迈克尔逊干涉仪测量空气折射率
迈克尔逊干涉仪测空气折射率实验

迈克尔逊干涉仪测空气折射率实验摘要空气折射率是空气光学性质的一个基本参量。
本文介绍采用迈克尔逊干涉仪来测量空气折射率的方法,该方法简单易行。
引言利用迈克尔逊干涉仪的两束相干光在空间各有一段光路分开,通过在其中一支光路放进被研究对象而不影响另一支光路,让学生进一步了解光的干涉现象及其形成条件,以及学习调节光路的方法,同时也为测量空气折射率提供了一种思路和方法。
实验仪器:GSZF-4型迈克尔逊干涉仪选压器游标卡尺实验原理:1、等倾(薄膜)干涉在熟悉迈克尔逊干涉仪调节和使用的前提下,如图 1 所示,两束光到达 O 点形成的光程差δ为:δ=2L2-2L1=2(L2-L1)(1)若在 L2臂上加一个为 L的气室,如图 2 所示,则光程差为:δ=2(L2-L)+2nL-2L1整理得:δ=2(L2-L1)+2(n-1)L (2)保持空间距离L2、L1、L不变,折射率n变化时,则δ随之变化,即条纹级别也随之变化。
(根据光的干涉明暗条纹形成条件,当光程差δ=kλ时为明纹)以明纹为例有:δ1=2(L2-L1)+2(n1-1)L=k1λδ2=2(L2-L1)+2(n2-1)L=k2λ实验内容:1、安装固件熟读光学实验常用仪器部分迈克尔逊干涉仪的调节使用说明,并按此调节好;将气管 1 一端与空气室相连,另一端与气囊进气孔相连;将气管 2 一端与空气室相连,另一端与选压器相连;2、将空气室放在导轨上,观察干涉条纹(观察到条纹即可进行下面测量)3、关闭气囊阀门,向气室充气;使气压值大于 0.090MPa,,读出选压仪表数值,记为p2;打开气囊阀门,慢慢放气,使条纹慢慢变化,当改变m条时(实验要求m≧20),读出选压器数值,记为p1 ;4、重复第 3步,共取 10组数据;5、用游标卡尺测量空气室的长度,重复测量10次,得出10个数据。
实验注意事项1、激光属强光,注意不要让激光直接照射眼睛;2、充气阀门不要用力旋转,以免损坏;3、不得用手直接接触光学元件;4、向选压器里充气时,注意不可超过其量程实验数据记录大气压强 Pb=51.0132510Pa;λ= 632.8 nm;温度t=12.0 ℃结果讨论及误差分析:59662.8793 2.8793 1.01325101011 1.00027610.00367110.00367116.0P t δ---⨯⨯⨯=⨯+=+=+⨯+⨯⨯⨯标准值n 空气折射率的准确值为1.000276,与本实验的测量结果相差1.000276-1.000281=510。
用迈克尔逊干涉原理测量空气折射率

用迈克尔逊干涉原理测量空气折射率摘 要:空气的折射率与真空的折射率(等于1)非常接近。
用一般的方法很难测出其差值一确定空气的折射率。
但用光的干涉法即可以精确地测出来。
比如用迈克尔逊干涉仪对折射率的变化的敏感性,可以准确地测出空气的折射率。
关键词:研究型物理实验;迈克耳逊干涉仪;空气折射率;一、原理迈克尔逊干涉仪的原理见上图。
光源S 发出的光束射到分光板1G 上,1G 的后面镀有半透膜,光束在半透膜上反射和透射,被分成光强接近相等、并相互垂直的两束光。
这两束光分别射向两平面镜1M 和2M ,经它们反射后又汇聚于分光板1G ,再射到光屏E 处,从而得到清晰的干涉条纹。
平面镜1M 可在光线1的方向上平行移动。
补偿板2G 的材料和厚度与1G 相同,也平行于1G ,起着补偿光线2的光程的作用。
