大物习题解答-大学物理习题答案(许瑞珍_贾谊明)-第3章 刚体力学
大学物理第二版 许瑞珍 贾谊明 编著 课后答案 1-3章

第一章 质点的运动1-1 已知质点的运动方程为:,。
式中x 、y 的单位为m ,t 的单位为s。
试求:(1) 初速度的大小和方向;(2) 加速度的大小和方向。
23010t t x +-=22015t t y -=分析 由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为t t xx 6010d d +-==v t ty y 4015d d -==v当t =0 时, v o x =-10 m·s-1 , v o y =15 m·s-1 ,则初速度大小为120200s m 0.18-⋅=+=y x v v v设v o 与x 轴的夹角为α,则23tan 00-==xy αv vα=123°41′(2) 加速度的分量式为2s m 60d d -⋅==ta xx v , 2s m 40d d -⋅-==t a y y v则加速度的大小为222s m 1.72-⋅=+=y x a a a设a 与x 轴的夹角为β,则32tan -==x ya a β β=-33°41′(或326°19′)1-2 一石子从空中由静止下落,由于空气阻力,石子并非作自由落体运动。
现测得其加速度a =A-B v ,式中A 、B 为正恒量,求石子下落的速度和运动方程。
分析 本题亦属于运动学第二类问题,与上题不同之处在于加速度是速度v 的函数,因此,需将式d v =a (v )d t 分离变量为t a d )(d =v v后再两边积分. 解 选取石子下落方向为y 轴正向,下落起点为坐标原点.(1) 由题意知 v vB A ta -==d d (1) 用分离变量法把式(1)改写为t B A d d =-vv(2)将式(2)两边积分并考虑初始条件,有⎰⎰=-t t B A 0d d d 0v vvvv得石子速度 )1(Bt e BA--=v 由此可知当,t →∞时,BA→v 为一常量,通常称为极限速度或收尾速度. (2) 再由)1(d d Bt e BAt y --==v 并考虑初始条件有 t e BA y t Bt y d )1(d 00⎰⎰--= 得石子运动方程)1(2-+=-Bt e BAt B A y1-3 一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即a = - k v 2,k 为常数。
刚体力学基础 习题 解答

衡水学院 理工科专业 《大学物理B 》 刚体力学基础 习题命题教师:郑永春 试题审核人:张郡亮一、填空题(每空1分)1、三个质量均为m 的质点,位于边长为a 的等边三角形的三个顶点上。
此系统对通过三角形中心并垂直于三角形平面的轴的转动惯量J 0=__ ma 2 _,对通过三角形中心且平行于其一边的轴的转动惯量为J A =__12ma 2_,对通过三角形中心和一个顶点的轴的转动惯量为J B =__21ma 2 。
2、两个质量分布均匀的圆盘A 和B 的密度分别为ρA 和ρ B (ρA >ρB ),且两圆盘的总质量和厚度均相同。
设两圆盘对通过盘心且垂直于盘面的轴的转动惯量分别为J A 和J B ,则有J A < J B 。
3、 一作定轴转动的物体,对转轴的转动惯量J =3.0 kg ·m 2,角速度ω0=6.0 rad/s .现对物体加一恒定的制动力矩M =-12 N ·m ,当物体的角速度减慢到ω=2.0 rad/s 时,物体已转过了角度∆θ =__4.0rad4、两个滑冰运动员的质量各为70 kg ,均以6.5 m/s 的速率沿相反的方向滑行,滑行路线间的垂直距离为10 m ,当彼此交错时,各抓住一10 m 长的绳索的一端,然后相对旋转,则抓住绳索之后各自对绳中心的角动量L =__2275 kg·m 2·s 1 _;它们各自收拢绳索,到绳长为5 m 时,各自的速率υ =__13 m·s 1_。
5、有一质量均匀的细棒,可绕垂直于棒的一端的水平轴转动。
如将此棒放在水平位置,然后任其下落,则在下落过程中的角速度大小将 变大 ,角加速度大小将 变小 。
