鲁教版初三(上)数学:正多边形与圆,带答案

合集下载

九年级数学同步辅导与测试——正多边形和圆

九年级数学同步辅导与测试——正多边形和圆

九年级数学同步辅导与测试——正多边形和圆重点、难点:1. 正多边形的定义:各边相等、各内角也相等的多边形叫正多边形。

2. 正多边形与圆的关系(1)把圆分成n (n ≥3)等份,有如下结论:其一:依次连结各分点所得的多边形是这个圆的内接正n 边形,这圆是正n 边形的外接圆。

其二:经过各分点作圆的切线以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形,这圆是正n 边形的内切圆。

(2)任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆。

3. 有关的概念(1)正多边形的中心 (2)正多边形的半径 (3)正多边形的边心距 (4)正多边形的中心角4. 正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形。

这里我们设:正n 边形的中心角为α,半径为R ,边心距为r ,边长为a n ,周长为P n ,面积为S n ,则有();();();();();();136022*********4561212222α=︒=⋅︒=⋅︒=⋅=⋅=⋅⋅=⋅na R nr R nR r a P n a S n r a r P n n n n n n n sin cos()正多边形的每一个内角,内角和721802180=-⋅︒=-⋅︒()().n n n5. 每一个正多边形都是轴对称图形,当边数为偶数时,它还是中心对称图形。

6. 重点和难点:(1)重点是正多边形的计算问题,计算通常是通过解直角三角形来解决的,所以在解这类题时,要尽量创造直角三角形,把所求的问题放到直角三角形中去,尤其是含30°、60°角的直角三角形和等腰直角三角形更重要。

(2)难点是灵活运用正多边形的知识和概念解题。

〖知识总结〗正多边形的定义要理解后记牢,这里各边都相等,各角都相等,缺一不可,边数一样多的正多边形是相似多边形。

对于任意三角形来讲都有外接圆和内切圆,但注意只有正三角形的外接圆和内切圆是同心圆。

有关正多边形的计算实质是把问题转化为解直角三角形的计算,所以这里要用到三角函数及勾股定理等有关知识。

专题11 正多边形和圆(解析版) -2021-2022学年九年级数学之专攻圆各种类型题的解法

专题11  正多边形和圆(解析版) -2021-2022学年九年级数学之专攻圆各种类型题的解法

专题11 正多边形和圆概念规律重在理解一、正多边形和圆1.正多边形的定义:各边相等,各角也相等的多边形叫做正多边形。

2.正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。

二、正多边形的对称性1.正多边形的轴对称性。

正多边形都是轴对称图形。

一个正n边形共有n条对称轴,每条对称轴都通过正n 边形的中心。

2.正多边形的中心对称性。

边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。

3.正多边形的画法。

先用量角器或尺规等分圆,再做正多边形。

三、正多边形的性质任何正多边形都有一个外接圆和一个内切圆.(1)正多边形的外接圆和内切圆的公共圆心,叫作正多边形的中心.(2)外接圆的半径叫作正多边形的半径.(3)内切圆的半径叫作正多边形的边心距.(4)正多边形每一条边所对的圆心角,叫做正多边形的中心角.正多边形的每个中心角都等于360n四、正多边形的有关计算(1)正n边形的中心角怎么计算?(2)正n边形的边长a,半径R,边心距r之间有什么关系?(3)边长a,边心距r的正n边形的面积如何计算?特别重要:圆内接正多边形的辅助线(1)连半径,得中心角;(2)作边心距,构造直角三角形.典例解析掌握方法【例题1】(2021贵州贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°【答案】A【解析】先根据五边形的内角和求∠E=∠D=108°,由切线的性质得:∠OAE=∠OCD=90°,最后利用五边形的内角和相减可得结论.正五边形的内角=(5﹣2)×180°÷5=108°,∴∠E=∠D=108°,∵AE、CD分别与⊙O相切于A、C两点,∴∠OAE=∠OCD=90°,∴∠AOC=540°﹣90°﹣90°﹣108°﹣108°=144°.FA GB HC ID JE是五边形ABCDE的外接圆的切线,则【例题2】(2021南京)如图,,,,,∠+∠+∠+∠+∠=______︒.BAF CBG DCH EDI AEJ【答案】180︒【解析】由切线性质可知切线垂直于半径,所以要求的5个角的和等于5个直角减去五边形的内角和的一半.如图:过圆心连接五边形ABCDE的各顶点,∠+∠+∠+∠+∠则OAB OBC OCD ODE OEA=∠+∠+∠+∠+∠OBA OCB ODC OED OAE1=-⨯︒=︒(52)1802702∴BAF CBG DCH EDI AEJ∠+∠+∠+∠+∠=⨯︒-∠+∠+∠+∠+∠590()OAB OBC OCD ODE OEA=︒-︒450270=︒.180【例题3】如图,正六边形ABCDEF内接于⊙O,若直线PA与⊙O相切于点A,则∠PAB=()A.30°B.35°C.45°D.60°【答案】A【解析】连接OB,AD,BD,由多边形是正六边形可求出∠AOB的度数,再根据圆周角定理即可求出∠ADB 的度数,利用弦切角定理∠PAB.连接OB,AD,BD,∵多边形ABCDEF是正多边形,∴AD为外接圆的直径,∠AOB==60°,∴∠ADB=∠AOB=×60°=30°.∵直线PA与⊙O相切于点A,∴∠PAB=∠ADB=30°,故选A.23,点P为六边形内任一点.则点P到各边距离之和是【例题4】如图,正六边形ABCDEF的边长为多少?【答案】18【解析】过P作AB的垂线,分别交AB、DE于H、K,连接BD,作CG⊥BD于G.∵六边形ABCDEF是正六边形∴AB∥DE,AF∥CD,BC∥EF,∴P到AF与CD的距离之和,及P到EF、BC的距离之和均为HK的长.∵BC=CD,∠BCD=∠ABC=∠CDE=120°,∴∠CBD=∠BDC=30°,BD∥HK,且BD=HK∵CG⊥BD,∴BD=2BG=2×BC×cos∠CBD=6.∴点P到各边距离之和=3BD=3×6=18.各种题型强化训练一、选择题1.(2021江苏连云港)如图,正方形ABCD内接于⊙O,线段MN在对角线BD上运动,MN=1,则△AMN 周长的最小值是()A.3 B.4 C.5 D.6【答案】B【解析】由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1,连接AM、CM,则点M、N为所求点,进而求解.解:⊙O的面积为2π,则圆的半径为=AC,由正方形的性质,知点C是点A关于BD的对称点,过点C作CA′∥BD,且使CA′=1,连接AA′交BD于点N,取NM=1、CM、N为所求点,理由:∵A′C∥MN,且A′C=MN,则A′N=CM=AM,故△AMN的周长=AM+AN+MN=AA′+6为最小,则A′A==2,则△AMN的周长的最小值为3+1=8.2.一元钱硬币的直径约为24mm,则用它能完全覆盖住的正六边形的边长最大不能超过()A.12mm B.12mm C.6mm D.6mm【答案】A【解析】理解清楚题意,此题实际考查的是一个直径为24mm的圆内接正六边形的边长.已知圆内接半径r为12mm,则OB=12,∴BD=OB•sin30°=12×=6,则BC=2×6=12,可知边长为12mm,就是完全覆盖住的正六边形的边长最大.3.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2, B.2,π C., D.2,【答案】D【解析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.连接OB,∵OB=4, ∴BM=2, ∴OM=2,==π,故选D .4.如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )A .34πB .1234πC .2438πD .34π【答案】A【解析】正六边形的面积加上六个小半圆的面积,再减去中间大圆的面积即可得到结果. 正六边形的面积为:142362432⨯⨯=六个小半圆的面积为:22312ππ⋅⨯=,中间大圆的面积为:2416ππ⋅=, 所以阴影部分的面积为:24312162434πππ+-=-. 二、填空题1.如图是由两个长方形组成的工件平面图(单位:mm ),直线l 是它的对称轴,能完全覆盖这个平面图形的圆面的最小半径是 mm .【答案】50.【解析】根据已知条件得到CM=30,AN=40,根据勾股定理列方程得到OM=40,由勾股定理得到结论.如图,设圆心为O,连接AO,CO∵直线l是它的对称轴,∴CM=30,AN=40,∵CM2+OM2=AN2+ON2,∴302+OM2=402+(70﹣OM)2,解得:OM=40,∴OC==50,∴能完全覆盖这个平面图形的圆面的最小半径是50mm.2.(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为.【答案】10.【解析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.连接OA,OB,∵A、B、C、D为一个正多边形的顶点,O为正多边形的中心,∴点A、B、C、D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB=2∠ADB=36°,∴这个正多边形的边数103.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.【答案】2.【解析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.连接BF,BE,过点A作AT⊥BF于T∵ABCDEF是正六边形,∴CB∥EF,AB=AF,∠BAF=120°,∴S△PEF=S△BEF,∵AT⊥BE,AB=AF,∴BT=FT,∠BAT=∠F AT=60°,∴BT=FT=AB•sin60°,∴BF=2BT=2,∵∠AFE=120°,∠AFB=∠ABF=30°,∴∠BFE=90°,∴S△PEF=S△BEF•EF•BF224.(2020•成都)如图,六边形ABCDEF是正六边形,曲线FA1B1C1D1E1F1…叫做“正六边形的渐开线”,,,,,,,…的圆心依次按A,B,C,D,E,F循环,且每段弧所对的圆心角均为正六边形的一个外角.当AB=1时,曲线F A1B1C1D1E1F1的长度是.【答案】7π.【解析】利用弧长公式计算即可解决问题.的长,的长,的长,的长,的长,的长,∴曲线F A1B1C1D1E1F1的长度7π,5.(2020•贵阳)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.【答案】120.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解析】连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°6.如图,在正六边形ABCDEF中,分别以C,F为圆心,以边长为半径作弧,图中阴影部分的面积为24π,则正六边形的边长为_____.【答案】6【解析】根据多边形的内角和公式求出扇形的圆心角,然后按扇形面积公式列方程求解计算即可.∵正六边形的内角是120度,阴影部分的面积为24π,设正六边形的边长为r,∴2120224360rππ⨯⨯=,2224,3rππ∴=236,r∴=解得r=6.(负根舍去)则正六边形的边长为6.故答案为:6.7.(2020•连云港)如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2、B3,则直线l与A1A2的夹角α=°.【答案】48.【分析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,由正六边形的性质得出∠A1A2A3=∠A2A3A4=120°,得出∠CA2A3=∠A2A3C=60°,则∠C=60°,由正五边形的性质得出∠B2B3B4=108°,由平行线的性质得出∠EDA4=∠B2B3B4=108°,则∠EDC=72°,再由三角形内角和定理即可得出答案.【解析】延长A1A2交A4A3的延长线于C,设l交A1A2于E、交A4A3于D,如图所示:∵六边形A1A2A3A4A5A6是正六边形,六边形的内角和=(6﹣2)×180°=720°,∴∠A1A2A3=∠A2A3A4120°,∴∠CA2A3=∠A2A3C=180°﹣120°=60°,∴∠C=180°﹣60°﹣60°=60°,∵五边形B1B2B3B4B5是正五边形,五边形的内角和=(5﹣2)×180°=540°,∴∠B2B3B4108°,∵A3A4∥B3B4,∴∠EDA4=∠B2B3B4=108°,∴∠EDC=180°﹣108°=72°,∴α=∠CED=180°﹣∠C﹣∠EDC=180°﹣60°﹣72°=48°。

