第二十八讲数的整除
第1章 数的整除(知识清单)

第1章 数的整除知识清单【考点剖析】1.⎧⎫⎪⎬⎨⎭⎪⎩正整数自然数整数零负整数;2.整除:整数a 除以整数b ,若除得的商是整数且余数为零. 即称:a 能被b 整除;或b 能整除 a.整除的条件:..⎫⎧⎪⎨⎬⎪⎩⎭除数、被除数都是整数;三整一零商是整数且余数为零整除与除尽的关系.⎧⎧⎪⎨⎨⎩⎪⎩整除:被除数、除数、商整数,且余数为零;区别除尽:被除数、除数、商是整数,没有余数.联系:整除是除尽都是不一定的特殊形式3.因数与倍数:整数a 能被整数b 整除,a 就叫b 的倍数,b 就叫a 的因数(约数).因数与倍数的特征:⎧⎪⎨⎪⎩因数与倍数互相依存;一个整数的因数中最小因数为1,最大因数为它本身一个整数的倍数中最小的倍数是它本身,无最大倍数.4.能被2整除的数2468.⎧⎨⎩偶数(2n);(否则是奇数(2n-1))特征:个位上是0,,,,,能5整除的数的特征:个位上数字是0,5;能同时被2、5整除的数:个位上数字是0.*能被3整除的数:一个整数的各个数位上数字之和能被3整除,这个整数就能被3整除.*能同时被2、3和5整除的数:个位数是0,且各个数位上数字之和能被3整除.5.111.⎧⎪⎨⎪⎩:只有一个因数;正整数素数:只有和它本身两个因数;合数:除了和它本身以外还有别的因数6. ⎧⎪→⎨⎪⎩素因数合数分解素因数分解素因数方法:短除法;树枝分解法;口算法;机算法. 7. ⎧→→⎨⎩定义公因数最大公因数求法:枚举法;分解素因数法;短除法. 8. ⎧⎨⎩互素:指两个整数只有公因数1.这两个整数不一定是素数.区别素数:9.1.→→⎧⎪⎪→→⎨⎪⎪⎩一般方法:倍数公倍数最小公倍数;2.分解素因数法;公倍数最小公倍数最小公倍数的求法 3.短除法.4.特殊情况:两个数互素;两个连续的正整数.10.重要结论:1.a b a b a b ab ⎧⎨⎩若是的因数,则它们的最大公因数为,最小公倍数为;若与互素,则它们的最大公因数为,最小公倍数为。
2018初中数学代数辅导之数的整除

2018初中数学代数辅导之数的整除
数的整除
如果整数A除以整数B(B0)所得的商A/B是整数,那么叫做A被B整除. 0能被所有非零的整数整除. 规律见下表:
除数能被整除的数的特征
2或5 末位数能被2或5整除
4或25 末两位数能被4或25整除
8或125 末三位数能被8或125整除
3或9 各位上的数字和被3或9整除(如771,54324)
11 奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143、1859、908270等)
7、11、13 先去掉数的后三个数字,然后把剩余的数字所表示的数和划去的三位数相减(大数减小数),若差能否被7、11、13整除,这数能被整除(如,3870867先划去867,剩余数3870-867=3002,再划去后面三个数003,剩余数3-3得到的结果0当然能被7、11、13同时整除,所以3870867能够同时被7、11、13整除)。
数的整除知识点总结

数的整除知识点总结导读:数的整除知识点总结1数的整除知识点总结2一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“”;因为符号“∵”,所以的符号“∴”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
【数的整除知识点总结】1.数的整除教学总结反思2.数的整除教案3.数的整除教学反思4.数的整除参考教案5.数的整除的教学反思6.数学数的整除复习题7.能被3整除的数的教学与反思8.数的整除复习优秀教案上文是关于数的整除知识点总结,感谢您的阅读,希望对您有帮助,谢谢。
奥数知识点:数的整除

奥数知识点:数的整除奥数知识点:数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。
如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。
下面小编给大家精心搜集整理的奥数知识点:数的整除,欢迎阅读!奥数知识点:数的整除数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。
(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。
(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。
(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。
(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。
(6)能被7(或11或13)整除的.数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。
(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。
(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。
一、例题与方法指导例1.一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能。
这款数学知识点:数的整除(优秀5篇)