二、单项选择题(每小题2分)( A )1、有两个力作用在一个有固定转轴的刚体上,下列说法正确的是:A.这两个力都平行于轴作用时,它们对轴的合力矩一定是零;B.这两个力都垂直于轴作用时,它们对轴的合力矩一定是零;C.当这两个力的合力为零时,它们对轴的合力矩也一定是零;D.当这两个力对轴的合力矩为零时,它们的合力也一定是零。
大学物理第三章刚体力学基础习题答案

方向竖直向下
3-15 由角动量守恒得
mul J mvl 1 1 2 1 2 2 mu m v J 因弹性碰撞,系统机械能守恒: 2 2 2 1 1 2 2 又: J M 2l Ml 12 3 6mu M 3m u 联立可得: v M 3m l M 3m
2 2 2 1 mv l [m( l ) M l 2 ] 3 3 3
o
2 l 3
6mv (4m 3M ) l
v
m
A
3-9 电风扇在开启电源后,经过t1时间到达了额定 转速,此时相应的角速度为 0。当关闭电源后,经 过t2时间风扇停转。已知风扇转子的转动惯量为 J, 并假定摩擦力矩和电机的电磁力矩均为常量,试根据 已知量推算电机的电磁力矩。 解: 设电机的电磁力矩为M,摩擦力矩为Mf
1
0
t1
3-9 (1)
mg T ma
T mg sin 30 ma
g 2 a m/s 4
方向竖直向下
T2 N 2
mg
(2)
mg T1 ma
T2 mg sin 300 ma
T1r T2r J
a r
T1
1
mg
J k m r2
g 联立求解得: a 22 k
质点运动 m 质 量 力 F 刚体定轴转动 2 J r 转动惯量 m dm 力矩 M Fr sin
dp dL F m a F 第二定律 转动定律 M J M dt dt p mv 动 量 角动量 L J t t2 动量定理 t Fdt mv2 mv1 角动量定理 t Mdt J 2 J1 1 动量守恒 F 0, mv 恒矢量 角动量守恒 M 0, J 恒矢量 力矩的功 W Md 力 的 功 W F dr
大学物理学(第三版上) 课后习题3答案详解

习题33.1选择题(1) 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02ωmRJ J+ (B) 02)(ωR m J J + (C)02ωmRJ(D) 0ω [答案: (A)](2) 如题3.1(2)图所示,一光滑的内表面半径为10cm 的半球形碗,以匀角速度ω绕其对称轴OC 旋转,已知放在碗内表面上的一个小球P 相对于碗静止,其位置高于碗底4cm ,则由此可推知碗旋转的角速度约为 (A)13rad/s (B)17rad/s (C)10rad/s (D)18rad/s(a) (b)题3.1(2)图[答案: (A)](3)如3.1(3)图所示,有一小块物体,置于光滑的水平桌面上,有一绳其一端连结此物体,;另一端穿过桌面的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔缓慢往下拉,则物体 (A )动能不变,动量改变。
(B )动量不变,动能改变。
(C )角动量不变,动量不变。
(D )角动量改变,动量改变。
(E )角动量不变,动能、动量都改变。
[答案: (E)]3.2填空题(1) 半径为30cm 的飞轮,从静止开始以0.5rad·s -2的匀角加速转动,则飞轮边缘上一点在飞轮转过240˚时的切向加速度a τ= ,法向加速度a n=。
[答案:0.15; 1.256](2) 如题3.2(2)图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O转动,今有一子弹沿着与水平面成一角度的方向击中木球而嵌于其中,则在此击中过程中,木球、子弹、细棒系统的守恒,原因是。
木球被击中后棒和球升高的过程中,对木球、子弹、细棒、地球系统的守恒。
题3.2(2)图[答案:对o轴的角动量守恒,因为在子弹击中木球过程中系统所受外力对o轴的合外力矩为零,机械能守恒](3) 两个质量分布均匀的圆盘A和B的密度分别为ρA和ρB (ρA>ρB),且两圆盘的总质量和厚度均相同。
大学物理五第三章习题答案

第三章 刚体的转动习题答案1、对于定轴转动刚体上不同的点来说:线速度、法向加速度、切向加速度具有不同的值,角位移、角速度、角加速度具有相同的值。