部编数学九年级上册专题13正多边形与圆、弧长和面积公式(热考题型)解析版含答案

部编数学九年级上册专题13正多边形与圆、弧长和面积公式(热考题型)解析版含答案

专题13 正多边形与圆、弧长和面积公式【思维导图】◎考点题型1 正多边形和圆正多边形概念:各条边相等,并且各个内角也都相等的多边形叫做正多边形.正多边形的相关概念:➢正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.➢正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.➢正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.➢正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.半径、边心距,边长之间的关系:画圆内接正多边形方法(仅保留作图痕迹):1)量角器(作法操作复杂,但作图较准确)2)量角器+圆规(作法操作简单,但作图受取值影响误差较大)3)圆规+直尺(适合做特殊正多边形,例如正四边形、正八边形、正十二边形…..)例.(2022·江苏·九年级)中心角为45°的正n 边形的边数n 等于( )A .12B .10C .8D .6变式1.(2022·山东青岛·中考真题)如图,正六边形ABCDEF 内接于O e ,点M 在»AB 上,则CME Ð的度数为( )A .30°B .36°C .45°D .60°【答案】D 【分析】先求出正六边形的中心角,再利用圆周角定理求解即可.【详解】解:连接OC 、OD 、OE ,如图所示:变式2.(2022·北京四中九年级阶段练习)如图,,AB BC 和AC 分别为O e 内接正方形,正六边形和正n 边形的一边,则n 是( ).A .六B .八C .十D .十二【点睛】本题主要考查了正多边形与圆,熟练掌握正多边形边数与中心角的关系是解题的关键.变式3.(2022·河南信阳·九年级期末)若正六边形的边长为4,则它的外接圆的半径为( )A.B.4C.D.2【点睛】本题考查了正多边形与圆、等边三角形的判定与性质,正确求出正六边形的中心角的度数是解题关键.◎考点题型2 弧长设的半径为,圆心角所对弧长为,弧长公式:(弧长的长度和圆心角大小和半径的取值有关)例.(2022·内蒙古鄂尔多斯·中考真题)实验学校的花坛形状如图所示,其中,等圆⊙O1与⊙O2的半径为3米,且⊙O1经过⊙O2的圆心O2.已知实线部分为此花坛的周长,则花坛的周长为( )A .4π米B .6π米C .8π米D .12π米变式1.(2022·河南三门峡·九年级期末)如图,在扇形OAB 中,100,9AOB OA Ð=°=,将扇形OAB 沿着过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为(结果保留p )( )A .pB .2pC .3pD .4p【答案】B根据折叠的性质知,OB =DB .又∵OD =OB ,∴OD =OB =DB ,即△ODB 是等边三角形,∴∠DOB =60°.∵∠AOB =100°,∴∠AOD =∠AOB -∠DOB =40°,变式2.(2021·浙江金华·九年级阶段练习)如图,在4×4的正方形网格中,若将△ABC 绕着点A 逆时针旋转得到△AB C ¢¢,则 ¼BB¢ 的长为( )A .pB .2pC .7D .6【答案】A 【分析】利用格点可知∠BAB ′=45°,再利用弧长公式,可求出弧¼BB¢的长.变式3.(2022·四川内江·中考真题)如图,正六边形ABCDEF 内接于⊙O ,半径为6,则这个正六边形的边心距OM 和»BC的长分别为( )A .4,3pB .πC .43pD .2πQ 六边形ABCDEF 为正六边形,360606BOC °\Ð==°,故选:D.【点睛】本题考查的是正六边形的性质、等边三角形的判定与性质、勾股定理,熟练掌握正六边形的性质,由勾股定理求出OM是解决问题的关键.◎考点题型3 扇形面积扇形面积公式:例.(2022·浙江湖州·九年级期末)如图,已知扇形OAB的半径OA=6,点P为弧AB上一动点,过点P作PC⊥OA,PD⊥OB,连接CD,当CD取得最大值时,扇形OAB的面积为()A.9p B.12p C.13.5p D.15p变式1.(2021·湖北恩施·一模)如图,在边长为2的菱形ABCD中,以顶点A为圆心,AD为半径画弧,若顶点C恰好在BD弧上,则图中阴影部分的面积等于( )A .43p -B .23p -C .43p -D .23p变式2.(2022·内蒙古北方重工业集团有限公司第一中学三模)如图,点A ,B ,C 是O e 上的点,连接,,AB AC BC ,且15ACB Ð=°,过点O 作OD AB ∥交O e 于点D .连接,AD BD ,已知O e 半径为2,则图中阴影面积为( )A .2pB .3pC .4pD .23p变式3.(2022·广东河源·二模)如图,已知平行四边形ABCD ,以B 为圆心,AB 为半径作»AE 交BC 于E ,然后以C 为圆心,CE 为半径作»EF 交CD 于F ,若5AD =,3FD =,60B Ð=°,则阴影部分的面积为( )A .4324pB .3pC .596pD .12p【答案】B【分析】根据平行四边形的性质和题意可设AB =CD =BE =x ,CE =CF =x -3,则BE +CE =BC =AD =5,求出x 的值,再根据扇形面积公式求解即可.◎考点题型4求圆心角例.(2022·黑龙江牡丹江·模拟预测)圆锥的底面圆半径是1,母线长是3,它的侧面展开图的圆心角是( )A .90°B .100°C .120°D .150°变式1.(2021·山东泰安·期中)将一个圆分割成三个扇形,它们的面积之比为2:3:4,则这三个扇形的圆心角的度数为( )A .80120160°°°、、B .60120180°°°、、C .50100150°°°、、D .306090°°°、、【答案】A 【分析】根据一个圆分割成三个扇形,它们的面积之比为2:3:4,可得这三个扇形的圆心角的度数之比为2:3:4,可设这三个扇形的圆心角的度数分别为2,3,4x x x ,从而得到234360x x x ++=°,即可求解.【详解】解:∵一个圆分割成三个扇形,它们的面积之比为2:3:4,∴这三个扇形的圆心角的度数之比为2:3:4,设这三个扇形的圆心角的度数分别为2,3,4x x x ,根据题意得:234360x x x ++=°,解得:40x =°,∴这三个扇形的圆心角的度数分别为80,120,160°°°.故选:A .【点睛】本题主要考查了求扇形的圆心角,根据题意得到这三个扇形的圆心角的度数之比为2:3:4是解题的关键.变式2.(2021·福建师范大学附属中学初中部九年级期中)已知扇形半径是9cm ,弧长为4πcm ,则扇形的圆心角为( )A .20°B .40°C .60°D .80°变式3.(2021·全国·九年级专题练习)如图,点,,A B C 在半径为6的O e 上,劣弧»AB 的长为2p ,则ACB Ð的大小是( )A .20oB .30oC .45oD .60o【答案】B 【分析】连接,OA OB ,利用同弧圆心角与圆周角的关系,需求∠AOB 即可,利用AB 弧长与弧长公式即可例.(2021·广东·江东镇初级中学一模)一个钟表的时针长10厘米,在中午12时到下午3时,时针的针尖划过的弧长是( )厘米.A.2.5p B.5p C.25p D.50p变式1.(2022·山西·大同市云州区初级示范中学校二模)如图,菱形ABCD的边长为3,60Ð=°,将BAD菱形ABCD 绕点A 逆时针旋转,使得点B 与点D 重合,点D 和点C 的对应点分别为点E ,F ,则点C 的运动路径弧CF 的长为( )A B .2p C .D .4p Q 菱形ABCD 的边长为3,//AD AB CD\=120ADC \Ð=°60ADO \Ð=°变式2.(2022·河北石家庄·九年级期末)如图,在扇形纸片AOB 中,12OA =,30AOB Ð=°,OB 在桌面内的直线l 上,现将此扇形沿l 按顺时针方向旋转(旋转过程中无滑动),当OA 落在l 上时,停止旋转.则点O 所经过的路线长为( )A .12pB .13pC .14pD .105p +-变式3.(2022·上海·八年级专题练习)如图,在ABC D 中,90ACB Ð=°,30ABC Ð=°,1AC =.将ABC D 绕直角顶点C 逆时针旋转60°得△A B C ¢¢;则点B 转过的路径长为( )A .3pB .23pCD .p◎考点题型6 求扇形扫过的面积例.(2022·内蒙古包头·模拟预测)在Rt △ABC 中,∠C =90°,∠A =30°,BC =1,将△ABC 绕点B 逆时针旋转120°至A BC ¢¢△的位置,则边BA 扫过的面积是( )A .3pB .23pC .43pD .83p变式1.(2022·四川·一模)如图,已知»AB 所在圆的半径为4,弦AB 长为C 是»AB 上靠近点B 的四等分点,将»AB 绕点A 逆时针旋转120°后得到¼AB ¢,则在该旋转过程中,线段CB 扫过的面积是( )A.83pB.163pC.πD.323p变式2.(2021·广西柳州·中考真题)如图所示,点A,B,C对应的刻度分别为1,3,5,将线段CA绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点A¢,则此时线段CA扫过的图形的面积为()A .B .6C .43pD .83p变式3.(2021·全国·九年级专题练习)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,将△ABC 绕点A 逆时针方向旋转40°得到△ADE ,点B 经过的路径为»BD,则图中阴影部分的面积为( )A .143π-6B .259πC .338π-3D π【答案】B【分析】对图形进行分析,可得所求阴影面积等于扇形DAB 的面积,从而计算扇形面积即可.【详解】ADE ABCDAB S S S S =+-V V 阴影扇形ADE ABC S S =V V Q ,DAB S S \=阴影扇形,例.(2022·河北唐山·二模)如图,△ABC 内接于⊙O ,若45A Ð=°,⊙O 的半径r =4,则阴影部分的面积为( )A .4pB .2pC .48p -D .416p -变式1.(2022·江苏连云港·中考真题)如图,有一个半径为2的圆形时钟,其中每个刻度间的弧长均相等,过9点和11点的位置作一条线段,则钟面中阴影部分的面积为( )A .23pB .23pC .43p -D .43p∵∠AOB=2×360 12°变式2.(2022·云南·双柏县教师进修学校二模)如图,点A,B,C在⊙O上,若∠BAC=45°,BC=()A.π-8B.16π-8C.4π-8D.16π-4变式3.(2021·山东临沂·模拟预测)如图,点A 、B 、C 在O e 上,若45BAC Ð=°,2OC =,则图中阴影部分的面积是( )A .2p -B .4p -C .213p -D .223p -◎考点题型8 求不规则图形的面积例.(2022·贵州铜仁·中考真题)如图,在边长为6的正方形ABCD 中,以BC 为直径画半圆,则阴影部分的面积是( )A.9B.6C.3D.12【点睛】本题主要考查了求不规则图形的面积,正方形的性质,等腰直角三角形的性质,圆的性质,熟知相关知识是解题的关键.变式1.(2022·湖北荆州·中考真题)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A 4pB .pCD 2p变式2.(2022·山西·中考真题)如图,扇形纸片AOB 的半径为3,沿AB 折叠扇形纸片,点O 恰好落在»AB 上的点C 处,图中阴影部分的面积为( )A .3π-B .3πC .2π-D .6π【答案】B 【分析】根据折叠,ACB AOB ≌△△,进一步得到四边形OACB 是菱形;进一步由3OC OB BC ===得到OBC V 是等边三角形;最后阴影部分面积=扇形AOB 面积-菱形的面积,即可【详解】依题意:ACB AOB ≌△△,3AO BO ==∵3OC OB ==∴3OC OB BC ===变式3.(2022·山东省实验初级中学模拟预测)如图,正方形ABCD 的边长为4,以BC 为直径的半圆O 交对角线BD 于点E .则图中阴影部分的面积为( )A .8p-B .4p +C .6p -D .3p+Q 四边形ABCD 为正方形,且边长为AB BC CD AD \===◎考点题型9 求圆锥的侧面积母线的概念:连接圆锥顶点和底面圆周任意一点的线段。

