离散数学全套教学课件

合集下载

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)

离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
(3)至于p为0即“我期终考了年级不是前 10”时,无论q为1或为0,即无论"我老妈 奖励1000元"或不奖励,都不能说老妈的 话是假的,故善意的认为pq为1均为1
1.1 命题及联结词
定义1.5双条件:当p与q值相同时,pq为1,不同 为0。 称p当且仅当q
“普通老师赚了100万当且仅当他 中了100万的彩票”, 普通老师赚了100万 普通老师买彩票中了100万大奖
故pq为0
1.1 命题及联结词
定义1.4条件式当p是1 ,q是0时,pq为0,即 10为0,其他情况为1。 p称为前件,q称为后件
(1)当p为1即“我期终考了年级前10”
q为0即“我老妈没有奖励1000元” 这时老妈的话为假,即pq为0 (2)当p为1即“我期终考了年级前10” q为1即“我老妈奖励1000元” 这时妈妈的话就对了,即pq为1
由于所有内容(整数,实数,字符,汉字,图片,声 音,视频,网页,……)进入电脑后,全是01组成的字 符串,从而都可以用布尔运算即逻辑运算实现,命题逻 辑成为计算机的基础。
命题逻辑将数学由连续变到离散,由高数进入离散。
Google采用逻辑运算进行搜索:数字之美 吴军 杨圣洪 000100010001110000 两者对应位置与运算。 离散数学 100100000000100001
陈述句(6)的正确性,到2018年12月时能确定的,若届 时建成了则它是对的、为真命题,否为假命题。
1.1 命题及联结词
对错确定的陈述语句称为命题。如:
(7) x与y之和为100,其中x为整数,y为整数 (8)1加1等于10 (7)的对错不确定。当x为50、y为50时是对的,当x为 51、y为52时是错的。 (8)的对错是不确定的,为二进制时正确,当为八进制、 十进制时是错的,因此这两个陈述句不是命题。 (9)青枫峡的红叶真美呀! (10)动作快点! (11)你是杨老师吗? 这三个语句不是陈述语句,因此不是命题。

离散数学教程PPT课件

离散数学教程PPT课件
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
第23页/共292页
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。 p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
第15页/共292页
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
第28页/共292页
1.3 命题公式的等值式
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。

离散数学课件ppt课件

离散数学课件ppt课件
联结词可以嵌套使用,在嵌套使用时,规定如下优先顺序: ( ),┐,∧,∨,→, ,对于同一优先级的联结词,先出现 者先运算。
例1.7 令 P : 北京比天津人口多 Q:22 4 R : 乌鸦是白色的
求下列复合命题的真值:
1P Q P Q R 2Q R P R 3P R P R
解 P,Q,R的真值分别为1,1,0。容易算出 (1)、(2)、(3)的真值分别为1,1,0。
2.在自然语言中,“如果P,则Q”中的前件P与后件Q往 往具有某种内在联系。而在数理逻辑中,P与Q可以无任何内 在联系。
3.在数学或其它自然科学中,“如果P,则Q”往往表达 的是前件P为真,后件Q也为真的推理关系。但在数理逻辑中, 作为一种规定,当P为假时,无论Q是真是假,P→Q均为真。 也就是说,只有P为真Q为假这一种情况使得复合命题P→Q为 假。
PQ 的真值定义为 PQ为真当且仅当P, Q同真值 因此, P, Q一真一假时, P Q为假。
复合命题P Q的真值表: P
0 0 1 1
Q
P Q
0
1
1
0
0
0
1
1
例1.6 将下列命题符号化,并指出它们的真值:
3如 两 圆O1 , O2的面积相等,则它们的半径相等;反之亦然. 4当王小红心情愉快时,她就唱歌;反之当她唱歌时,
真值为真的命题称为真命题;真值为假的命题为假命题。
说明:
1. 命题必须是陈述性语句,而不能是疑问句、命令句、 感叹句等;
2. 命题语句或者为真或者为假,二者必取其一,即命 题的真值是唯一的
判断句子是否为命题的标准: (1)陈述句 (2)有唯一的真值
例1 判断下列句子是不是命题: (1) 4是素数。
第一部分 数理逻辑