如果没有2G ,则光线1会三次经过玻璃板,而光线2只能一次经过玻璃板。
2G 的存在使得光线1、2由于经过玻璃板而导致的光程相等,从而使光线1、2的光程差只由其它几何路程决定。
由于本实验采用相干性很好的激光,故补偿板2G 并不重要。
但如果使用的是单色性不好、相干性较差的光,如纳光灯或汞灯,甚至白炽灯,2G 就成为必需了。
这是因为波长不同的光折射率不同,由 分光板1G 的厚度所导致的光程就会各不一样。
补偿板2G 能同时满足这些不同波长的光所需的不同光程补偿于是反射光束1与透射光束2在空间相遇,发生干涉。
当光束垂直入射至M1,M2镜时,两光束的光程差δ=2(n 1L 1-n 2L 2) (1) 式中n 1和n 2分别是路程L 1,L 2上介质的折射率。
设单色光在真空中的波长为λ,当δ=k λ,k=0,1,2,3,…时干涉加强相应的接收屏中心的光强为极大。
由式(1-1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。
计算公式 n=1+(N λ/2L)*(P amb /ΔP )其中已知条件L=80mm ,P amb =101325Pa , λ=632.8nm 由公式可知只要N ,ΔP 知道就能求出折射率n .当ΔP 改变时,光程相应的改变,并引起干涉圆环“涌出”或“缩进”N 条.二、测量P与N1.在光学平台上按设计实验装置示意图摆好光路。
实验十一 迈克尔逊干涉法测量空气折射率

实验十一 用迈克尔逊干涉光路测空气折射率光的干涉是重要的光学现象之一,是光的波动性的重要实验依据。
两列频率相同、振动方向相同和位相差恒定的相干光在空间相交区域将会发生相互加强或减弱现象,即光的干涉现象。
光的波长虽然很短(4×10-7~8×10-7m 之间),但干涉条纹的间距和条纹数却很容易用光学仪器测得。
根据干涉条纹数目和间距的变化与光程差、波长等的关系式,可以推出微小长度变化(光波波长数量级)和微小角度变化等,因此干涉现象在照相技术、测量技术、平面角检测技术、材料应力及形变研究等领域有着广泛地应用。
相干光源的获取除用激光外,在实验室中一般是将同一光源采用分波阵面或分振幅2种方法获得,并使其在空间经不同路径会合后产生干涉。
迈克尔逊干涉仪是1883年美国物理学家迈克尔逊和莫雷合作,为研究“以太”漂移而设计制造出来的精密光学仪器。
它是利用分振幅法产生双光束以实现干涉。
在近代物理和近代计量技术中,如在光谱线精细结构的研究和用光波标定标准米尺等实验中都有着重要的应用。
利用该仪器的原理,研制出多种专用干涉仪。
一、实验目的1、掌握迈克尔逊干涉光路的原理和调节方法。
2、学会调出非定域干涉条纹、等倾干涉条纹、等厚干涉条纹。
3、学习利用迈克尔逊干涉光路测量常温下空气的折射率。
二、实验仪器He-Ne 激光器及电源,扩束镜(短焦距凸透镜),全反镜,温度计,小孔光阑,密封玻璃管,气压计等。
三、实验原理1、迈克尔逊干涉光路图11.1是迈克尔逊干涉光路原理图,从光源S 发出的一束光射到分束板1G 上,1G 的后表面镀有半反射膜(一般镀金属银),光在半反射膜上反射和透射,被分成光强接近相等的两束光,一束为反射光1,一束为透射光2。
当激光束以45°角射向分束板1G 时,被分成相互垂直的两束光。
这两束光分别垂直射向两平面反射镜1M 和2M ,经它们反射后再回到分束板1G 的半反射膜上,又汇聚成一束光,射到光屏E 处。
迈克耳逊干涉仪的调整和使用及测空气折射率.