2020年九年级数学上册专题24.3正多边形和圆(讲练)【含解析】

2020年九年级数学上册专题24.3正多边形和圆(讲练)【含解析】

2020年九年级数学上册专题24.3正多边形和圆(讲练)一、知识点1.正多边形与圆(1)正多边形的有关概念:边长(a)、中心(O)、中心角(∠AOB)、半径(R))、边心距(r),如图所示①.(2)特殊正多边形中各中心角、长度比:中心角=120° 中心角=90° 中心角=60°,△BOC 为等边△a:r:R=2:1:2 a:r:R=2::2 a:r:R=2:2二、标准例题:例1:如图,正六边形ABCDEF 内接于⊙O ,连接BD .则∠CBD 的度数是()A .30°B .45°C .60°D .90°【答案】A【解析】∵在正六边形ABCDEF 中,∠BCD ==120°,BC =CD,(62)1806-⨯∴∠CBD =(180°﹣120°)=30°,12故选:A .总结:本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.例2:如图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形翻折起来后,就能形成一个圆形桌面(可以近似看作正方形的外接圆),正方形桌面与翻折成圆形桌面的面积之比最接近( )A .B .C .D .45342312【答案】C【解析】连接AC ,设正方形的边长为a ,∵四边形ABCD 是正方形,∴∠B=90°,∴AC 为圆的直径,a ,,223π=≈故选C.总结:本题考查的是正多边形和圆,掌握圆周角定理、正方形的性质是解题的关键.例3:如图,正六边形ABCDEF 内接于⊙O ,BE 是⊙O 的直径,连接BF ,延长BA ,过F 作FG ⊥BA ,垂足为G .(1)求证:FG是⊙O的切线;(2)已知FG =,求图中阴影部分的面积.【答案】(1)见解析;(2) 图中阴影部分的面积为.83π【解析】(1)证明:连接OF ,AO ,∵AB =AF =EF ,∴,AB AF EF ==∴∠ABF =∠AFB =∠EBF =30°,∵OB =OF ,∴∠OBF =∠BFO =30°,∴∠ABF =∠OFB ,∴AB ∥OF ,∵FG ⊥BA ,∴OF ⊥FG ,∴FG 是⊙O 的切线;(2)解:∵,AB AF EF ==∴∠AOF =60°,∵OA =OF ,∴△AOF 是等边三角形,∴∠AFO =60°,∴∠AFG =30°,∵FG =,∴AF =4,∴AO =4,∵AF ∥BE ,∴S △ABF =S △AOF ,∴图中阴影部分的面积=.260483603ππ⨯=总结:此题考查切线的判定,等边三角形的判定,扇形面积,解题关键在于利用等弧对等角三、练习1.如图,正六边形的边长为2,分别以点为圆心,以为半径作扇形,扇形ABCDEF ,A D ,AB DCABF .则图中阴影部分的面积是( )DCE A .B .C .D.43π83π-43π-43π【答案】B 【解析】解:∵正六边形的边长为2,ABCDEF ∴正六边形的面积是:,,ABCDEF ()22sin 606622︒⨯⨯=⨯=120FAB EDC ∠=∠=∴图中阴影部分的面积是:,21202823603ππ⨯⨯-⨯=故选:B .2.有一个正五边形和一个正方形边长相等,如图放置,则的值是()1∠A .B .C .D .15︒18︒20︒9︒【答案】B 【解析】解:正五边形的内角的度数是1(52)1801085︒︒⨯-⨯=正方形的内角是90°,则∠1=108°-90°=18°.故选:B .3.如图,已知正方形的顶点、在上,顶点、在内,将正方形绕点逆ABCD A B O C D O ABCD A 时针旋转,使点落在上.若正方形的边长和的半径均为,则点运动的路径长为D O ABCD O 6cm D ()A .B .C .D .2cmπ32cm πcm π12cm π【答案】C 【解析】解:设圆心为O ,连接AO ,BO , OF ,∵AB=6,AO=BO=6,∴AB=AO=BO,∴三角形AOB 是等边三角形,∴∠OAB=60°∵AF=AO=FO=6,∴△FAO 是等边三角形,∴∠OAF=60°∠FAB=∠OAB+∠OAF =120°,∴∠EAC=120°-90°=30°,∵AD=AB=AF=6,∴点D 运动的路径长为:=π.306180π⨯⨯故选:C .4.如图,在正五边形中,,的延长线交于点,则等于( ).ABCDE AE CD FF ∠A .B .C .D .30°32︒36︒38︒【答案】C 【解析】∵五边形ABCDE 是正五边形,∴∠AED =∠EDC =108°,∴∠FED =∠FDE =72°,由三角形的内角和定理得:∠F =180°﹣72°﹣72°=36°.故选C .5.如图,已知正五边形内接于,连结,则的度数是( )ABCDE O BD ABD ∠A .B .C .D .60︒70︒72︒144︒【答案】C 【解析】∵五边形为正五边形ABCDE ∴()1552180108ABC C ∠=∠=-⨯︒=︒∵CD CB =∴181(8326)010CBD ∠=︒-︒=︒∴72ABD ABC CBD ∠=∠-∠=︒故选:C .6.如图,正六边形的边长为2,分别以正六边形的六条边为直径向外作半圆,与正六边形的外接圆围成的6个月牙形的面积之和(阴影部分面积)是( )A .B .C .D .π-2π-π+2π+【答案】A【解析】解:6个月牙形的面积之和,2132622πππ⎛=--⨯⨯= ⎝故选:A .7.阅读理如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m)称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”。

中考数学圆与多边形专题含答案

中考数学圆与多边形专题含答案

【知识梳理】正多边形:各边相等、各角也相等的多边形叫做正多边形. 正多边形判定:“各边相等”、“各角相等”必须同时具备,缺一不可. 正多边形与圆的关系:正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形的中心:正多边形外接圆的圆心叫做正多边形的中心. 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. 正多边形的边心距:正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.与正多边形(正n 边形)有关的计算: 边长AB a半径OA R 周长 C=na面积 2AOB nar nS S ==△中心角∠AOBn ︒360 外角n︒360 内角∠CAB(1)180°-n︒360(2)nn ︒-180)2( 内角和︒-180)2(n边心距OH(1)nR OH ︒⨯=180cos(2)22)2(aR OH -=正三角形,正方形,正六边形的内外接圆半径与边长的关系。

正三角形 正方形 正六边形 内接 外接正多边形的边心距(正三角形,正方形,正六边形)【经典例题1】正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。

若等腰直角三角形的外接圆半径的长为 2,则其内切圆半径的长为()A.2B.22-2C.2-2D.2-1 【解析】∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为22,∴它的内切圆半径为:R=21(22+22−4)=22−2.故选B.练习1-1如图,已知⊙O 的内接正六边形 ABCDEF 的边心距 OM =2,则该圆的内接正三角形 ACE 的面积为( ) A .2 B .4 C .63 D .43【解析】如图所示,连接OC ,OB ,过O 作ON ⊥CE 于N , ∵多边形ABCDEF 是正六边形, ∴∠COB=60°, ∵OC=OB ,∴△COB 是等边三角形, ∴∠OCM=60°, ∴OM=OC•sin ∠OCM , ∴33460sin =︒=OM OC .∵∠OCN=30°, ∴ON=21OC=332,CN=2,∴CE=2CN=4,∴该圆的内接正三角形ACE 的面积=343324213=⨯⨯⨯, 故选:D .练习1-2如图,边长为a 的正方形ABCD 和边长为b 的等边△AEF 均内接于⊙O ,则ab的值是( ) A .2 B .3 C .2 D .62【解析】设其半径是r ,则其正三角形的边长是3r , 正方形的边长是2r ,则它们的比是2:3.则内接正方形的边长与内接正三角形的边长的比为:6:3.即则ab的值=26,故选:D.练习1-3如图,△ABC 是半径为1的⊙O 的内接正三角形,则圆的内接矩形BCDE 的面积为( )A .3B .32C 3D 3【解析】过点O 作OF ⊥BC 于点F ,连结BD 、OC ,∵△ABC 是 O 的内接等边三角形,AB=1,∴BF=21BC=21,∠OBC=30°, ∴OB=︒30cos BF=2321=33,CD=BC•tan30°=33,∴矩形BCDE 的面积=BC•CD=33. 故选C .练习1-4如图,正六边形ABCDEF 内接于☉O ,已知☉O 的半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为 ( )A .2,3π B .23,π C .3,32π D .23,34π 【解析】解:如图所示,连接OC 、OB ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OA=OB ,∴△BOC 是等边三角形, ∴∠OBM=60°, ∴OM=OBsin ∠OBM=4×23=23, 弧BC 的长度=ππ34180460=⨯, 故选:A .练习1-5如图,等腰三角形ABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB=AC=5,BC=6,则DE 的长是( )A .10103 B .5103 C .553 D .556 【解析】D练习1-6(2019·十堰中考)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,则AE =( )A .3B .3 2C .4 3D .2 3 【解析】如解图,连接AC ,∵BA 平分∠DBE , ∴∠ABE =∠ABD ,∵四边形ABCD 是⊙O 的内接四边形, ∴∠ABC +∠ADC =180°. ∵∠ABC +∠ABE =180°,∴∠ABE =∠ADC ,∴∠ADC =∠ABD , ∵∠ABD =∠ACD ,∴∠ADC =∠ACD ,∴AC =AD =5.∵AE ⊥CE ,CE =13,∴AE =2222)13(5-=-CE AC =23.练习1-7如图,有一个圆O 和两个正六边形T 1,T 2.T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1,T 2分别为圆O 的内接正六边形和外切正六边形).(1)设T 1,T 2的边长分别为a ,b ,圆O 的半径为r ,求r ∶a 及r ∶b 的值; (2)求正六边形T 1,T 2的面积比S 1∶S 2的值.T 1T 2O【解析】(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形。