这款数学知识点:数的整除(优秀5篇)在学习、工作乃至生活中,大家都知道一些经典的知识点吧,不同知识点的作用也是不同的。
那么什么样的知识点才更具作用呢?读书之法,在循序而渐进,熟读而精思,下面是勤劳的编辑为大家找到的这款数学知识点:数的整除【优秀5篇】,欢迎借鉴,希望能够帮助到大家。
这款数学知识点:数的整除篇一1. 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。
2. 根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,那么式的整除的意义可以表示为:若f(x)=p(x)×q(x),则称f(x)能被p(x)和q(x)整除例如∵x2-3x-4=(x-4)(x +1),∵x2-3x-4能被(x-4)和(x +1)整除。
显然当x=4或x=-1时x2-3x-4=0,3. 一般地,若整式f(x)含有x –a的因式,则f(a)=0反过来也成立,若f(a)=0,则x-a能整除f(x)。
4. 在二次三项式中若x2+px+q=(x+a)(x+b)=x2+(a+b)x+ab 则p=a+b,q=ab在恒等式中,左右两边同类项的系数相等。
这可以推广到任意多项式。
这款数学知识点:数的整除篇二一、基本概念和符号:1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∵”;二、整除判断方法:1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
三、整除的性质:1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。
数的整除

【小升初奥数知识点讲解】数的整除
数的整除
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。
2、常用符号:整除符号|,不能整除符号;因为符号∵,所以的符号;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。
2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。
3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。
4. 能被3、9整除:各个数位上数字的和能被3、9整除。
5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。
②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。
6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的
数之差能被11整除。
②奇数位上的数字和与偶数位数的数字和的差能被11整除。
③逐次去掉最后一位数字并减去末位数字后能被11整除。
7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的
数之差能被13整除。
②逐次去掉最后一位数字并减去末位数字的9倍后能被13
整除。
三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c 整除。
2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。
3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。
4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。
数字的整除与倍数理解整除和倍数的概念及应用

数字的整除与倍数理解整除和倍数的概念及应用数字的整除与倍数:理解整除和倍数的概念及应用数字整除和倍数是数学中基础而重要的概念,在各种数学问题以及日常生活中都具有广泛的应用。
本文将介绍整除和倍数的基本概念,探讨它们的应用,并通过例题来加深对这两个概念的理解。
1. 整除的概念整除是指一个数能够被另一个数整除,即无余地分成等份。
具体来说,如果一个整数a能够被另一个整数b整除,那么a就是b的倍数,b就是a的因数或除数。
用数学符号表示为b|a,读作“b整除a”,或者a能够被b整除。
2. 整除的判定方法判断一个数能否被另一个数整除有多种方法。
其中常见的方法有两种:除法和取余法。
(1)除法法则:如果a能被b整除,那么a÷b的商是一个整数。
例如,判断28能否被7整除,我们可以计算28÷7,结果为4,是一个整数,说明28能够被7整除。
(2)取余法则:如果a能被b整除,那么a÷b的余数是0。
例如,判断45能否被9整除,我们可以计算45÷9,结果为5,余数为0,说明45能够被9整除。
通过除法和取余法则,我们可以较为准确地判断一个数是否能被另一个数整除。
3. 倍数的概念倍数是指一个数是另一个数的整倍数,即一个数能够被另一个数无余地分成若干等份。
具体来说,如果一个整数a是另一个整数b的倍数,那么b是a的因数或除数。
用数学符号表示为a是b的倍数。
4. 倍数的判定方法判断一个数是否是另一个数的倍数也有多种方法。
与整除相似,常见的方法也有两种:乘法法则和取余法则。
(1)乘法法则:如果a是b的倍数,那么存在一个整数k,使得a=k×b。
例如,判断21是不是3的倍数,我们可以计算21÷3,结果为7,且7是一个整数,说明21是3的倍数。
(2)取余法则:如果a是b的倍数,那么a÷b的余数是0。
例如,判断36是不是6的倍数,我们可以计算36÷6,结果为6,余数为0,说明36是6的倍数。
数 的整除