迈克耳逊干涉仪的调整和使用及测空气折射率迈克耳逊干涉仪是1883年迈克耳逊设计制成的用分振幅法产生双光束干涉的仪器,它是一种可以进行精密测量的,有着广泛应用的干涉仪。
迈克耳逊干涉仪的基本结构是许多干涉仪的基础。
目前根据迈克耳逊的基本原理研制的各种精密仪器广泛用于生产和科研领域。
由于创制了精密的光学仪器和利用这些仪器所完成的光谱学和基本度量学研究,迈克耳逊于1907年获诺贝尔物理学奖。
1.实验目的(1) 了解迈克耳逊干涉仪的构造、原理,掌握调节方法。
(2) 学会用迈克耳逊干涉仪测定光波波长。
(3)学习一种测量气体折射率的方法2. 实验仪器迈克耳逊干涉仪,He-Ne 激光器,气室组建,数字气压计。
3. 实验原理迈克耳逊干涉仪的光路图如图6-24所示。
M 1和M 2是经精细磨光的平面反射镜,分别安装在相互垂直的两臂上,M 2是固定的(称为定镜),M 1可通过精密丝杆的带动,在导轨上移动(称为动镜)。
在两臂相交处装有与两臂成45˚角的平行平面玻璃板G 1,G 1后表面镀有一层半透明半反射的薄银膜(A ),这一层薄银膜(A )将入射光分成两束光强近似相等的反射光(1)和透射光(2)。
因此,G 1称为分束板。
另外,G 2为补偿板。
G 2与G 1是两块材料(折射率)和厚度均相同的平行平面的玻璃板,并且G 2和G 1彼此间严格平行。
G 2的作用是使光束(2)在玻璃中的光程与光束(1)在玻璃中的光程相同。
从光源发出的光束,被分束板G 1后表面镀有一层薄银膜(A )分成两束光强近似相等的反射光(1)和透射光(2)。
光束(1)射到M 1上被反射回来,再透过G 1到达观测者E 处(或接收屏);光束(2)透过G 2射到M 2上被反射回来,再透过 G 2后又经A 反射而到达观测者E 处(或接收屏)。
这两条光线是相干光,相遇发生干涉。
因此,在E 处可观测到干涉条纹。
图6-24中的M’2是定镜M 2相对半反半透膜(A )反射而形成的虚像。
用迈克尔逊干涉仪测量气体折射率

实验 用迈克耳孙干涉仪测量气体折射率[引言]大气中随着海拔高度的上升,空气变得稀薄,大气折射率n 随气体压强的降低而减小,使得光线在大气中传播发生弯曲,对航海中天顶角的测定有一定影响。
而天顶角的测定对船舶的定位起着重要作用,因此,了解气体折射率与大气压强之间的关系具有重要的实际意义。
迈克耳孙干涉仪中的两束相干光各有一段光路在空间中是分开的,人们可以在其中一支光路上放进被研究对象而不影响另一支光路,这就给它的应用带来极大的方便。
实际上常用它来测物质的折射率、厚度和气压等一切可以转化为光程变化的物理量。
[实验目的]1.了解迈克耳孙干涉仪的结构、工作原理和使用方法。
2.学习一种测量气体折射率的方法。
[实验器材]氦氖激光器,扩束镜,迈克尔孙干涉仪,气室(带充气装置),数字气压计。
[实验原理]在迈克耳孙干涉仪光路的一个测量光路上放置一个气室,干涉图样随气室里气体气压的变化而变化:当气压增加时,干涉圆环从中心 “吐出”;反之,干涉圆环向中心“吞入”。
通过研究气体压强变化与条纹移动的关系可以得到气体折射率。
当气室内气体压强改变p ∆时,使气体折射率改变n ∆,光程差改变n L ∆2,从而引起干涉条纹移动N 个,则有λN n L =∆2,于是有:LN n 2λ=∆ (1) 其中,L 为气室长度,λ是光的真空波长。
通常,在温度处于15~30C范围时,空气折射率可用下式计算:9,10003671.018793.2)1(-⨯+=-tpn p t (2)式中温度t 的单位为C ,气压p 的单位为Pa 。
在温度一定下,气体折射率p n )1(-与气压p成正比。
因此有:=∆∆=-pnp n 1常数 整理得: p p nn ∆∆+=1将式(1)代入上式得: ppL N n ∆+=21λ (3)式(3)给出了在气压p 时的空气折射率。
[实验内容]1.调节迈克耳孙干涉仪,使其在接收屏上观察到干涉条纹。
2.向气室中充气加压,记录气压值1p 。
迈克尔逊干涉仪测量空气折射率实验报告

迈克尔逊干涉仪测量空气折射率实验报告一、实验目的1、了解迈克尔逊干涉仪的结构和工作原理。
2、掌握用迈克尔逊干涉仪测量空气折射率的方法。
3、加深对光的干涉现象的理解。
二、实验原理迈克尔逊干涉仪是一种利用分振幅法产生双光束干涉的精密光学仪器。
其光路图如下图所示:此处可插入迈克尔逊干涉仪光路图由光源 S 发出的光射在分光板 G1 上,被分成两束光,反射光(1)射向平面镜 M1,透射光(2)射向平面镜 M2。
两束光分别被 M1、M2 反射后,又回到分光板 G1,在观察屏 E 处相遇产生干涉条纹。
当 M1 和 M2 严格垂直时,得到的是等倾干涉条纹;当 M1 和 M2 有微小夹角时,得到的是等厚干涉条纹。
本实验中,我们通过测量等倾干涉条纹的变化来测量空气折射率。
假设初始时,干涉仪两臂长度相等,即 L1 = L2,对应的光程差为Δ = 2(L2 L1) = 0,此时观察屏上出现中心为亮点的等倾干涉条纹。