部编数学九年级上册24.3正多边形和圆(7大题型)2023考点题型精讲(解析版)含答案

部编数学九年级上册24.3正多边形和圆(7大题型)2023考点题型精讲(解析版)含答案

24.3 正多边形和圆正多边形的概念 各边相等,各角也相等的多边形是正多边形.正多边形的有关概念 (1)一个正多边形的外接圆的圆心叫做这个正多边形的中心. (2)正多边形外接圆的半径叫做正多边形的半径. (3)正多边形每一边所对的圆心角叫做正多边形的中心角. (4)正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.题型1:正多边形的相关概念1.下列关于正多边形的叙述,正确的是( )A.正九边形既是轴对称图形又是中心对称图形B.存在一个正多边形,它的外角和为720°C.任何正多边形都有一个外接圆D.不存在每个外角都是对应每个内角两倍的正多边形【答案】C【解析】【解答】解:正九边形是轴对称图形,不是中心对称图形,故选项A不正确;任何多边形的外角和都为360°,故选项B不正确;【变式1-1】已知:如图,四边形ABCD是⊙O的内接正方形,点P是劣弧上不同于点C的任意一点,则∠BPC的度数是( )A.45° B.60° C.75° D.90°【答案】A.【解析】如图,连接OB、OC,则∠BOC=90°,根据圆周角定理,得:∠BPC=∠BOC=45°.故选A.【点评】本题主要考查了正方形的性质和圆周角定理的应用.【变式1-2】如图,⊙O是正方形ABCD的外接圆,点P在⊙O上,则∠APB等于( )A.30° B.45° C.55° D.60°【答案】连接OA,OB.根据正方形的性质,得∠AOB=90°.再根据圆周角定理,得∠APB=45°.故选B.正多边形的有关计算 (1)正n边形每一个内角的度数是; (2)正n边形每个中心角的度数是; (3)正n边形每个外角的度数是.注意:要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形题型2:正多边形与圆有关的计算-角度2.如图,正五边形ABCDE内接于⊙O,连接AC,则∠BAC的度数是( )A.45°B.38°C.36°D.30°【答案】C【解析】【解答】解:连接OC、OB,如下图:根据正多边形的性质可得:∠BOC=360°5=72°根据圆周角定理可得:∠BAC=12∠BOC=36°故答案为:C【分析】连接OC、OB,根据正多边形的性质可得∠BOC=360°5=72°,再根据圆周角定理求解即可。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