离散数学(精选优秀)PPT

离散数学(精选优秀)PPT

二、命题的表示法
1、命题标识符:表示命题的符号称为命题标识符。在数理逻辑中,使 用大写字母,或带下标的大写字母,或用方括号括起的数字表示命题。
例:P: 今天下雨。 “今天下雨”是一个命题,P是命题标识符。
它形成于七十年代初期,是一门新兴的工具性学科。
离散数学的应用
◆关系型数据库的设计(关系代数) ◆表达式解析(树) ◆编译技术、程序设计语言(代数结构) ◆人工智能、自动推理、机器证明(数理逻辑) ◆网络路由算法(图论) ◆游戏中的人工智能算法(图论、树、博弈论) ◆专家系统(集合论、数理逻辑—知识和推理规则的计算机表达) ◆软件工程—团队开发—时间和分工的优化(图论—网络、划分) ◆(各种)算法的构造、正确性的证明和效率的评估(离散数学的
第一章 命题逻辑
目标语言:就是表达判断的一些语言的汇集。 目标语言和一些符号公式构成了数理逻辑的形式 符号体系。
1-1 命题及其表示法
一、命题
1、定义 能表达判断的陈述句,称作命题(Proposition)。 例:判断下列语句是否为命题: (陈1)述地句球:外述存说在一智件事慧情生的物句。子,句末用句号。 (祈2)使1+句1:=要10求。或者希望别人做什么事或者不做什么事时用的 (句3)子今,天句下末雨用。句号或感叹号。 (疑4)问你句今:年提暑出假问去题的旅句行子吗,?句(末疑用问问号句。) (感5)叹克句里:特带岛有人浓说厚感:情“的克句里子特,岛句末人用是感说叹谎号话。者”。 悖(:相悖反论。)悖论:自相矛盾的陈述。
各分支)
教材
左孝凌,李为鉴,刘永才编著.离散数学.上海: 上海科学技术文献出版社,1982 主要参考教材: 孙吉贵,杨凤杰,欧阳丹彤,李占山编著.离散数 学.高等教育出版社,2002

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

《离散数学讲义》课件

《离散数学讲义》课件
离散概率分布的定义
离散概率分布是描述随机事件在有限或可数无限的可 能结果集合中发生的概率的数学工具。
离散概率分布的种类
常见的离散概率分布包括二项分布、泊松分布、几何 分布等。
离散概率分布的应用
离散概率分布在统计学、计算机科学、物理学等领域 都有广泛的应用。
参数估计和假设检验
参数估计
参数估计是根据样本数据推断总体参数的过 程,包括点估计和区间估计两种方法。
假设检验
假设检验是用来判断一个假设是否成立的统计方法 ,包括参数检验和非参数检验两种类型。
参数估计和假设检验的应 用
在统计学中,参数估计和假设检验是常用的 数据分析方法,用于推断总体特征和比较不 同总体的差异。
方差分析和回归分析
方差分析
方差分析是一种用来比较不同组数据的平均值是否存在显著差异 的统计方法。
《离散数学讲义》ppt课件
目 录
• 离散数学简介 • 集合论 • 图论 • 离散概率论 • 逻辑学 • 离散统计学 • 应用案例分析
01
离散数学简介
离散数学的起源和定义
起源
离散数学起源于17世纪欧洲的数学研 究,最初是为了解决当时的一些实际 问题,如组合计数和图论问题。
定义
离散数学是研究离散对象(如集合、 图、树、逻辑等)的数学分支,它不 涉及连续的变量或函数。
联结词:如与(&&)、或(||)、非(!)等,用 于组合简单命题。
03
04
命题公式:由简单命题通过联结词组合而 成的复合命题。
命题逻辑的推理规则
05
06
肯定前件、否定后件、析取三段论、合取 三段论等推理规则。
谓词逻辑
个体词
表示具体事物的符号。