当向迈克尔逊干涉仪的一臂中缓慢充入空气时,光在空气中的传播速度变慢,导致光程增加。
设充入空气后光程变化量为ΔL,空气折射率为 n,则有:ΔL =(n 1)L (其中 L 为充入空气的光路长度)通过测量充入空气前后干涉条纹的变化数Δk,以及已知的波长λ和干涉仪的臂长 L,可以计算出空气折射率 n:n = 1 +ΔL / L = 1 +Δkλ / 2L三、实验仪器迈克尔逊干涉仪、HeNe 激光器、气室、气压表、真空泵等。
四、实验步骤1、仪器调节调节迈克尔逊干涉仪的底座螺钉,使仪器大致水平。
打开激光器,使激光束大致垂直入射到分光板 G1 上,并通过调节M1 和 M2 背后的螺钉,使反射回来的两束光在屏上重合,出现干涉条纹。
仔细调节 M1 和 M2 背后的螺钉,使干涉条纹为圆心在视场中心的同心圆环。
2、测量干涉条纹的变化记录初始时干涉条纹的位置和个数。
打开气室阀门,用真空泵缓慢抽出气室内的空气,观察干涉条纹的变化,记录条纹消失的个数。
迈克尔干涉仪测量空气折射率

实验四 用迈克尔逊干涉仪空气的折射率一、实验目的用分离的光学元件构建一个迈克尔逊干涉仪。
通过降低空气的压强测量其折射率。
二、仪器和光学元件光学平台;HeNe 激光;调整架,35x35mm ;平面镜,30x30mm ;磁性基座;分束器50:50;透镜,f=+20mm ;白屏;玻璃容器,手持气压泵,组合夹具,T 形连接,适配器,软管,硅管三、实验原理借助迈克尔逊干涉仪装置中的两个镜,光线被引进干涉仪。
通过改变光路中容器内气体的压强,推算出空气的折射率。
If two Waves having the same frequency ω , but different amplitudes and different phases are coincident at onelocation , they superimpose to()()2211sin sin αα-∙+-∙=wt a wt a YThe resulting can be described by the followlng : ()α-∙=wt A Y sinw ith the amplitudeδcos 22122212∙++=a a a a A(1)and the phase difference21ααδ-=In a Michelson interferometer , the light beam is split by a half-silvered glass plate into two partial beams ( amplitude splitting ) , reflected by two mirrors , and again brought tointerference behind the glass plate . Since only large luminous spots can exhibit circular interference fringes , the Iight beam is expanded between the laser and the glass plate by a lens L . If one replaces the real mirror M3 with its virtual image M3 /, , Which is formed by reflection by the glass plate , a point P of the real light source appears as the points P / , and P " of the virtual light sources L l and L 2 · Due to the different lightpaths , using the designations in Fig . 2 , 图 2the phase difference is given by :θλπδcos 22∙∙∙=d (2)λis the wavelength of the laser ljght used .According to ( 1 ) , the intensity distribution fora a a ==21 is2cos 4~222δ∙∙=a A I (3)Maxima thus occur whenδis equal to a multiple ofπ2,hence with ( 2 )λθ∙=∙∙m d cos 2;m=1,2,….. ( 4 )i. e . there are circular fringes for selected , fixed values of m , and d , sinceθ remains constant ( see Fig . 