九年级数学上册《正多边形和圆》练习题及答案解析

九年级数学上册《正多边形和圆》练习题及答案解析

九年级数学上册《正多边形和圆》练习题及答案解析学校:___________姓名:___________班级:________________一、填空题1.已知正方形ABCD,截去四个角成一正八边形,则这个正八边形EFGHIJLK的边长为_______,面积为_______.2.正十二边形的中心角是_____度.二、解答题3.(1)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED内部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(2)如图①,把△ABC纸片沿DE折叠,当点A落在四边形BCED外部点A'的位置时,①A、①1、①2之间有怎样的数量关系?并说明理由.(3)如图①,把四边形ABCD沿EF折叠,当点A、D分别落在四边形BCFE内部点A'、D的位置时,你能求出①A'、①D、①1与①2之间的数量关系吗?并说明理由.4.阅读与思考请阅读下列材料,并完成相应的任务:任务:(1)材料中划横线部分应填写的内容为 .(2)如图2,正五边形ABCDE 内接于①O ,AB =2,求对角线BD 的长.5.如图,正六边形ABCDEF 的对称中心P 在反比例函数(0,0)k y k x x=>>的图象上,边CD 在x 轴上,点B 在y 轴上,已知CD =4.(1)点A 是否在该反比例函数的图象上?请说明理由;(2)若反比例函数的图象与DE 交于点Q ,求点Q 的横坐标.6.如图所示,正五边形的对角线AC 和BE 相交于点M .(1)求证:AC ①ED ;(2)求证:ME =AE .7.如图1,正五边形ABCDE 内接于①O ,阅读以下作图过程,并回答下列问题,作法:如图2,①作直径AF ;①以F 为圆心,FO 为半径作圆弧,与①O 交于点M ,N ;①连接,,AM MN NA .(1)求ABC∠的度数.(2)AMN是正三角形吗?请说明理由.(3)从点A开始,以DN长为半径,在①O上依次截取点,再依次连接这些分点,得到正n边形,求n的值.8.如图,ABC是等边三角形,点D、E、G分别在边AB、AC、BC上,且AD CE BG==,BE、CD、AG分别相交于点F、P、Q.求证:①PQF是等边三角形.9.如图,在圆内接正三角形ABC中,若①DOE保持120°角度不变,求证:当①DOE绕着O点旋转时,由两条半径和①ABC的两条边围成的图形,图中阴影部分的面积始终是①ABC的面积的13.10.已知点E在正方形ABCD的对角线AC上,正方形AFEG与正方形ABCD有公共点A.(1)如图1,当点G 在AD 上,F 在AB(2)将正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,如图2,求:CE DG 的值为多少;(3)AB =AG AD =,将正方形AFEG 绕A 逆时针方向旋转(0360)αα︒<<︒,当C ,G ,E 三点共线时,请直接写出DG 的长度.三、单选题11.如图,已知①O 的半径为1,AB 是直径,分别以点A 、B 为圆心,以AB 的长为半径画弧.两弧相交于C 、D 两点,则图中阴影部分的面积是( )A .52π-B .56πC .53πD .83π-12.对于等边三角形的性质,下列说法不正确的是( )A .等边三角形的三条边都相等,三个内角也都相等;B .等边三角形的边都等于60,角都等于60°;C .等边三角形中线、高、角平分线都相等,而且都交于一点;D .等边三角形具有等腰三角形的所有性质;132,则这个多边形的内角和为( )A .720︒B .360︒C .240︒D .180︒14.如图,四边形ABCD 为⊙O 的内接正四边形,△AEF 为⊙O 的内接正三角形,若DF 恰好是同圆的一个内接正n 边形的一边,则n 的值为( )A.6B.8C.10D.1215.连接正八边形的三个顶点,得到如图所示的图形,下列说法不正确的是()A.四边形ABCH与四边形EFGH的周长相等B.连接HD,则HD平分①CHEC.整个图形不是中心对称图形D.CEH△是等边三角形参考答案及解析:1.1)a22)a【分析】设正八边形的边长为x,表示出剪掉的等腰直角三角形的直角边,再根据正方形的边长列出方程求解即可;利用正八边形的面积等于正方形的面积减去剪掉的四个等腰直角三角形的面积列式计算即可得解.【详解】解:正方形ABCD外接圆的直径就是它的对角线,∴正方形边长为a,如图所示,设正八边形的边长为x,在Rt AEL 中,LE x =,AE AL x ==,2x x a ∴+=,解得:1)x a =,即正八边形的边长为1)a .2222241)]2)AEL S S S a x a a a =-=-=-=正方形正八边形.故答案是:1)a ,22)a .【点睛】本题考查了正方形的性质,等腰直角三角形的性质,勾股定理,解题的关键是读懂题目信息,根据正方形的边长列出方程.2.30 【分析】根据正多边形的中心角公式:360n计算即可 【详解】正十二边形的中心角是:360°÷12=30°.故答案为30.【点睛】本题的关键是掌握正多边形中心角的计算公式3.(1)2①A =①1+①2;见解析;(2)2①A =①1﹣①2;见解析;(3)2(①A +①D )=①1+①2+360°,见解析【分析】(1)根据翻折的性质表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(2)先根据翻折的性质以及平角的定义表示出①3、①4,再根据三角形的内角和定理列式整理即可得解;(3)先根据翻折的性质表示出①3、①4,再根据四边形的内角和定理列式整理即可得解.【详解】解:(1)如图,根据翻折的性质,①3=EDA '∠=12(180-①1),①4=DEA '∠=12(180-①2),①①A +①3+①4=180°,①①A +12(180-①1)+12(180-①2)=180°,整理得,2①A =①1+①2;(2)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180+①2),①①A+①3+①4=180°,①①A+12(180-①1)+12(180+①2)=180°,整理得,2①A=①1-①2;(3)如图,同理,根据翻折的性质,①3=12(180-①1),①4=12(180-①2),①①A+①D+①3+①4=360°,①①A+①D+12(180-①1)+12(180-①2)=360°,整理得,2(①A+①D)=①1+①2+360°.【点睛】本题主要考查了三角形的内角和定理,多边形的内角与外角,翻折的性质,整体思想的利用是解题的关键.4.