自动控制原理实验报告2

合集下载

自动控制原理实验报告

自动控制原理实验报告

自动控制原理实验报告一、实验目的。

本实验旨在通过实际操作,加深对自动控制原理的理解,掌握PID控制器的调节方法,并验证PID控制器的性能。

二、实验原理。

PID控制器是一种常见的控制器,它由比例环节(P)、积分环节(I)和微分环节(D)三部分组成。

比例环节的作用是根据偏差的大小来调节控制量的大小;积分环节的作用是根据偏差的累积值来调节控制量的大小;微分环节的作用是根据偏差的变化率来调节控制量的大小。

PID控制器通过这三个环节的协同作用,可以实现对被控对象的精确控制。

三、实验装置。

本次实验所使用的实验装置包括PID控制器、被控对象、传感器、执行机构等。

四、实验步骤。

1. 将PID控制器与被控对象连接好,并接通电源。

2. 调节PID控制器的参数,使其逐渐接近理想状态。

3. 对被控对象施加不同的输入信号,观察PID控制器对输出信号的调节情况。

4. 根据实验结果,对PID控制器的参数进行调整,以达到最佳控制效果。

五、实验结果与分析。

经过实验,我们发现当PID控制器的比例系数较大时,控制效果会更为迅速,但会引起超调;当积分系数较大时,可以有效消除稳态误差,但会引起响应速度变慢;当微分系数较大时,可以有效抑制超调,但会引起控制系统的抖动。

因此,在实际应用中,需要根据被控对象的特性和控制要求,合理调节PID控制器的参数。

六、实验总结。

通过本次实验,我们深刻理解了PID控制器的工作原理和调节方法,加深了对自动控制原理的认识。

同时,我们也意识到在实际应用中,需要根据具体情况对PID控制器的参数进行调整,以实现最佳的控制效果。

七、实验心得。

本次实验不仅让我们在理论知识的基础上得到了实践锻炼,更重要的是让我们意识到掌握自动控制原理是非常重要的。

只有通过实际操作,我们才能更好地理解和掌握知识,提高自己的实际动手能力和解决问题的能力。

八、参考文献。

[1] 《自动控制原理》,XXX,XXX出版社,2010年。

[2] 《PID控制器调节方法》,XXX,XXX期刊,2008年。

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告(一、二阶系统的电子模拟及时域响应的动态测试等三个实验)

自动控制原理实验报告作者姓名学科专业机械工程及自动化班级学号X X年10月27日实验一一、二阶系统的电子模拟及时域响应的动态测试一、实验目的1、了解一、二阶系统阶跃响应及其性能指标与系统参数之间的关系。

2、学习在电子模拟机上建立典型环节系统模型的方法。

3、学习阶跃响应的测试方法。

二、实验内容1、建立一阶系统的电子模型,观测并记录在不同时间常数T时的跃响应曲线,并测定其过渡过程时间TS。

2、建立二阶系统的电子模型,观测并记录在不同阻尼比ζ时的跃响应曲线,并测定其超调量σ%及过渡过程时间TS。

三、实验原理1、一阶系统阶跃响应性能指标的测试系统的传递函数为:()s()1C s KR s Ts φ=+()=模拟运算电路如下图:其中21R K R =,2T R C =;在实验中,始终保持21,R R =即1K =,通过调节2R 和C 的不同取值,使得T 的值分别为0.25,0.5,1。

记录实验数据,测量过度过程的性能指标,其中按照经验公式取3s t T=2、二阶系统阶跃响应性能指标的测试系统传递函数为:令ωn=1弧度/秒,则系统结构如下图:二阶系统的模拟电路图如下:在实验过程中,取22321,1R C R C ==,则442312R R C R ζ==,即4212R C ζ=;在实验当中取123121,1R R R M C C F μ===Ω==,通过调整4R 取不同的值,使得ζ分别为0.25,0.5,1;记录所测得的实验数据以及其性能指标,其中经验公式为3.5%100%,s net σζω=⨯=.四、试验设备:1、HHMN-1型电子模拟机一台。