《离散数学教案》课件

《离散数学教案》课件

《离散数学教案》课件一、引言1.1 离散数学的概念离散数学是研究离散结构及其性质的数学分支。

离散数学与连续数学相对,主要研究对象是集合、图、逻辑等。

1.2 离散数学的应用计算机科学:图论在网络设计、算法分析中的应用,集合论在数据结构设计中的应用等。

数学逻辑:计算机程序设计中的逻辑判断,布尔代数在电路设计中的应用等。

二、集合论2.1 集合的基本概念集合的定义:由明确的元素构成的整体。

集合的表示法:列举法、描述法。

2.2 集合的运算并集、交集、补集的定义及运算性质。

集合的幂集。

三、逻辑与布尔代数3.1 命题逻辑命题、联结词、复合命题的真值表。

命题逻辑的推理规则。

3.2 谓词逻辑个体、谓词、量词。

谓词逻辑的推理规则。

3.3 布尔代数布尔代数的基本运算:与、或、非。

布尔表达式的化简。

四、图论4.1 图的基本概念图的定义:节点和边的集合。

无向图、有向图、多重图、加权图等。

4.2 图的运算图的遍历:深度优先搜索、广度优先搜索。

图的连通性:强连通、弱连通。

4.3 特殊图二分图、树、路径、圈。

网络流、最短路径问题。

五、组合数学5.1 排列组合排列、组合的定义及计算公式。

分布计数原理。

5.2 计数原理鸽巢原理、包含-排除原理。

二项式定理、多项式定理。

5.3 组合设计区块设计、拉丁方、Steiner系统等。

组合设计的性质和构造方法。

《离散数学教案》课件六、数理逻辑与计算逻辑6.1 数理逻辑的基本概念命题、联结词、逻辑代数。

真值表和逻辑等价式。

6.2 计算逻辑形式语言和自动机。

编译原理中的逻辑分析。

七、组合设计与编码理论7.1 组合设计的基本概念区块设计、拉丁方、Steiner系统。

组合设计的性质和构造方法。

7.2 编码理论线性码、循环码、汉明码。

编码的纠错能力和应用。

八、图的同态与同构8.1 图的同态图的同态的定义和性质。

同态定理和同态的应用。

8.2 图的同构图的同构的定义和性质。

同构定理和同构的应用。

九、树与森林9.1 树的基本概念树的定义和性质。

离散数学课件第一章

离散数学课件第一章

图的连通性
04
CHAPTER
逻辑基础
命题逻辑中的基本概念包括命题、真值和逻辑运算,通过这些基本概念可以表达和推理复杂的命题关系。
命题逻辑在计算机科学、人工智能、自动化等领域有广泛应用,是形式化方法的重要基础。
命题逻辑是研究命题之间关系的逻辑分支,主要涉及命题的否定、合取、析取、蕴含等基本运算。
命题逻辑
详细描述
集合的运算包括并集、交集、差集等。并集是指两个或多个集合合并为一个新的集合,包含所有元素;交集是指两个或多个集合中共有的元素组成的集合;差集是指从一个集合中去掉另一个集合中的元素后剩余的元素组成的集合。这些运算在离散数学中有着广泛的应用。
总结词
集合的运算
集合的基数是指集合中元素的个数,通常用大写字母表示。
鸽巢原理
THANKS
感谢您的观看。
集合论
图论是研究图(由节点和边构成的结构)的数学分支,它广泛应用于计算机科学和工程学科。
图论
逻辑是离散数学的另一个重要分支,它研究推理的形式和规则,是计算机科学和人工智能的基础。
逻辑
组合数学是研究计数、排列和组合问题的数学分支,它在计算机科学和统计学中有重要的应用。
组合数学
离散数学的研究内容
02
CHAPTER
离散数学课件第一章
目录
绪论 集合论基础 图论基础 逻辑基础 组合数学基础
01
CHAPTER
绪论
离散数学是研究离散对象(如集合、图、树等)的数学分支,它不涉及连续的量或函数。
离散数学的定义
离散数学的起源
离散数学的特点
离散数学的起源可以追溯到古代数学,如欧几里得几何和数论。
离散数学强调结构、关系和组合,而不是连续性和微积分。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是自然语言中的“或”、“或者”中的可兼或的逻辑抽象。
p:开关坏了。 q:灯泡坏了。
p∨q:开关坏了或灯泡坏了。
p
q
p q
F
F
F
F
T
T
T
F
T
T
T
T
1.1 命题和命题联结词
例:1.张晓婧爱唱歌或爱听音乐。 2.张晓婧是内蒙人或是陕西人。 3.张晓婧只能挑选202或203房间。
注意:当排斥或两边的情况实际根本不可能同时发生的时候,排斥或也 可抽象为∨。但为了方便起见一般不这样抽象。