(1)AC BD AB CD AD BC ⋅=⋅+⋅;(2)1【分析】(1)由托勒密定理可直接求解;(2)连接,AD AC ,根据圆周角与弦的关系可得AD AC BD ==,设BD x =,在四边形ABCD 中,根据托勒密定理有,AC BD AB CD AD BC ⋅=⋅+⋅,建立方程即可求得BD 的长【详解】(1)由托勒密定理可得:AC BD AB CD AD BC ⋅=⋅+⋅故答案为:AC BD AB CD AD BC ⋅=⋅+⋅(2)如图,连接,AD AC ,五边形ABCDE 是正五边形,则E ABC BCD ∠=∠=∠,2AB BC CD ===AD AC BD ∴==设BD x =,AC BD AB CD AD BC ⋅=⋅+⋅即2222x x =⨯+解得1211x x ==1BD ∴=+【点睛】本题考查了托勒密定理,圆周角与弦的关系,解一元二次方程,理解题意添加辅助线是解题的关键.5.(1)点A在该反比例函数的图象上,理由见解析(2)3+【分析】(1)过点P作x轴垂线PG,连接BP,可得BP=4,G是CD的中点,所以P(4,;(2)易求D(6,0),E(8,,待定系数法求出DE的解析式为y﹣次函数即可求点Q.(1)解:点A在该反比例函数的图象上,理由如下:过点P作x轴垂线PG,连接BP,①P是正六边形ABCDEF的对称中心,CD=4,①BP=4,G是CD的中点,①sin604PG BO BC==⋅︒==①P(4,,①P在反比例函数y=kx(k>0,x>0)的图象上,①k=①反比例函数解析式为y由正六边形的性质可知,A(2,,①点A在反比例函数图象上;(2)解:由(1)得D (6,0),E (8,,设DE 的解析式为y =mx +b ,①608m b m b +=⎧⎪⎨+=⎪⎩①m b ⎧=⎪⎨=-⎪⎩①y﹣由方程y y ⎧=⎪⎨⎪=-⎩,解得x=3,①Q点横坐标为3+..【点睛】本题考查反比例函数的图象及性质,正六边形的性质;将正六边形的边角关系与反比例函数上点的坐标结合是解题的关键.6.(1)见解析;(2)见解析【分析】(1)作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒,由①EAC 的度数等于EDC 的度数的一半,得到①EAC =1144722⨯︒=︒,同理,①AED =12×72°×3=108°,则 ①EAC +①AED =180°,即可证明ED∥AC ;(2)由①AEB 的度数等于AB 的度数的一半,得到①AEB =36°,则①EMA =180°-①AEB -①EAC =72°,可推出①EAM =①EMA =72°,即可证明 EA =EM .【详解】解:①正多边形必有外接圆,①作出正五边形的外接①O ,则AB 的度数为1360725⨯︒=︒, ① ①EAC 的度数等于EDC 的度数的一半,① ①EAC =1144722⨯︒=︒, 同理,①AED =12×72°×3=108°,① ①EAC +①AED =180°,① ED∥AC ;(2)①①AEB 的度数等于AB 的度数的一半,①①AEB =36°,①①EMA =180°-①AEB -①EAC =72°,① ①EAM =①EMA =72°,① EA =EM .【点睛】本题主要考查了正多边形与圆,平行线的判定,等腰三角形的判定,解题的关键在于能够熟练掌握圆的相关知识.7.(1)108︒(2)是正三角形,理由见解析(3)15n =【分析】(1)根据正五边形的性质以及圆的性质可得BC CD DE AE AB ====,则AOC ∠(优弧所对圆心角)372216︒︒=⨯=,然后根据圆周角定理即可得出结论;(2)根据所作图形以及圆周角定理即可得出结论;(3)运用圆周角定理并结合(1)(2)中结论得出14412024NOD ∠=︒-︒=︒,即可得出结论.(1)解:①正五边形ABCDE .①BC CD DE AE AB ====, ①360725AOB BOC COD DOE EOA ︒∠=∠=∠=∠=∠==︒, ①3AEC AE =,①AOC ∠(优弧所对圆心角)372216︒︒=⨯=, ①1121610822AOC ABC ∠=⨯︒=∠=︒; (2)解:AMN 是正三角形,理由如下:连接,ON FN ,由作图知:FN FO =,①ON OF =,①ON OF FN ==,①OFN △是正三角形,①60OFN ∠=︒,①60AMN OFN ∠=∠=︒,同理60ANM ∠=︒,①60MAN ∠=︒,即AMN ANM MAN ∠=∠=∠,①AMN 是正三角形;(3)①AMN 是正三角形,①2120A N A N M O =∠=︒∠.①2AD AE =,①272144AOD ∠=⨯︒=︒,①DN AD AN =-,①14412024NOD∠=︒-︒=︒,①3601524n==.【点睛】本题考查了圆周角定理,正多边形的性质,读懂题意,明确题目中的作图方式,熟练运用圆周角定理是解本题的关键.8.见解析【分析】先根据“SAS”证明△ACD①△CBE,得到①ACD=①CBE,结合三角形外角的性质可证①BFD=①60°,进而可证△PQF是等边三角形.【详解】证明:①△ABC是等边三角形,①①A=①BCE=60°,AC=CB,又①AD=CE,①△ACD①△CBE(SAS);①①ACD=①CBE,①①ACB=①ACD+①BCF=60°,①①BFD=①CBE+①BCF=①ACD+①BCF =60°,同理可得,①APE=60°,①△PQF是等边三角形.【点睛】本题考查了等边三角形的判定与性质,全等三角形的判定与性质,以及三角形外角的性质,综合运用各知识点是解答本题的关键.9.见解析【分析】连接OA、OB、OC,由正多边形和圆的性质可得:①OAB①①OBC①①OCA.则①1=①2,再证明①OAG①①OCF,即可求解.【详解】如图:连接OA、OB、OC,由正多边形和圆的性质可得①OAB①①OBC①①OCA.①①1=①2.设OD 交BC 于F ,OE 交AC 于G ,则①AOC =①3+①4=120°,①DOE =①5+①4=120°,① ①3=①5.∴在①OAG 和①OCF 中2135OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,① ①OAG ①①OCF .① ΔAOC ΔABC 13OFCG S S S ==四边形. 【点睛】本题考查了正多形和圆的性质,全等三角形的判定和性质,将阴影部分的面积转化为固定的三角形面积是解题关键.10.(1)2(3)-【分析】(1)根据题意可得GE DC ∥,根据平行线分线段成比例即可求解;(2)根据(1)的结论,可得AG AD AE AC ==根据旋转的性质可得DAG CAE ∠=∠,进而证明GAD EAC ∽,根据相似三角形的性质即可求解;(3)分两种情况画出图形,证明①ADG ①①ACE ,根据相似三角形的判定和性质以及勾股定理即可得出答案.(1) 解:正方形AFEG 与正方形ABCD 有公共点A ,点G 在AD 上,F 在AB 上,GE DC ∴∥AG AE DG EC ∴= EC AE DG AG∴= 四边形AFEG 是正方形 ∴AE =∴2DG AGE === (2)解:如图,连接AE ,正方形AFEG 绕A 点逆时针方向旋转9(0)0αα︒<<︒,DAG CAE ∴∠=∠AG AD AE AC ==GAD EAC ∴∽∴AC CE DG AD= (3) 解:①如图,AB =AG AD =,AD AB ∴==8AG ==,16AC ==, ,,G E C 三点共线,Rt AGC △中,GC ==8CE GC GE ∴=-=,由(2)可知GAD EAC ∽,∴CE AC DG DA==()816DA CE DG AC ⋅∴==4==. ①如图:由(2)知△ADG ①①ACE ,①DG AD CE AC ==,①DG , ①四边形ABCD 是正方形,①AD =BC ,AC 16,①AG ,①AG =8, ①四边形AFEG 是正方形,①①AGE =90°,GE =AG =8,①C ,G ,E 三点共线.