2、PC机一台。

3、数字万用表一块。

4、导线若干。

五、实验步骤:1、熟悉电子模拟机的使用,将各运算放大器接成比例器,通电调零。

2、断开电源,按照实验说明书上的条件和要求,计算电阻和电容的取值,按照模拟线路图搭接线路,不用的运算放大器接成比例器。

3、将D/A输出端与系统输入端Ui连接,将A/D1与系统输出端UO连接(此处连接必须谨慎,不可接错)。

自控原理实验报告

自控原理实验报告

自动控制原理实验报告目录2.2典型环节模拟电路及其数学模型1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.1典型二阶系统模拟电路及其动态性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据纪录3.4三阶控制系统的稳定性分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.5基于Matlab告诫控制系统的时域响应动态性能分析1. 实验目的2. 实验内容3. 实验数据纪录4.1基于Matlab控制系统的根轨迹及其性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录5.4 基于MATLAB控制系统的博德图及其频域分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录2.2典型环节模拟电路及其数学模型1.实验目的1)掌握典型环节模拟电路的构成,学习运用模拟电子组件构造控制系统。

2)观察和安装个典型环节的单位节阶跃响应曲线,掌握它们各自特性。

3)掌握各典型环节的特性参数的测量方法,并根据阶跃响应曲线建立传递函数。

2.实验原理本实验通过实验测试法建立控制系统的实验模型。

实验测试法是人为地给系统施加某种测试信号,记录基本输出响应,并用适当的数学模型区逼近。

常用的实验测试法有三种:时域测试法,频域测试法和统计相关测试法。

通过控制系统的时域测试,可以测量系统的静态特性和动态特性指标。

静态特性是指系统稳态是的输入与输出的关系,用静态特性参数来表征,如增益和稳态误差。

动态性能指标是表征系统输入一定控制信号,输出量随时间变化的响应,常用的动态性能指标有超调量、调节时间、上升时间、峰值时间和振荡次数等。

静态特性可以采用逐点测量法,及给新一个输入量,新颖测量被控对象的一个稳态输出量,利用一组数据绘出静态特性曲线求出其斜率,就可以确定被测对象的增益。

动态特性可以采用阶跃响应或脉冲响应测试法,给定被测对象施加阶跃输入信号或脉冲信号,利用示波器或记录仪测量被测对象的输出响应,如为使测量尽可能的得到理想的数学模型,应注意以下几点:1)被测对象应处于实际经常使用的负荷情况,并且在较为稳定的状态下进行测试。

自动控制原理 matlab实验报告

自动控制原理 matlab实验报告

自动控制原理实验(二)一、实验名称:基于MATLAB的控制系统频域及根轨迹分析二、实验目的:(1)、了解频率特性的测试原理及方法;(2)、理解如何用MATLAB对根轨迹和频率特性进行仿真和分析;(3)、掌握控制系统的根轨迹和频率特性两大分析和设计方法。

三、实验要求:(1)、观察给定传递函数的根轨迹图和频率特性曲线;(2)、分析同一传递函数形式,当K值不同时,系统闭环极点和单位阶跃响应的变化情况;(3)、K值的大小对系统的稳定性和稳态误差的影响;(4)、分析增加系统开环零点或极点对系统的根轨迹和性能的影响。

四、实验内容及步骤(1)、实验指导书:实验四(1)、“rlocus”命令来计算及绘制根轨迹。

会出根轨迹后,可以交互地使用“rlocfind”命令来确定点击鼠标所选择的根轨迹上任意点所对应的K值,K值所对应的所有闭环极点值也可以使用形如“[K, PCL] = rlocfind(G1)”命令来显示。

(2)、波特图:bode(G1, omga)另外,bode图还可以通过下列指令得出相位和裕角:[mag,phase,w] = bode(sys)(3)、奈奎斯特图:nuquist(G, omega)(2)课本:例4-1、4-2、4-7五实验报告要求(1)、实验指导书:实验四思考题请绘制下述传递函数的bode图和nyquist图。