3 ) . If onealters the position of the movable mirror M 3 ( cf.Fig.1 ) such that d,e.g.,decreases , according to ( 4 ) , the ciroular fringe diameter would also diminish since m is indeed defined for this ring . Thus , a ring disappears each time d is reduced by 2λ. For d = 0 the ciroular fringe pattern disappears . If the surfaces of mirrors M 4 and M 3 are not parallelin the sense of Fig . 2, one obtains curved fringes , which gradually change into straight fringes at d = 0 . 空气衍射系数的确定To measure the diffraction n of air , an air-filled cell with plane- parallel boundaries is used . The diffraction index n of a gas is a linear function of the pressure P . For pressure P = 0 an absolute vacuum exists so that n=1.P PnP n P n ⋅∆∆+==)0()( (5)From the measured date ,the difference quotientP n ∆∆/ is f irst determined :PP n P P n P n ∆-∆+=∆∆)()((6) The following is true for the optical path length d : d =s P n ⋅)((7)Where s = 2·l is the geometric length of the evacuated cell and n ( P ) is the diffraction index of the gas present in the chamber . l is the lenght of the gas column in the glass cell . The fact that the path is traversed twice due to the reflect- ion on the mirror M4 is to be taken into consideration. Thus , by varying the pressure in the cell by the value △P , the optical path length is altered by the quantity △d :△d = n ( P +△P )·s 一 n ( P )·s ( 8 )on the screen one observes the change in the circular fringe pattern with change in the pressure ( the centre of the interference fringe pattern alternately shows maximal and minimal intensity ) . Proceeding from the ambient pressure Po,one observes the N-fold resetting of the initial position of the interference pattern (i.e. , establishment of an intensity minimum in the ring ’s centre ) until a specific pressure value P has been reached . A change from minimum to minimum corresponds to a change of the optical path length by the wavelength λ.Between the pressures P and P +△P the optical wavelength thus changes by△d = ( N ( P +△P )一N ( P ))·入 ( 9 )From (8) and (9) and under consideration of the fact that the cell is traversed twice by the light (s=2·l) , it follows : n ( P +△P )一n ( P)=()lP N P P N ⋅⋅-∆+2))((λ(10)and with(6) and)()(P N P P N N -∆+=∆ the following results :l P N P n 2λ⋅∆∆=∆∆ 四、实验步骤1、 装置建立和调整:注:下文括号中的数字表示的坐标仅适用于开始阶段的粗调。