①①AGC =90°①CG①CE =CG +EG,①DG =综上,当C ,G ,E 三点共线时,DG 的长度为-【点睛】本题考查了平行线分线段成比例,相似三角形的性质与判定,正方形的性质,勾股定理,旋转的性质,综合运用以上知识是解题的关键.11.A【分析】连接AC 、BC ,如图,先判断△ACB 为等边三角形,则①BAC =60°,由于S 弓形BC =S 扇形BAC ﹣S △ABC ,所以图中阴影部分的面积=4S 弓形BC +2S △ABC ﹣S ⊙O ,然后利用扇形的面积公式、等边三角形的面积公式和圆的面积公式计算.【详解】解:连接BC ,如图,由作法可知AC =BC =AB =2,①①ACB 为等边三角形,①①BAC =60°,①S 弓形BC =S 扇形BAC ﹣S △ABC ,①S 阴=4S 弓形BC +2S △ABC ﹣S ⊙O=4(S 扇形BAC ﹣S △ABC )+2S △ABC ﹣S ⊙O=4S 扇形BAC ﹣2S △ABC ﹣S ⊙O=42602360π⨯⨯-222﹣π×12 53=π﹣ 故选:A .【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了扇形的面积公式.12.B【分析】根据等边三角形的性质逐项分析判断即可求解.【详解】解:A . 等边三角形的三条边都相等,三个内角也都相等,故该选项正确,不符合题意;B . 等边三角形的三个角都等于60°,三条边都相等,不一定等于60,故该选项不正确,符合题意;C . 等边三角形中线、高、角平分线都相等,而且都交于一点,故该选项正确,不符合题意;D . 等边三角形具有等腰三角形的所有性质,故该选项正确,不符合题意;故选B .【点睛】本题考查了等边三角形的性质,掌握等边三角形的性质是解题的关键.13.A【分析】设AB 是正多边形的一边,OC①AB ,在直角①AOC 中,利用三角函数求得①AOC 的度数,从而求得中心角的度数,然后利用360度除以中心角的度数,求出边数,根据内角和公式即可求出多边形的内角和.【详解】如图:①2,①2,设AB 是正多边形的一边,OC①AB , 2OC OA OB k ===,,在直角①AOC 中,OC cos AOC AO ∠== ①①AOC=30°,①①AOB=60°, 则正多边形边数是:360660︒︒=, ①多边形的内角和为:()62180720-⨯︒=︒,故选:A .【点睛】本题考查学生对正多边形的概念掌握和计算的能力,正多边形的计算一般是转化成半径,边心距、以及边长的一半这三条线段构成的直角三角形的计算.14.D【分析】连接,,AC OD OF ,先根据圆内接正多边形的性质可得点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,从而可得1145,3022CAD BAD CAF EAF ∠=∠=︒∠=∠=︒,再根据角的和差可得15DAF ∠=︒,然后根据圆周角定理可得230DOF DAF ∠=∠=︒,最后根据正多边形的性质即可得.【详解】解:如图,连接,,AC OD OF ,四边形ABCD 为O 的内接正四边形,AEF 为O 的内接正三角形,∴点O 在AC 上,且AC 是BAD ∠和EAF ∠的角平分线,90,60BAD EAF ∠=︒∠=︒,1145,3022CAD BAD CAF EAF ∴∠=∠=︒∠=∠=︒, 15DAF CAD CAF ∴∠=∠-∠=︒,230DOF DAF ∴∠=∠=︒, DF 恰好是圆O 的一个内接正n 边形的一边,3603601230n DOF ︒︒∴===∠︒, 故选:D .【点睛】本题考查了圆内接正多边形、圆周角定理等知识点,熟练掌握圆内接正多边形的性质是解题关键.15.D【分析】根据正八边形和圆的性质进行解答即可.【详解】解:A .① 根据正八边形的性质, 四边形ABCH 与四边形EFGH 能够完全重合,即四边形ABCH 与四边形EFGH 全等①四边形ABCH 与四边形EFGH 的周长相等,故选项正确,不符合题意;B .连接DH ,如图1,① 正八边形是轴对称图形,直线HD 是对称轴,① HD 平分①CHE故选项正确,不符合题意;C.整个图形是轴对称图形,但不是中心对称图形,故选项正确,不符合题意;D.①八边形ABCDEFGH是正八边形,① B=BC=CD=DE=EF=FG=GH,CH=EH,设正八边形的中心是O,连接EO、DH,如图2,①DOE=360=45 8︒︒①OE=OH①①OEH=①OHE=12①DOE=22.5°①①CHE=2①OHE=45°①①HCE=①HEC=12(180°-①CHE)=67.5°①CEH△不是等边三角形,故选项错误,符合题意.故选:D.【点睛】本题考查了正多边形和圆,熟记正八边形与等腰三角形的性质是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正多边形与圆1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形__________的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形__________的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.2.三角形的内切圆、外接圆三角形的内切圆:对比三角形的外接圆来学习三角形的内切圆三角形的外接圆:经过三角形三个顶点的圆叫三角形的外接圆三角形外接圆的圆心叫三角形的外心三角形的外心到三角形______________相等三角形的外心是三角形三边中垂线的交点三角形的内切圆:与三角形三边都相切的圆叫三角形的内切圆三角形内切圆的圆心叫三角形的内心三角形的内心到_________的距离相等三角形的内心是三角形三角平分线的交点3.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角________,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形______________.4.正多边形与圆在正多边形的有关计算中,如果分别以αn、a n、r n、R n、P n和S n表示正n(n≥3,n为整数)边形的中心角、边长、边心距、半径、周长和面积,则有:①αn=;②a n=2R n·sin;③r n=R n·cos;④+;⑤P n=na n;⑥S n=P n r n;⑦S n=n sin.(因为一个三角形的面积为:h·OB)注意两点:1.构造直角三角形(弦心距、边长的一半、半径组成的)求线段之间的关系等;2.准确记忆相关公式。