2、由sin M r F Fr θ=⨯=可知,(1)0,0F M ≠=,当0r =或者sin 0θ=,即力通过转轴或者力与转轴平行; (2)0,0F M =≠,这种情况不存在; (3)0,0F M ==,这种情况任何时候都存在。
3、根据均匀圆盘对中心轴的转动惯量:221122I mr vr ρ==可知,对于相同几何形状的铁盘和铝盘,密度大的转动惯量大。
通常我们取铁的密度为37.9/g cm ,铝的密度32.7/g cm ,因此铁盘对中心轴的转动惯量大;根据刚体动能定理:21222111d 22A M I I θθθωω==-⎰,可知对铁盘的外力矩要做更多的功。
4、轮A 的转动惯量212I mr =,轮B 的转动惯量2I mr =,根据刚体的转动定律M I β=,因为两者所受的阻力矩相等,可知轮A 的转动角加速度大于轮B 的转动角加速度,故轮A 先停止。
5、舞蹈演员在旋转过程中,可以近似地认为角动量守恒,当其把双手靠近身体时,转动惯量减小,故角速度增大;当其把双手伸开,转动惯量增大,故角速度减小。
6、解:2334d a bt ct dtθω==+-, 2612d b t c t dtωβ==-。
7、解:11200240/60rad s πωπ⨯==,22700290/60rad s πωπ⨯==, 2215025/126rad s t ωωππβ-===∆, 2117803902t t n θωβπ=+==。
8、解:根据均匀球体对直径轴的转动惯量225I mr =,得到地球对自转轴的转动惯量3729.810I kg m =⨯⋅,地球自转角速度2/246060rad s πω=⨯⨯,转动动能22813102k E I J ω==⨯。
9、解:已知030/rad s ωπ=,切断电源后的角位移752150θππ=⨯=,根据匀减速运动规律2220023/2rad s ωωβθβπθ=⇒==,由于电扇是匀减速,可知阻力矩为常量,因此根据刚体转动动能定理22101144.422M I I J θωω=-=-, 可得到转动惯量2244.420.01I kg m ω⨯==⋅,以及阻力矩44.40.1150M N m π=≈⋅。
大学物理第3章-刚体力学习题解答

大学物理第3章-刚体力学习题解答第3章 刚体力学习题解答3.13 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=。
求t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω3.14桑塔纳汽车时速为166km/h ,车轮滚动半径为0.26m ,发动机转速与驱动轮转速比为0.909, 问发动机转速为每分多少转?解:设车轮半径为R=0.26m ,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。
显然,汽车前进的速度就是驱动轮边缘的线速度,909.0/2212Rn Rn v ππ==,所以:min/1054.1/1024.93426.014.3210166909.02909.013rev h rev n R v ⨯=⨯===⨯⨯⨯⨯π3.15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1和r 2,求对通过其中心轴的转动惯量。
解:设圆柱体长为h ,则半径为r ,厚为dr 的薄圆筒的质量dm 为:2..dm h r dr ρπ=对其轴线的转动惯量dI z 为232..z dI r dm h r dr ρπ==212222112..()2r z r I h r r dr m r r ρπ==-⎰ 3.17 如题3-17图所示,一半圆形细杆,半径为,质量为,求对过细杆二端轴的转动惯量。
解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+和问题的对称性知:圆形细杆对过轴的转动惯量为12mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端轴的转动惯量为:214AA I mR '=3.18 在质量为M ,半径为R 的匀质圆盘上挖出半径为r 的两个圆孔,圆孔中心在半径R 的中点,求剩余部分对过大圆盘中心且与盘面垂直的轴线的转动惯量。
大学物理第三章 部分课后习题答案