1.1 命题和命题联结词
2. 命题的真值:判断结果
真 — 真命题 假 — 假命题
注意:此处不纠缠具体命题的真假问题,只是将其作为数学概念来处理。
3.命题和真值的符号化 命题 : 一般用p, q, r,或pi , qi ,表示。
真值:真用T或1表示,假用F或0表示。
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 例 q2:): 22p6:6海 9洋 9。 。的面积比陆地的面积大。 r3:)火火星星上上有有生生命命。。 s4:)三三角角形形的的内内角角和和等等于 于118800。 。 55))你你喜 喜欢 欢数学吗吗?? 66))我我们 们要 要努 努力力学学习习。。 77))啊啊, ,我 我的 的天天哪哪!! 88))我我正 正在 在说 说谎 谎。。
甲、已、丙3人根据口音对王教授是哪人进行了判断: 甲说:王教授不是苏州人,是上海人 已说:王教授不是上海人,是苏州人 丙说:王教授既不是上海人,也不是杭州人
结果3人中有一人全对,一人对一半,一人全错。问王教授是哪人?
联结词的完备集
定义.称F:{0,1}n {0,1}为n元真值函数.
{0,1}n中的元素为由0,1组成的长为n的符号串
1.3 命题公式的等值式
例:(p q)与p q p (q r),( p q) r,( p q) r
基本等值式(A,B,C为任意命题公式) 交换律:A B A B, A B B A
结合律:A B C A B C, A B C A B C 分配律:A B C A B A C
1.3 命题公式的等值式
蕴含等值式:A B A B, 假言易位:A B B A
等价等值式:A B A B B A A B A B B A A B A B A B
等价否定等值式:A B A B 归谬论:(A B)(A B) A 因A,B,C可以代入任意的命题公式,故以上等值式称为等值式模式。 由已知的等值式推演出另外一些等值式的过程为等值演算。
4、命题联结词
1).否定词 用命题p和“非”、“不”、“没有”等否定词组成的复合命题, 称作p的否命题,记作p, 读作“非p”。
是自然语言中的“非”、“不”和“没有”等的逻辑抽象。
如:p : 4是质数。
p:4不是质数。
p
p
T
F
F
T
1.1 命题和命题联结词
2).合取词
p、q是命题,由p、q和 组成的复合命题,记作p q,
1.1 命题和命题联结词
注意: (1)给定句子是否是命题 ,如:我和他是同学。 (2)要善于识别自然语言 中的联结词,如:狗急 跳墙。
例1.如果你和他不都是傻子 ,那么你们俩都不会去 自讨没趣。 2.如果你走路时看书,那 么你一定会成为近视眼 。 3.他虽有理论知识但无实 践经验。 4.选小陈或小周一人为代 表。 5.如果明天天气好,我们 去郊游,否则就不去。
第一部分 数理逻辑
❖ 第一章 命题逻辑 ❖ 第二章 一阶谓词逻辑
第一章 命题逻辑
❖ 1.1 命题和命题联结词 ❖ 1.2 命题公式及其赋值 ❖ 1.3 等值演算与联结词完备集 ❖ 1.4 析取范式与合取范式 ❖ 1.5 推理的形式结构 ❖ 1.6 自然推理系统P
1.1 命题和命题联结词
1. 命题:能判断真假的陈述句。
F
F
T
T
T
父亲算失信呢?
1.1 命题和命题联结词
注意:①“只要p,就q‘,’因为p,所以q”,“p仅当q”, ‘只有q,才p“,”除非q才p“,”除非q,否则非p“都可 抽象为p→q。 ②p,q可以没有任何内在联系。
例:1.如果3+3=6,那么雪是白的。 2.除非我能工作完成了,我才去看电影。 3.只要天下雨,我就回家。 4.我回家仅当天下雨。
1.2 命题公式及其赋值
定理1.若A和B为重言式,则A B, A B也是重言式。
1.3 命题公式的等值式
定义1.设A和B是两个命题公式,若A B为重言式, 则称公式A, B是等值的公式,记作A B。
例1.证明(p q) (q p); p p p.
注意: 和 的区别 是公式间的关系符号,如:p q 是命题联结词.p q
1.1 命题和命题联结词
原子命题:不能被分解为更简单的陈述句 复合命题:原子命题通过联结词联结而成
例:2是有理数是不对的;2是偶素数;2或4是素数;如果2是素数,则3也 是素数;2是素数当且仅当3也是素数。
p:2是有理数,q:2是偶数,r:2是素数,s:3是素数,t:4是素数。