迈克尔逊干涉仪测定空气折射率

空气折射率的相对偏差
空气的折射率(n)
1.00025219 1.00025513 1.00024047 1.00024486 1.00024985
… 1.000250630 1.000249853 1.000292600 0.000042747 0.00427363%
实验结果与分析
致谢
大学本科的学习生活即将结束。在此,我 要感谢所有曾经教导过我的老师和关心过 我的同学,他们在我成长过程中给予了我 很大的帮助。本文能够顺利完成,要特别 感谢我的导师***老师,感谢各位系的老 师的关心和帮助。
自装迈克尔逊干涉仪且测定空气折射率
实验结果与分析
实验结果与分析
1
20
4.3
2
40
8.7
3
50
12.3
4
60
16.7
5
70
21.3
…
…
…
15
300
64.3
空气折射率的平均值
空气折射率的真值
空气折射率的绝对误差
空气折射率的相对误差
空气折射率的标准偏差
空气折射率平准直的标准偏差
用迈克耳逊干涉仪测空气折射率
指导教师:胡尔西达
班级:物理06-2班 学生:艾海提江·如苏力 学号:20060900429
LOGO
用迈克耳逊干涉仪测空气折射率
摘要
科学技术的进步与相关仪器的联系是非常密切的, 不同的实验需要不同的仪器来协助完成,而不同的 仪器有不同的制作原理,同时需要不同的方法进行 操作。本文介绍了用迈克逊干涉仪测量空气折射率, 并对空气折射率随压强变化的情况进行研究。根据 测得的数据和理论公式算出空气折射率,为研究空 气折射率随压强变化规律而提供理论依据。本文还 介绍迈克尔逊干涉仪的组装过程,且分析了空气、 氧气,氮气等气体在干涉仪上出现的多个干涉条纹, 只有实验仪器适当的谓节,才能得出干涉条纹并符 合计算公式的要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空气折射率的测量
学习要点和重点:
1、迈克尔逊干涉仪原理,
2、利用迈克尔逊干涉原理测量气体折射率的方法。
学习难点:
1、 光路的调整,
2、 干涉条纹变化数目的读取。
迈克尔逊干涉仪中的两束相干光各有一段光路在空间上是分开的,在其中一支光路上放进被研究对象不会影响另一支光路。
本实验利用迈克尔逊原理测量空气折射率。
一、 实验目的与要求
1、 学习一种测量气体折射率的方法;
2、 进一步了解光的干涉现象及其形成条件;
3、 学习调整光路的方法。
二、 实验仪器
He-Ne 激光器、反射镜2个、分束镜、扩束镜、气室、打气球、气压表、毛玻璃等。
三、 实验原理
迈克尔逊干涉仪光路示意图如图1所示。
其中,G 为平板玻璃,称为分束镜,它的一个表面镀有半反射金属膜,使光在金属膜处的反射光束与透射光束的光强基本相等。
M 1、M 2为互相垂直的平面反射镜,M 1、M 2镜面与分束镜G 均成450角;M 1可以移动,M 2固定。
2M '表示M 2对G 金属膜的虚像。
从光源S 发出的一束光,在分束镜G 的半反射面上被分成反射光束1和透射光束2。
光束1从G 反射出后投向M 1镜,反射回来再穿过G ;光束2投向M 2镜,经M 2镜反射回来再通过G 膜面上反射。
于是,反射光束1与透射光束2在空间相遇,发生干涉。
由图1可知,迈克尔逊干涉仪中,当光束垂直入射至M 1、M 2镜时,两束光的光程差δ为
2M
O
图1 迈克尔逊干涉仪光路示意图
)(22211L n L n -=δ (1)
式中,1n 和2n 分别是路程1L 、2L 上介质的折射率。
设单色光在真空中的波长为λ,当
,3 ,2 ,1 ,0 ,==K K λδ (2)
时干涉相长,相应地在接收屏中心的总光强为极大。
由式(1)知,两束相干光的光程差不但与几何路程有关,还与路程上介质的折射率有关。
当1L 支路上介质折射率改变1n ∆时,因光程的相应改变而引起的干涉条纹的变化数为N 。
由(1)式和(2)式可知
1
12L N n λ
=
∆ (3) 例如:取nm 0.633=λ和mm L 1001=,若条纹变化10=N ,则可以测得0003.0=∆n 。
可见,测出接收屏上某一处干涉条纹的变化数N ,就能测出光路中折射率的微小变化。
正常状态(Pa P C t 5
1001325.1,15⨯==)下,空气对在真空中波长为nm 0.633的光的折射率
00027652.1=n ,它与真空折射率之差为410765.2)1(-⨯=-n 。
用一般方法不易测出这个折射率差,