1. 根据实验所测数据分别作出相应的幅频和相频特性曲线;2. 将思考题的解题过程(含源程序)写在实验报告中。

幅频特性曲线相频特性曲线Gs = zpk([10], [-5; -16; 9], 200)subplot(1, 2, 1)bode(Gs)gridsubplot(1, 2, 2)nyquist(Gs)grid(2)课本:例4-1、4-2、4-7图像结果:程序:Gs = zpk([-1], [0; -2; -3],1) rlocus(Gs)图像结果:程序:Gs = zpk([-2], [-1-j; -1+j],1) rlocus(Gs)程序:K=[0.5 1 2]for i=1:1:3num=[1,1,0,0]; den=[1,1,K(i)]; sys=tf(num,den); rlocus(sys); hold ongrid onend图像结果:目标:改变增益K和转折频率依次调节源程序:k1=[4.44,10,20];num=[1,2];den=conv([1,1],[1,2,4]);%一阶转折频率 1/T(wn1=2,wn2=1)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 num1=[1,1];den1=conv([1,2],[1,2,4]);%一阶转折频率 1/T(wn1=1,wn2=2)二阶转折频率 wn3=wn'=2,伊布西塔=1/2 t=[0:0.1:7]; %for i=1:3g0=tf(k1(i)*num,den);g=feedback(g0,1);[y,x]=step(g,t);c(:,i)=y;g1=tf(k1(i)*num1,den1);g(1)=feedback(g1,1);[y1,x]=step(g(1),t);c1(:,i)=y1;endplot(t,c(:,1),'-',t,c(:,2),'-',t,c(:,3),'-',t,c1(:,1),'-',t,c1(:,2), '-',t,c1(:,3),'-');gridxlabel('Time/sec'),ylabel('out')结果分析:在本题中(1)改变k值:k值越大,超调量越大,调节时间越长,峰值时间越短,稳态误差越小(2)改变转折频率:超调量,调节时间,峰值时间,稳态误差同样有相应的变化。

自控原理实验报告

自控原理实验报告

一、实验目的1. 理解并掌握自动控制原理的基本概念和基本分析方法。

2. 掌握典型环节的数学模型及其在控制系统中的应用。

3. 熟悉控制系统的时间响应和频率响应分析方法。

4. 培养实验操作技能和数据处理能力。

二、实验原理自动控制原理是研究控制系统动态性能和稳定性的一门学科。

本实验主要涉及以下几个方面:1. 典型环节:比例环节、积分环节、微分环节、惯性环节等。

2. 控制系统:开环控制系统和闭环控制系统。

3. 时间响应:阶跃响应、斜坡响应、正弦响应等。

4. 频率响应:幅频特性、相频特性等。

三、实验内容1. 典型环节的阶跃响应- 比例环节- 积分环节- 比例积分环节- 比例微分环节- 比例积分微分环节2. 典型环节的频率响应- 幅频特性- 相频特性3. 二阶系统的阶跃响应- 上升时间- 调节时间- 超调量- 峰值时间4. 线性系统的稳态误差分析- 偶然误差- 稳态误差四、实验步骤1. 典型环节的阶跃响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用示波器观察并记录各个环节的阶跃响应曲线。

- 分析并比较各个环节的阶跃响应曲线,得出结论。

2. 典型环节的频率响应- 搭建比例环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的实验电路。

- 使用频率响应分析仪测量各个环节的幅频特性和相频特性。

- 分析并比较各个环节的频率响应特性,得出结论。

3. 二阶系统的阶跃响应- 搭建二阶系统的实验电路。

- 使用示波器观察并记录二阶系统的阶跃响应曲线。

- 计算并分析二阶系统的上升时间、调节时间、超调量、峰值时间等性能指标。

4. 线性系统的稳态误差分析- 搭建线性系统的实验电路。

- 使用示波器观察并记录系统的稳态响应曲线。

- 计算并分析系统的稳态误差。

五、实验数据记录与分析1. 典型环节的阶跃响应- 比例环节:K=1,阶跃响应曲线如图1所示。

- 积分环节:K=1,阶跃响应曲线如图2所示。

自动控制原理实验报告 (2)

自动控制原理实验报告 (2)

实验一 典型环节的模拟研究及阶跃响应分析1、比例环节可知比例环节的传递函数为一个常数:当Kp 分别为0.5,1,2时,输入幅值为1.84的正向阶跃信号,理论上依次输出幅值为0.92,1.84,3.68的反向阶跃信号。

实验中,输出信号依次为幅值为0.94,1.88,3.70的反向阶跃信号, 相对误差分别为1.8%,2.2%,0.2%. 在误差允许范围内可认为实际输出满足理论值。

2、 积分环节积分环节传递函数为:(1)T=0.1(0.033)时,C=1μf (0.33μf ),利用MATLAB ,模拟阶跃信号输入下的输出信号如图: T=0.1 T=0.033与实验测得波形比较可知,实际与理论值较为吻合,理论上T=0.033时的波形斜率近似为T=0.1时的三倍,实际上为8/2.6=3.08,在误差允许范围内可认为满足理论条件。