华罗庚学校数学教材(五年级上)目录上册第01讲数的整除问题第02讲质数、合数和分解质因数第03讲最大公约数和最小公倍数第04讲带余数的除法第05讲奇数与偶数及奇偶性的应用第06讲能被30以下质数整除的数的特征第07讲行程问题第08讲流水行船问题第09讲“牛吃草”问题第10讲列方程解应用题第11讲简单的抽屉原理第12讲抽屉原理的一般表述第13讲染色中的抽屉原理第14讲面积计算第15讲综合题选讲下册第01讲不规则图形面积的计算(一)第02讲不规则图形面积的计算(二)01 第03讲巧求表面积第04讲最大公约数和最小公倍数第05讲同余的概念和性质第06讲不定方程解应用题第07讲从不定方程的整数解谈起第08讲时钟问题第09讲数学游戏第10讲逻辑推理(一)第11讲逻辑推理(二)第12讲容斥原理第13讲简单的统筹规划问题第14讲递推方法第15讲综合题选讲1.有三根绳子,第一根长24米,第二根长36米,第三根长48米,现在要把三根长绳截成长度相等的小段。
每段最长是多少米?一共可以截多少段?2.一张长方形的纸,长40厘米,宽28厘米,要把它裁成正方形纸片,正方形的边长最大可以是几厘米?一共可以裁多少块?3.一个班学生人数不足50人,分别按6、8和12人分组,学生都正好分完。
这个班共有多少人?4.三个朋友每人隔不同的天数到图书馆一次,甲3天一次,乙4天一次,丙5天一次,上次三个人是星期二在图书馆相逢,至少还要过多少天才能在图书馆重逢?重逢时是星期几?5.有一条道路,左边每隔5米种一棵杨树,右边每隔6米种一棵柳树,两端都种上树,连两端共有5处是杨树与柳树相对。
这条道路长多少米?6.从甲地到乙地原来每隔45米要装一根电线杆,加上两端的两根,一共有53根电线杆,现在改成每隔60米装一根电线杆,除两端的两根不需要移动外,中途还有多少根不必移动?7.大雪后的一天,大亮和爸爸共同步测一个圆形花圃的周长,他俩的起点和走的方向完全相同,大亮每步长54厘米,爸爸每步长72厘米,由于两人脚印有重合的,所以各走完一圈后雪地上只留下60个脚印,求花圈的周长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十八讲数的整除能被2、3、5、7、11、13、17、19整除的数的特征能被2整除的数的特征是个位上是偶数,能被3整除的数的特征是所有位数的和是3的倍数(例如:315能被3整除,因为3+1+5=9是3的倍感)能被5整除的数个位上的数为0或5,能被7整除的数的特征若一个整数的个位数字去掉,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=1223-12=11因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
如:判断1284322能不能被13整除。
128432+2×4=12844012844+0×4=128441284+4×4=13001300÷13=100所以,1284322能被13整除。
能被17整除的数的特征把一个整数的个位数字去掉,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
例如:判断1675282能不能被17整除。
167528-2×5=16751816751-8×5=167111671-1×5=1666166-6×5=136到这里如果你仍然观察不出来,就继续……6×5=30,现在个位×5=30>剩下的13,就用大数减去小数,30-13=17,17÷17=1;所以1675282能被17整除。
能被19整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。
如果数字仍然太大不能直接观察出来,就重复此过程数的整除性(一)三、四年级已经学习了能被2,3,5和4,8,9,6以及11整除的数的特征,也学习了一些整除的性质。
这两讲我们系统地复习一下数的整除性质,并利用这些性质解答一些问题。
数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。
(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。
(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。
(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。
(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。
灵活运用以上整除性质,能解决许多有关整除的问题。
例1 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除。
分析与解:分别由能被9,25和8整除的数的特征,很难推断出这个七位数。
因为9,25,8两两互质,由整除的性质(3)知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4。
这个七位数是4735800。
例2由2000个1组成的数111…11能否被41和271这两个质数整除?分析与解:因为41×271=11111,所以由每5个1组成的数11111能被41和271整除。
按“11111”把2000个1每五位分成一节, 2000÷5=400,就有400节,因为2000个1组成的数11…11能被11111整除,而11111能被41和271整除,所以根据整除的性质(1)可知,由2000个1组成的数111…11能被41和271整除。
例3 现有四个数:76550,76551,76552,76554。
能不能从中找出两个数,使它们的乘积能被12整除?分析与解:根据有关整除的性质,先把12分成两数之积:12=12×1=6×2=3×4。