而用干涉法能很方便地测量,且准确度高。
四、 实验内容及步骤 (一)实验装置
实验装置如图2所示。
用He-Ne 激光作光源(He-Ne 激光的真空波长为nm 0.633=λ),并附加小孔光栏H 及扩束镜T 。
扩束镜T 可以使激光束扩束。
小孔光栏H 是为调节光束使之垂直入射在M 1、M 2镜上时用的。
另外,为了测量空气折射率,在一支光路中加入一个玻璃气室,其长度为L 。
气压表用来测量气室内气压。
在O 处用毛玻璃作接收屏,在它上面可看到干涉条纹。
(二)测量方法
图2 测量空气折射率实验装置示意图
气压表
调好光路后,先将气室抽成真空(气室内压强接近于零,折射率1=n ),然后再向气室内缓慢充气,此时,在接收屏上看到条纹移动。
当气室内压强由0变到大气压强p 时,折射率由1变到n 。
若屏上某一点(通常观察屏的中心)条纹变化数为N ,则由式(3)可知
L
N n 21λ
+
= (4) 但实际测量时,气室内压强难以抽到真空,因此利用(4)式对数据作近似处理所得结果的误差较大。
应采用下面的方法才比较合理。
理论证明,在温度和湿度一定的条件下,当气压不太大时,气体折射率的变化量n ∆与气压的变化量p ∆成正比:
常数=∆∆=-p
n
p n 1 所以
p p
n n ∆∆+
=1 (5)
将(3)式代入该式,可得
p
p
L N n ∆+
=21λ (6)
式(6)给出了气压为p 时的空气折射率n 。
可见,只要测出气室内压强由1p 变化到2p 时的条纹变化数N ,即可由式(6)计算压强为p 时的空气折射率n ,气室内压强不必从0开始。
例如,取p =760mmHg ,改变气压p ∆的大小,测定条纹变化数目N ,用(6)式就可以求出一个大气压下的空气折射率n 的值。
(三)实验步骤
1、 按实验装置示意图把仪器放好。
打开激光光源。
2、 调节光路
光路调节的要求是:M 1、M 2两镜相互垂直;经过扩束和准直后的光束应垂直入射到M 1、M 2的中心部分。
(1) 粗调
H 、T 先不放入光路,调节激光管支架,目测使光束基本水平并且入射在M 1、M 2反射镜中心部分。
若不能同时入射到M 1、M 2的中心,可稍微改变光束方向或光源位置。
注意操作要小心,动作要轻慢,防止损坏仪器。
(2) 细调
①放入H ,使激光束正好通过小孔H 。
然后,在光源和干涉仪之间沿光束移动小孔H 。
若移动后光束不再通过小孔而位于小孔上方或下方,说明光束未达到水平入射,应该缓慢调整激光管的仰俯倾角,最后使得移动小孔时光束总是正好通过小孔为止。
此时,在小孔屏上可以看到由M 1、M 2反射回来的两列小光斑。
②用小纸片挡住M 2镜,H 屏上留下由M 1镜反射回来的一列光斑,稍稍调节光束的方位,使该列光斑中最亮的一个正好进入小孔H (其余较暗的光斑与调节无关,可不管它)。
此时,光束已垂直入射到M 1镜上了。
调节时应注意尽量使光束垂直入射在M 1镜的中心部分。
③用小纸片挡住M 1镜,看到由M 2镜反射回来的光斑,调节M 2镜后面的三个调节螺钉,使最亮的一
个光斑正好进入小孔H 。
此时,光束已垂直入射到M 2镜的中心部分了。
记住此时光点在M 2镜上的位置。
④放入扩束镜,并调节扩束镜的方位,使经过扩束后的光斑中心仍处于原来它在M 2镜上的位置。
调节至此,通常即可在接收屏O 上看到非定域干涉圆条纹。
若仍未见条纹,则应按②、③、④步骤重新调节。
条纹出现后,进一步调节垂直和水平拉簧螺丝,使条纹变粗、变疏,以便于测量。
3、 测量
测量时,利用打气球向气室内打气,读出气压表指示值1p ,然后再缓慢放气,相应地看到有条纹“吐出”或“吞进”(即前面所说条纹变化)。
当“吐出”或“吞进”N =60个条纹时,记录气压表读数2p 值。
然后重复前面的步骤,共取6组数据,求出移过N =60个条纹所对应的气室内压强的变化值
12p p -的6次平均值p ∆.。
4、 计算空气的折射率
气压为p 时的空气的折射率为
p
p
L N n ∆+
=21λ
我们要求测量p 为1个大气压强时空气的折射率。
五、 实验数据及数据处理
室温=t 15 C 0;大气压=
p 760mmHg ;=L 200.0mm ;0.633=λ
nm; =N 60。
1
1
n n σ-=-其中,0.2N σ=,0.6L mm σ=
≈,00.6p mmHg σ=≈,p σ∆=
1.0002780.0000020.0002%n
n n
σ=±⎧⎪
⎨=⎪⎩ 六、 注意事项
1、 点燃激光管需要几千伏直流高压,调节时不要碰到激光管上的电极,以免触电。
强光还会灼伤
眼睛,注意不要让激光直接射入眼睛。
2、不要触摸光学表面。
3、防止小气室及气压表摔坏。
打气时不要超过气压表量程。
4、实验中必须保持安静,尽量避免在实验台附近走动。
七、思考题
本实验能否用白炽灯作光源?
参考答案:
不能。
因为白光干涉条纹数目很少,且波长不是单值的。
因此,不能根据气压变化过程中移动的干涉条纹数目确定气体折射率。