参考答案:1.(1)三个角平分线(2) 三边中垂线2. 三个顶点的距离, 三角形三边3.(1) 互补(2) 对边之和相等1. 利用三角形的内心求角度【例1】(2014湖北宜昌一模)如图,点O是△ABC的内切圆的圆心,若∠BAC=80°,则∠BOC=()A.130°B.100°C.50°D.65°【解析】此题解题的关键是弄清三角形内切圆的圆心是三角形内角平分线的交点.【答案】A练习1.如图,I是△ABC内心,则∠BIC与∠A的关系是( D )A. ∠BIC=2∠AB. ∠BIC=180°-∠AC. ∠BIC=D.∠BIC=【答案】B练习2.(2014湖北恩施一模)如图,圆O是△ABC的内切圆,与三角形三边分别切于D、E、F,知∠B=50°,∠C=60°,则∠EDF= 。

【答案】55°2. 三角形外接圆问题【例2】正三角形的外接圆半径是R,则它的边长是()A.0.5RB. RC. RD. R【解析】正三角形的外接圆边长是半径的3倍,圆心与三角形两个顶点的连线是一个顶角为120°的等腰三角形,可证倍数关系,带入即可。

【答案】B练习3. 若三角形的三边长分别为1,1和,则外接圆的半径为____________。

【答案】练习4. 等边三角形的边长为4cm,它的外接圆的面积为____________。

【答案】3.内切、外接、外切问题的综合【例3】正方形ABCD的四个顶点分别在⊙O上,点P在劣弧上不同于点C得到任意一点,则∠BPC的度数是()A. B. C. D.。

【解析】圆的内接正方形,内心外心重合,可求∠BOC的度数,利用同弧所对的圆周角是圆心角的一半,∠BPC是∠BOC的一半即可。

【答案】A练习5.同一个圆的外切正方形和内接正方形的相似比是()A. 2:1B. 1:2C.D.【答案】C练习6.△ABC中设I是△ABC的内心,O是△ABC的外心,⑴若∠A=80°,则∠BIC=________,∠BOC=________.⑵若∠A=a,则∠BIC=________,∠BOC=________.【答案】(1)130°,160°(2)90°+,2a4.内切圆综合题【例4】已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC 的面积S.【解析】连接圆心和切点,把三角形分成三个小三角形,而且有现成的底和高就可以求出每个小三角形的面积,加起来可得大三角形的面积。

【答案】解:设△ABC与⊙O相切与点D、E、F.连接OA、OB、OC、OD、OE、OF.则OD⊥AB,OE⊥BC,OF⊥AC.∵S△AOB=AB•OD=AB•r,同理,S△OBC=BC•r,S△OAC=AC•r.∵S△ABC=S△AOB+S△OBC+S△OAC,即S=AB•r+BC•r+AC•r,则S=(a+b+c)•r.练习7.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC 的长.【答案】解:∵⊙O是△ABC的内切圆,∴∠OBC=∠ABC,∠OCB=∠ACB,∵∠BOC=105°,∴∠OBC+∠OCB=180°-105°=75°,∴∠ABC+∠ACB=2×75°=150°,∴∠A=180°-(∠ABC+∠ACB)=30°,∵∠C=90°,AB=20cm,∴BC=AB=10cm,AC=10cm练习8.已知:如图,⊙O是Rt△ABC的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.【答案】解:如图;(1)在Rt△ABC,∠C=90°,AC=12cm,BC=9cm;根据勾股定理AB=AC2+BC2=15cm;四边形OFCD中,OD=OF,∠ODC=∠OFC=∠C=90°;则四边形OFCD是正方形;由切线长定理,得:AD=AE,CD=CF,BE=BF;则CD=CF=(AC+BC-AB);即:r=(12+9-15)=3.(2)当AC=b,BC=a,AB=c,由以上可得:CD=CF=(AC+BC-AB);即:r=(a+b-c).则⊙O的半径r为:(a+b-c).5. 正多边形和圆【例5】正六边形两条对边之间的距离是2,则它的边长是()A. 33B. 233C. 23D. 223【解析】正六边形是正多边形中最重要的多边形,要注意正六边形的一些特殊性质。

△ABF是含120°角的等腰三角形,以△ABF为研究对象即可求。

【答案】解:如图所示,BF=2,过点A作AG⊥BF于G ,则FG=1F EA G DB C又∵∠FAG=60°∴=∠==AFFGFAGsin132233故选B练习9.求证圆的外切正多边形的面积等于其周长与圆的半径的积的一半.【解析】外切正多边形可分成与边数相同个数的等腰三角形,其面积之和为正多边形的面积,而每个小三角形的面积恰是边长与圆半径积的一半,故题易证. 圆的外切(或内接)正多边形的周长.面积的计算要通过所分成的n个等腰三角形进行,这也是由复杂到简单的一种转化,象四边形的问题一样,正n边形的问题首先应转化为三角形的问题,转化是解决数学问题的关键。

【答案】证明:设外切多边形周长为P,内切圆⊙O半径为R,连结O与正多边形的各顶点及切点,如图∵ OM⊥AB,ON⊥BC,……,∴ S△OAB=OM·AB=R·AB,S△OBC=ON·BC=R·BC……,∴正多边形ABCD……面积为S=R(AB+BC+……)=R·P.练习10.如图,若正六边形的面积为6,求正六边形内切圆的内接正三角形的面积.【解析】如下图,线段OC是正六边形的边心距,由内接正三边形的边长,则线段OC可以将两图形联系起来。

【答案】解:如图,设AB是正六边形的一条边长,C点为切点,CD为正六边形内切⊙O的内接正三角形的一条边长,过O点作OE⊥CD于E,分别连结OA、OB、OC、OD.∴ OC=R,AB=a6,BC=a6,∠BOC=30°,CD=a3,CE=a3,OE=r3,∠COE=60°,∵ S6=6·S△OAB,∴ S6=6×a6·OC=6,∵ OC=BC·cot30°,∴ OC=a6,∴ 6×a6·a6=6,∴ a6=2,∴OC=,∵ OE=OC·cos60°,∴ OE=,∵ CE=OC·sin60°,∴ CE=,∴ CD=2CE=3,∴S3=3×CD·OE,∴S3=3××3×=.练习11. 正三角形的边心距、半径和高的比是()A. 1∶2∶3B. 123∶∶ C. 123∶∶∶∶ D. 123【答案】解:如图所示,OD是正三角形的边心距,OA是半径,AD是高AO设OD r =,则AO =2r ,AD =3r∴OD ∶AO ∶AD =r ∶2r ∶3r =1∶2∶3 故选A【例6】周长相等的正三角形、正四边形、正六边形的面积S S S 346、、之间的大小关系是( )A. S S S 346>>B. S S S 643>>C. S S S 634>>D. S S S 463>>【解析】设它们的周长为l ,则正三角形的边长是a l 313=,正四边形的边长为a l 414=,正六边形的边长为a l 616=∴=︒=⨯⨯=S a l l 332221260121932336sinS a l S a l l44226622211661260612136323372===⨯︒=⨯⨯⨯=sin∴>>S S S 643【答案】B练习12. 如图所示,正五边形的对角线AC 和BE 相交于点M ,求证:(1)ME AB =;(2)ME BE BM 2=·【答案】证明:(1)正五边形必有外接圆,作出这个辅助圆,则AB ⋂=⨯︒=︒1536072 ∴∠BEA =36°EC ⋂=⨯︒=︒25360144∴∠=⨯︒=︒∴∠=︒-︒-︒=︒=∠∴==EAC EMA EAM ME AE AB1214472180367272(2) BC AB CAB BEA ⋂=⋂∴∠=∠,又∵公共角∠ABM =∠EBA∴△ABM ∽△EBA∴=∴=AB BE BMABAB BE BM2· 练习13. 已知正六边形ABCDEF 的半径为2cm ,求这个正六边形的边长、周长和面积。

相关文档
最新文档