大学物理第三章 课后习题答案3-1 半径为R 、质量为M 的均匀薄圆盘上,挖去一个直径为R 的圆孔,孔的中心在12R 处,求所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量。
分析:用补偿法(负质量法)求解,由平行轴定理求其挖去部分的转动惯量,用原圆盘转动惯量减去挖去部分的转动惯量即得。
注意对同一轴而言。
解:没挖去前大圆对通过原圆盘中心且与板面垂直的轴的转动惯量为:2112J MR =① 由平行轴定理得被挖去部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2222213()()2424232c M R M R J J md MR =+=⨯⨯+⨯= ②由①②式得所剩部分对通过原圆盘中心且与板面垂直的轴的转动惯量为:2121332J J J MR =-=3-2 如题图3-2所示,一根均匀细铁丝,质量为M ,长度为L ,在其中点O 处弯成120θ=︒角,放在xOy 平面内,求铁丝对Ox 轴、Oy 轴、Oz 轴的转动惯量。
分析:取微元,由转动惯量的定义求积分可得 解:(1)对x 轴的转动惯量为:2022201(sin 60)32Lx M J r dm l dl ML L ===⎰⎰ (2)对y 轴的转动惯量为:20222015()(sin 30)32296Ly M L M J l dl ML L =⨯⨯+=⎰(3)对Z 轴的转动惯量为:22112()32212z M L J ML =⨯⨯⨯=3-3 电风扇开启电源后经过5s 达到额定转速,此时角速度为每秒5转,关闭电源后经过16s 风扇停止转动,已知风扇转动惯量为20.5kg m ⋅,且摩擦力矩f M 和电磁力矩M 均为常量,求电机的电磁力矩M 。
分析:f M ,M 为常量,开启电源5s 内是匀加速转动,关闭电源16s 内是匀减速转动,可得相应加速度,由转动定律求得电磁力矩M 。
解:由定轴转动定律得:1f M M J β-=,即11252520.50.5 4.12516f M J M J J N m ππβββ⨯⨯=+=+=⨯+⨯=⋅ 3-4 飞轮的质量为60kg ,直径为0.5m ,转速为1000/min r ,现要求在5s 内使其制动,求制动力F ,假定闸瓦与飞轮之间的摩擦系数0.4μ=,飞轮的质量全部分布在轮的外周上,尺寸如题图3-4所示。
大学物理答案 3.第三章

第三章 质点系统的运动规律思考题3-19 在地球表面附近将物体以足够速度发射出去,物体可能以稳定轨道环绕地球运行,这就是所谓的“人造地球卫星”。
试估算物体能够环绕地球所需的最小发射速度(第一宇宙速度)。
分析:将地球与物体看成一个封闭系统,系统不受外力,机械能守恒。
答:物体被抛出后以稳定的轨道环绕地球运动,那么物体所受到的重力提供物体环绕地球运动的向心力:2v mg m R =. 此时,系统的机械能为:212mgR mv +初始时刻(物体被发射时)系统的机械能为:2012mgR mv + (R 为地球半径)所以,07.9/v v m s =≈ (第一宇宙速度)3-20 无风天气放烟花时,烟花质心的运动轨道如何?若将全部烟花微粒看作一组初速度相同,抛射监不同的斜抛运动,试证明在任何时刻所有烟花微粒都分布在同一球面上。
分析:这是一个质点组的问题。
将所有的烟花颗粒看成一个质点组系统,在无风天气,这个质点组系统爆炸之后只受到重力的作用,没有其他外力作用。
本题采用质心系分析起来比较方便。
答:无风天气放烟花,说明烟花爆炸后除重力以外,不再受其它外力的作用。
那么烟花爆炸时,有一个爆炸力,使烟花产生一个向斜上方的运动速度,其后只受重力的作用,所以烟花质心的运动轨道为一抛物线,烟花质心作的是斜抛运动。
**此处应为初速率相同。
我们选取烟花爆炸点作为坐标原点,建立直角坐标系。
假设初速率为v 0,它与水平面(XOY)的夹角为α,与XOZ 平面的夹角为β。
当抛射角不同时,角度α与β不同。
在直角坐标系中的初始速度分量分别为:αβαβαsin sin cos cos cos 000000v v v v v v z y x === 各个烟花微粒在水平方向(x 和y 方向)不受力,作匀速直线运动,在竖直方向受重力,作竖直上(或下)抛运动(即匀减速直线运动)。