3、 惯性环节惯性环节传递函数为:if i o R RU U -=TS1CS R 1Z Z U U i i f i 0-=-=-=1TS K)s (R )s (C +-=K = R f /R 1,T = R f C,(1) 保持K = R f /R 1 = 1不变,观测T = 0.1秒,0.01秒(既R 1 = 100K,C = 1μf ,0.1μf )时的输出波形。

利用matlab 仿真得到理论波形如下: T=0.1时 t s (5%)理论值为300ms,实际测得t s =400ms 相对误差为:(400-300)/300=33.3%,读数误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近。

T=0.01时t s (5%)理论值为30ms,实际测得t s =40ms 相对误差为:(40-30)/30=33.3%由于ts 较小,所以读数时误差较大。

K 理论值为1,实验值2.12/2.28,相对误差为(2.28-2.12)/2.28=7%与理论值较为接近(2) 保持T = R f C = 0.1s 不变,分别观测K = 1,2时的输出波形。

自动控制原理实验报告

自动控制原理实验报告

学生实验报告PID 控制器是一种线性控制器,它根据给定值()t r 与实际输出值()t y 构成控制偏差()t e()()()t y t r t e -=(2.2.1)将偏差的比例()P 、积分()I 和微分()D 通过线性组合构成控制量,对被控对象进行控制,故称PID 控制器。

其控制规律为()()()()⎥⎦⎤⎢⎣⎡++=⎰dt t de T dt t e T t e K t u D tp 011(2.2.2)或写成传递函数的形式()()()⎪⎪⎭⎫ ⎝⎛++==s T s T K s E s U s G D p 111(2.2.3) 式中:p K ——比例系数;I T ——积分时间常数;D T ——微分时间常数。

在控制系统设计和仿真中,也将传递函数写成()()()sK s K s K s K s K K s E s U s G I p D D Ip ++=++==2(2.2.4) 式中:P K ——比例系数;I K ——积分系数;D K ——微分系数。

上式从根轨迹角度看,相当于给系统增加了一个位于原点的极点和两个位置可变的零点。

简单说来,PID 控制器各校正环节的作用如下:A 、比例环节:成比例地反映控制系统的偏差信号()t e ,偏差一旦产生,控制器立即产生控制作用,以减少偏差。

B 、积分环节:主要用于消除稳态误差,提高系统的型别。

积分作用的强弱取决于积分时间常数I T ,I T 越大,积分作用越弱,反之则越强。

C 、微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号值变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减小调节时间。

2、 PID 参数的确定方法 (1) 根轨迹法确定PID 参数 PID 的数学模型可化为:()s K s K s K s G IP D ++=2从仿真曲线看出未校正系统震荡不稳定。

设球杆系统PID 校正的结构图为如图2.2.5 示:要求采用凑试法设计PID校正环节,使系统性能指标达到调节时间小于令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.1,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.4,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.5,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:令Kp=2.6,Ki=1.2,Kd=1.5,SampleTime=-1,位移响应曲线如下:PID参数整定:Time Offset(s) Kp Ki Kd SampleTime sT(s) %5 2.5 0.9 1.5 -1 23 4%学生实验报告从仿真曲线看出未校正系统震荡不稳定。

