 2+bx +c 与直线y =ax +d 交于抛物线对称轴两侧的E ,F 两点,点E 的横坐标为1,且点F 是点E 在这两个函数作用下的传承点,抛物线y =ax 2+bx +c 的对称轴是直线x =-1,二次函数y =ax 2+bx +c 在E ,F 两点之间的最大值与最小值之差为8,求E ,F两点的坐标.11. 已知y 是关于x 的函数,若其图象经过点P (t ,2t ),则称点P 为函数图象上的“偏离点”.例如:直线y =x -3上存在“偏离点”P(-3,-6).(1)在双曲线y =x1上是否存在“偏离点”?若存在,请求出“偏离点”的坐标;若不存在,请说明理由;(2)若抛物线y =-12x 2+(23a +2)x -29a 2-a +1上有“偏离点”,且“偏离点”为A (x 1,y 1)和B(x 2,y 2),求w =x 21+x 22-ka 3的最小值(用含k 的式子表示); (3)若函数y =14x 2+(m -t +2)x +n +t -2的图象上存在唯一的一个“偏离点”,且当-2≤m ≤3时,n 的最小值为t ,求t 的值.12. 定义:若一次函数y =ax +b 与反比例函数y =-c x 满足a b =b c,则称y =ax 2+bx +c 为一次函数和反比例函数的“等比”函数.(1)试判断(需写出判断过程)一次函数y =x +b 与反比例函数y =-9x是否存在“等比”函数?若存在,请写出它们的“等比”函数的解析式;(2)若一次函数y =9x +b(b <0)与反比例函数y =-c x存在“等比”函数,且“等比”函数的图象与y =-c x 的图象的交点的横坐标为x =-13,求反比例函数的解析式; (3)若一次函数y =ax +b 与反比例函数y =-c x(其中a >0,c >0,a =3b)存在“等比”函数,且y =ax +b 的图象与“等比”函数图象有两交点A (x 1,y 1)、B(x 2,y 2),试判断“等比”函数图象上是否存在一点P (x ,y)(其中x 1<x <x 2),使得△ABP 的面积最大?若存在,请用c 表示△ABP面积的最大值;若不存在,请说明理由.13. (2017青竹湖湘一二模)若将函数C 1的图象沿直线x =a 对折,与函数C 2的图象重合,则称函数C 1与C 2互为“镜面函数”,直线x =a 叫作函数C 1、C 2的“镜面直线”,如:函数y =1x与函数y =-1x互为“镜面函数”,y 轴为它们的“镜面直线”; (1)若“镜面直线”为x =1,求一次函数C 1:y =-12x 的“镜面函数”C 2的解析式; (2)若函数C 1:y =x 2+4x +3与x 轴交于A 、B 两点(x A >x B ),顶点为P ,射线P A 与双曲线y=6x交于点Q ,且Q 点在函数C 1的“镜面函数”C 2上,求函数C 1、C 2的“镜面直线”; (3)若“镜面直线”为x =1,函数L 2:y =-12x 2-x +c +4的“镜面函数”L 1与x 轴交于C 、D 两点,C 点在D 点左侧,顶点为M ,与y 轴交于点E ,若ME ⊥DE ,求代数式OC·OE OD的值.14. (2017长沙中考模拟卷八)对于某一函数给出如下定义:若存在实数p ,当其自变量的值为p 时,其函数值等于p ,则称p 为这个函数的不变值....在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度.....特别地,当函数只有一个不变值时,其不变长度q 为零.例如,图中的函数有0,1两个不变值,其不变长度q 等于1.(1)分别判断函数y =x -1、y =1x、y =x 2有没有不变值?如果有,求出其不变长度; (2)函数y =2x 2-bx .①若其不变长度为0,求b 的值;②若1≤b ≤3,求其不变长度q 的取值范围;(3)记函数y =x 2-2x (x ≥m )的图象为G 1,将G 1沿x =m 翻折后得到的函数图象记为G 2.函数G的图象由G 1和G 2两部分组成,若其不变长度q 满足0≤q ≤3,求m 的取值范围.第14题图15. (2017长沙中考模拟卷三)若y 是关于x 的函数,H 是常数(H >0),若对于此函数图象上的任意两点(x 1,y 1),(x 2,y 2),都有|y 1-y 2|≤H ,则称该函数为有界函数,其中满足条件的所有常数H 的最小值,称为该函数的界高.如图所表示的函数的界高为4.(1)若函数y =k x(k >0)(-2≤x ≤-1)的界高为6,则k =________; (2)若函数y =kx +1(-2≤x ≤1)的界高为4,求k 的值;(3)已知函数y =x 2-2ax +3a (-2≤x ≤1)的界高为254,求a 的值.第15题图16. (2017麓山国际实验学校二模)概念:P、Q分别是两条线段a、b上任意一点,线段PQ 长度的最小值叫做线段a与线段b的距离.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.(1)根据上述概念,当m=2,n=2时,如图①,线段BC与线段OA的距离是______;当m =5,n=2时,如图②,线段BC与线段OA的距离(即线段AB长)为________;(2)如图③,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式;(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M.①求出点M随线段BC运动所围成的封闭图形的周长;②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为点H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.第16题图17. (2017长沙中考模拟卷四)在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|;若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图①中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q与垂直于x 轴的直线P 2Q 的交点).(1)已知点A(-12,0),点B 为y 轴上的一个动点, ①若点A 与点B 的“非常距离”为2,求满足条件的点B 的坐标;②直接写出点A 与点B 的“非常距离”的最小值;(2)已知C 是直线y =34x +3上的一个动点, ①如图②,点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标;②如图③,点E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.第17题图18.(2017长沙中考模拟卷七)在平面直角坐标系xOy中,图形W在坐标轴上的投影长度定义如下:设点P(x1,y1)、Q(x2,y2)是图形W上的任意两点.若|x1-x2|的最大值为m,则图形W在x轴上的投影长度l x=m;若|y1-y2|的最大值为n,则图形W在y轴上的投影长度l y=n.如图①,图形W在x轴上的投影长度l x=|3-1|=2;在y轴上的投影长度l y=|4-0|=4.(1)已知点A(3,3)、B(4,1).如图②,若图形W为△OAB,则l x=________,l y=________;(2)已知点C(3,0),点D在直线y=2x+6上,若图形W为△OCD,当l x=l y时,求点D的坐标;(3)若图形W为函数y=x2(a≤x≤b)的图象,其中0≤a<b.当该图形满足l x=l y≤1时,请求出a 的取值范围.第18题图21。

相关文档
最新文档