烟花爆炸t 时间后,位移分别为:2020000021sin 21sin cos cos cos gt t v gt t v z t v t v y t v t v x z y x -=-=====αβαβα202222)()21( x t v gt z y =+++∴轨迹方程: 所以,在任何时刻,烟花微粒全部分布在一个以)21- 0, ,0(2gt 为中心,半径为t v 0的球面上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 刚体力学3-1 一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量。
若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转? 解:(1)由题可知:阻力矩ωC M -=,又因为转动定理 dtd JJ M ωβ== dtd JC ωω=-∴ dt JC d t ⎰⎰-=∴00ωωωω t JC-=0lnωω t JCe-=0ωω当021ωω=时,2ln CJt =。
(2)角位移⎰=tdt 0ωθ⎰-=2ln 00C J t JC dt eωCJ 021ω=,所以,此时间内转过的圈数为CJ n πωπθ420==。
3-2 质量面密度为σ的均匀矩形板,试证其对与板面垂直的,通过几何中心的轴线的转动惯量为)(1222b a ab J +σ=。
其中a ,b 为矩形板的长,宽。
证明一:如图,在板上取一质元dxdy dm σ=,对与板面垂直的、通过几何中心的轴线的转动惯量为 dm r dJ ⎰=2dxdy y x a a b b σ⎰⎰--+=222222)()(1222b a ab +=σ证明二:如图,在板上取一细棒bdx dm σ=,对通过细棒中心与棒垂直的转动轴的转动惯量为2121b dm ⋅,根据平行轴定理,对与板面垂直的、通过几何中心的轴线的转动惯量为22)2(121x adm b dm dJ -+⋅=dx x ab dx b 23)2(121-+=σσ 33121121ba a b dJ J σσ+==∴⎰)(1222b a ab +=σ3-3 如图3-28所示,一轻绳跨过两个质量为m 、半径为r 的均匀圆盘状定滑轮,绳的两端分别挂着质量为m 2和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,求重物的加速度和各段绳中的张力。
解:受力分析如图ma T mg 222=- (1) ma mg T =-1 (2) βJ r T T =-)(2 (3) βJ r T T =-)(1 (4)βr a =,221mr J =(5) 联立求出g a 41=, mg T 811=,mg T 451=,mg T 232=3-4 如图3-29所示,一均匀细杆长为L ,质量为m ,平放在摩擦系数为μ的水平桌面上,设开始时杆以角速度0ω绕过细杆中心的竖直轴转动,试求:(1)作用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。
(1) 解:设杆的线lm=λ,在杆上取一小质元dx dm λ= gdx dmg df μλμ==gxdx dM μλ= 考虑对称 mgl gxdx M l μμλ⎰==20412(2) 根据转动定律d M J J dtωβ==⎰⎰=-tw Jd Mdt 0ω图3-28 习题3-3图图3-29 习题3-4图T0212141ωμml mglt -=-所以 glt μω30=3-5 质量为m 1和m 2的两物体A 、B 分别悬挂在如本题图所示的组合轮两端。
设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1和J 2,轮与轴承间的摩擦力略去不计,绳的质量也略去不计。
试求两物体的加速度和绳中的张力。
解:分别对两物体做如图的受力分析。