自控实验报告实验二

自控实验报告实验二

自控实验报告实验二一、实验目的本次自控实验的目的在于深入理解和掌握控制系统的性能指标以及相关参数对系统性能的影响。

通过实验操作和数据分析,提高我们对自控原理的实际应用能力,培养解决实际问题的思维和方法。

二、实验设备本次实验所使用的设备主要包括:计算机一台、自控实验箱一套、示波器一台、信号发生器一台以及相关的连接导线若干。

三、实验原理在本次实验中,我们主要研究的是典型的控制系统,如一阶系统和二阶系统。

一阶系统的传递函数通常表示为 G(s) = K /(Ts + 1),其中 K 为增益,T 为时间常数。

二阶系统的传递函数则可以表示为 G(s) =ωn² /(s²+2ζωn s +ωn²),其中ωn 为无阻尼自然频率,ζ 为阻尼比。

通过改变系统的参数,如增益、时间常数、阻尼比等,观察系统的输出响应,从而分析系统的稳定性、快速性和准确性等性能指标。

四、实验内容与步骤1、一阶系统的阶跃响应实验按照实验电路图连接好实验设备。

设置不同的时间常数 T 和增益 K,通过信号发生器输入阶跃信号。

使用示波器观察并记录系统的输出响应。

2、二阶系统的阶跃响应实验同样按照电路图连接好设备。

改变阻尼比ζ 和无阻尼自然频率ωn,输入阶跃信号。

用示波器记录输出响应。

五、实验数据记录与分析1、一阶系统当时间常数 T = 1s,增益 K = 1 时,系统的输出响应呈现出一定的上升时间和稳态误差。

随着时间的推移,输出逐渐稳定在一个固定值。

当 T 增大为 2s,K 不变时,上升时间明显变长,系统的响应速度变慢,但稳态误差基本不变。

2、二阶系统当阻尼比ζ = 05,无阻尼自然频率ωn = 1rad/s 时,系统的输出响应呈现出较为平稳的过渡过程,没有明显的超调。

当ζ 减小为 02,ωn 不变时,系统出现了较大的超调,调整时间也相应变长。

通过对实验数据的分析,我们可以得出以下结论:对于一阶系统,时间常数 T 越大,系统的响应速度越慢;增益 K 主要影响系统的稳态误差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理课程实验
2010-2011学年第一学期
02020801班
张驰2008300566
✧ 课本实验内容
6-26 热轧厂的主要工序是将炽热的钢坯轧成具有预定厚度和尺度的钢板,所得到的最终产品之一是宽为3300mm 、厚为180mm 的标准板材。

他有两台主要的辊轧台:1号台与2号台。

辊轧台上装有直径为508mm 的大型辊轧台,由4470km 大功率电机驱动,并通过大型液压缸来调节轧制宽度和力度。

热轧机的典型工作流程是:钢坯首先在熔炉中加热,加热后的钢坯通过1号台,被辊轧机轧制成具有预期宽度的钢坯,然后通过2号台,由辊轧机轧制成具有与其厚度的钢板,最后再由热整平设备加以整平成型。

热轧机系统控制的关键技术是通过调整热轧机的间隙来控制钢板的厚度。

热轧机控制系统框图如下:
扰动)(s N )(s R
(1)已知)54(/)(20++=s s s s s G ,而)(s G c 为具有两个相同实零点的PID 控制器。

要求:选择PID 控制器的零点和增益,使闭环系统有两对对等的特征根;
(2)考察(1)中得到的闭环系统,给出不考虑前置滤波器)(s G P 与配置适当)(s G P 时,系统的单位阶跃响应;
(3)当)(s R =0,)(s N =1/s 时,计算系统对单位阶跃扰动的响应。

✧ 求解过程
解:(1)已知
)54(/)(20++=s s s s s G
)(s G P )(s G C )(0s G
选择 s z s K s G c /)()(2+=
当取K=4,Z=1.25时,有
s s s s s G c 4/25.610/)25.1(4)(2++=+= 系统开环传递函数
)54(/)25.1(4)()(2220+++=s s s s s G s G c 闭环传递函数:)25.61094/()5625.15.2(4))()(1/()()()(2
34200++++++=+=s s s s s s s G s G s G s G s c c φ (2) 当不考虑前置滤波器时,单位阶跃输入作用下的系统输出
)25.61094(/)5625.15.2(4)()()(2342++++++==s s s s s s s s R s s C φ
系统单位阶跃响应如图1中(1)中实线所示。

当考虑前置滤波器时,选 2)25.1/(5625.1)(+=s s G p
则系统在单位阶跃输入作用下的系统输出
)25.61094(/25.6)()()()(234++++==s s s s s s R s s G s C p φ
系统单位阶跃曲线如图1中(1)虚线所示。

(3)当)(s R =0,)(s N =1/s 时,扰动作用下的闭环传递函数
)25.61094/())()(1/()()(23400++++-=+-=s s s s s s G s G s G s c n φ
系统输出 )25.61094/(1)()()(2
34++++-==s s s s s N s s C n n φ 单位阶跃响应曲线如图1中(2)所示。

MATLAB 程序代码:
MA TLAB 程序:exe626.m
K=4;z=1.25;
G0=tf(1,conv([1,0],[1,4,5]));
Gc=tf(K*conv([1,z],[1,z]),[1,0]);
Gp=tf(1.5625,conv([1,z],[1,z]));
G1=feedback(Gc*G0,1);
G2=series(Gp,G1);
G3=-feedback(G0,Gc);
t=0:0.01:10;
[x,y]=step(G1,t);[x1,y1]=step(G2,t);
figure(1);plot(t,x,'-',t,x1,':');grid
figure(2);step(G3,t);grid
MATLAB仿真
图1:输入响应
图2扰动响应。

相关文档
最新文档