1.1 命题和命题联结词
1.3 命题公式的等值式
置换规则:设( A)是含公式A的命题公式,(B)是用公式B置换了( A)
中所有的A后得到的命题公式。若B A,则(B) (A)
例2.等值等价式p q p q q p
等值演算的应用: 1.验证等值式 ( p q) ( p r) p (q r) 2.判定公式的类型 ( p q) p q,( p ( p q)) r, p ((( p q) p) q) 3.解决工作生活中的判断问题
1.1 命题和命题联结词
4).蕴涵词 由命题p、q和 组成的复合命题记作p q,读作“如果p,则q” 或“p条件q”。称为前件(前提),q称作后件(结论)。
是自然语言中的“如果,则”,“若,则”
的逻辑抽象。
有位父亲对儿子说:“如果我 p
q
p q
F
F
T
去书店,就一定给你买电脑 F
T
T
报“。问:在什么情况下, T
包含两层意思:
自然语言中的陈述句
(1)必须是陈述句。等式
不等式
(2)能够确定(分辨)其真值。
注意:能否分辨真假与是否知道真假是不同的。 如:张校长的头发有一万根。
1.1 命题和命题联结词
例:1)海洋的面积比陆地的面积大。 2)2 6 9。 3)火星上有生命。 4)三角形的内角和等于180。 5)你喜欢数学吗? 6)我们要努力学习。 7)啊,我的天哪! 8)我正在说谎。
ABC A BAC
1.3 命题公式的等值式
同一律:A 0 A, A 1 A 互补律:A A 1,A A 0 重补律:A A 等幂律:A A A, A A A, A A 1,
A A A, A A A, A A 1. 零一律:A 1 1, A 0 0
吸收律:A (A B) A, A A B A 德摩根律: A B A B, A B A B
,
p2
,,
p
的命题公式,
n
给p1 , p2 ,, pn一组确定的取值,称为对A的一组赋值或解释。 若指定的一组值使A的真值为1,则称其为A的成真赋值,否则
称为成假赋值。
1.2 命题公式及其赋值
定义4.将公式A在其全部赋值下的真值情况列成表, 称为A的真值表。
真值表的构造步骤: (1)若公式F共有( n n 1)个变元,则真值表第一行写出
n个变元,公式F写在第n 1列。 (2)写出n个变元的所有可能取值(2n 种),按从低到高的
顺序写出公式的各层次。 (3)在不同赋值下求出各层次的真值及F的真值。
1.2 命题公式及其赋值
例(1)p q r (2)r q p q p
定义5.公式A, 1)若A在所有赋值下的取值均为真,则称A为永真式; 2)若A在所有赋值下的取值均为假,则称A为永假式; 3)若至少有一组赋值使A的值为真,则称A为可满足式。
推论:以下联结词集都是完备集
S1={,,, }
定义.设p, q为两个命题,复合命题
S2 {, , , , } “p与(或)q的否定式”称作p,q的
A=B C或A=B C或A=B C,则公式A是n+1层公式, n max( i, j)。
例(1)p q r (2)r q p q p
1.2 命题公式及其赋值
( p q) r
p:2是素数,q:3是偶数,r:2是有理数 p:2是素数,q:3是偶数,r:2是无理数
定义3.设A为含有命题变元p1
1.1 命题和命题联结词
5、语句形式化
形式化的步骤: (1)确定原子命题(简单 命题); (2)选择命题联结词。
例:2是有理数是不对的;2是偶素数;2或4是素数;如果2是素数,则3也 是素数;2是素数当且仅当3也是素数。 p:2是有理数,q:2是偶数,r:2是素数,s:3是素数,t:4是素数。
p不对;q且r;r或t;如果r,则s;r当且仅当s。
p→q的逻辑关系为q是p的必要条件或p是q的充分条件。
1.1 命题和命题联结词
5).等价词 由命题p、q和 组成的复合命题记作p q,读作“p当且仅当q”。 是自然语言中的“充要条件”,“当且仅当”的逻辑抽象。
p q的逻辑关系为p与q互为充要条件
p
q
pq
例:1.3是有理数当且仅当加拿大位于亚洲。
n个命题变元可以形成22n个不同的真值函数 对于每个真值函数,都可以找到许多与之等值的命题公式, 而每个命题公式对应唯一的与之等值的真值函数。
定义.设S是一个联结词集合,如果任何n(n≥1)元真值 函数都可以由仅含S中的联结词构成的公式表示,则 称S是联结词完备集。
联结词的完备集
相关文档
最新文档