要从已知的四个数中找出两个,使其积能被12整除,有以下三种情况:(1)找出一个数能被12整除,这个数与其它三个数中的任何一个的乘积都能被12整除;(2)找出一个数能被6整除,另一个数能被2整除,那么它们的积就能被12整除;(3)找出一个数能被4整除,另一个数能被3整除,那么它们的积能被12整除。
容易判断,这四个数都不能被12整除,所以第(1)种情况不存在。
对于第(2)种情况,四个数中能被6整除的只有76554,而76550,76552是偶数,所以可以选76554和76550,76554和76552。
对于第(3)种情况,四个数中只有76552能被4整除,76551和76554都能被3整除,所以可以选76552和76551,76552和76554。
综合以上分析,去掉相同的,可知两个数的乘积能被12整除的有以下三组数:76550和76554, 76552和76554, 76551和 76552。
例4在所有五位数中,各位数字之和等于43且能够被11整除的数有哪些?分析与解:从题设的条件分析,对所求五位数有两个要求:①各数位上的数字之和等于43;②能被11整除。
因为能被11整除的五位数很多,而各数位上的数字之和等于43的五位数较少,所以应选择①为突破口。
有两种情况:(1)五位数由一个7和四个9组成;(2)五位数由两个8和三个9组成。
上面两种情况中的五位数能不能被11整除?9,8,7如何摆放呢?根据被11整除的数的特征,如果奇数位数字之和是27,偶数位数字之和是16,那么差是11,就能被11整除。
满足这些要求的五位数是: 97999,99979, 98989。
例5能不能将从1到10的各数排成一行,使得任意相邻的两个数之和都能被3整除?分析与解:10个数排成一行的方法很多,逐一试验显然行不通。
我们采用反证法。
假设题目的要求能实现。
那么由题意,从前到后每两个数一组共有5组,每组的两数之和都能被3整除,推知1~10的和也应能被3整除。
实际上,1~10的和等于55,不能被3整除。
这个矛盾说明假设不成立,所以题目的要求不能实现。
练习51.已知4205和2813都是29的倍数,1392和7018是不是29的倍数?2.如果两个数的和是64,这两个数的积可以整除4875,那么这两个数的差是多少?3.173□是个四位数。
数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。
”问:数学老师先后填入的3个数字之和是多少?班有多少名学生?6.能不能将从1到9的各数排成一行,使得任意相邻的两个数之和都能被3整除?练习51.是。
提示:7018和1392分别是4205与2813的和与差。
2.14。
提示:已知这两个数的积可以整除4875,说明这两个数都是4875的因数。
4875= 3×5×5×5×13,用这些因子凑成两个数,使它们的和是64,显然这两个数是3×13=39和5×5=25。
它们的差是39-25=14。
3.19。
提示:先后填入的三个数依次是7,8,4。
4.123654和321654。
提示:由题意知,b,d,f是偶数,e= 5,所以a,c只能是1和3。
6,进而知f=4,所求数为123654和321654。
5.55人。
提示:总分等于平均分乘以学生人数,因为平均分90=9×10,所以总(人)。
6.不能。
提示:假设能。
因为前两个数的和能被3整除,第2、第3个数的和也能被3整除,所以第1、第3两个数除以3的余数相同。
类似可知,排在第1,3,5,7,9位的数除以3的余数都相同。
在1~9中,除以3的余数相同的数只有3个,不可能有5个。
这个矛盾说明假设不成立。
数的整除性(二)我们先看一个特殊的数——1001。
因为1001=7×11×13,所以凡是1001的整数倍的数都能被7,11和13整除。
能被7,11和13整除的数的特征:如果数A的末三位数字所表示的数与末三位数以前的数字所表示的数之差(大数减小数)能被7或11或13整除,那么数A能被7或11或13整除。
否则,数A就不能被7或11或13整除。
例2 判断306371能否被7整除?能否被13整除?解:因为371-306=65,65是13的倍数,不是7的倍数,所以306371能被13整除,不能被7整除。
例3已知10□8971能被13整除,求□中的数。
解:10□8-971=1008-971+□0=37+□0。
上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8。
2位数进行改写。
根据十进制数的意义,有因为100010001各数位上数字之和是3,能够被3整除,所以这个12位数能被3整除。
根据能被7(或13)整除的数的特征,100010001与(100010-1=)100009要么都能被7(或13)整除,要么都不能被7(或13)整除。
同理, 100009与( 100-9=)91要么都能被7(或13)整除,要么都不能被7(或13)整除。
因为91=7×13,所以100010001能被7和13整除,推知这个12位数能被7和13整除。
分析与解:根据能被7整除的数的特征,555555与999999都能被7因为上式中等号左边的数与等号右边第一个数都能被7整除,所以等号右边第二个数也能被7整除,推知55□99能被7整除。
根据能被7整除的数的特征,□99-55=□44也应能被7整除。
由□44能被7整除,易知□内应是6。
下面再告诉大家两个判断整除性的小窍门。
判断一个数能否被27或37整除的方法:对于任何一个自然数,从个位开始,每三位为一节将其分成若干节,然后将每一节上的数连加,如果所得的和能被27(或37)整除,那么这个数一定能被27(或37)整除;否则,这个数就不能被27(或37)整除。
例6 判断下列各数能否被27或37整除:(1)2673135;(2)8990615496。
解:(1) 2673135=2,673,135,2+673+135=810。
因为810能被27整除,不能被37整除,所以2673135能被27整除,不能被37整除。
(2)8990615496=8,990,615,496,8+990+615+496=2,109。
2,109大于三位数,可以再对2,109的各节求和,2+109=111。