根据牛顿定律,有1111a m T g m =- a m g m T 222=-又因为组合轮的转动惯量是两轮惯量之和,根据转动定理有α)(2121J J r T R T +=-而且,αR a =1,αr a =2,gR r m R m J J rm R m a 222121211+++-=∴gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rrm r m J J T 1222121222211++++++=g m rm R m J J Rrm R m J J T 2222121121212++++++= 3-6 如本题图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1和m 2的物体A 、B 。
A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ。
若B 向下作加速运动时,求:(1)其下落加速度的大小;(2)滑轮两边绳子的张力。
(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑) 解:A 、B 物体的受力分析如图。
根据牛顿定律有 1111sin a m f g m T =--θ2222a m T g m =-对滑轮而言,根据转动定律有 αJ r T r T =-12由于绳子不可伸长、绳与轮之间无滑动,则 αr a a ==21gg22a 222111221cos sin r J m m g m g m g m a a ++--==∴θμθ22121211)cos (sin )cos sin 1(r J m m r J g m g m m T ++++++=θμθθμθ 22122212)cos sin 1(r J m m r J g m g m m T +++++=θμθ3-7 如图3-32所示,定滑轮转动惯量为 J ,半径为 r ;物体的质量为 m ,用一细绳与劲度系数为 k 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计。
当绳拉直、弹簧无伸长时使物体由静止开始下落。
求:(1)物体下落的最大距离;(2) 物体的速度达最大值时的位置。
解:(1)机械能守恒。
设下落最大距离为hmgh kh =221 kmgh 2=(2)mgx J mv kx =++222212121ω12222mgx kx v J m r ⎡⎤-⎢⎥=⎢⎥+⎢⎥⎣⎦若速度达最大值,0=dx dv ,kmgx =3-8 如图3-33所示,一轻弹簧与一均匀细棒连接,装置如图所示,已知弹簧的劲度系数N/m 40=k ,当0θ=时弹簧无形变,细棒的质量kg 0.5=m ,求在0θ=的位置上细棒至少应具有多大的角速度ω,才能转动到水平位置?解:机械能守恒22212121kx J mg =+ω根据几何关系 22215.1)5.0(+=+x 128.3-⋅=s rad ω3-9 如图3-34所示,一质量为m 、半径为R 的圆盘,可绕过O 点的水平轴在竖直面内转动。
若盘从图中实线位置开始由静止下落,略去轴承的摩擦,求:(1)盘转到图中虚线所示的铅直位置时,质心C 和盘缘A 点的速率;(2)在虚线位置轴对圆盘的作用力。
图3-32 习题3-7图图3-33 习题3-8图解:在虚线位置的C 点设为重力势能的零点,下降过程机械能守恒221ωJ mgR =2221mR mR J += Rg34=ω 34RgR v c ==ω 1623A Rgv R ω==273y F mg mR mg ω=+=方向向上3-10 如图3-35所示,一质量为m 的质点以v 的速度作匀速直线运动。
试证明:从直线外任意一点O 到质点的矢量r 在相同的时间内扫过的面积相同。
解:质点不受任何力作用才会作匀速直线运动,因而它对O 点的力矩也为零,即对O 点的角动量守恒 =θsin mvr 常量。
另一方面,矢量r 在单位时间内扫过的面积:θsin 21vr S =∆=常量。
3-11 如图3-36所示,质量m 的卫星开始时绕地球作半径为r 的圆周运动。
由于某种原因卫星的运动方向突然改变了θ =30°角,而速率不变,此后卫星绕地球作椭圆运动。
求(1)卫星绕地球作圆周运动时的速率v ;(2)卫星绕地球椭圆运动时,距地心的最远和最近距离1r 和2r 。
解:(1)由 r v m r mM G 22=,得 rGMv =(2)卫星在运动过程中对地心的角动量守恒和机械能守恒:221130cos mv r mv r mv r ⋅=⋅=⋅222221212212121r mM G mv r mM G mv r mM G mv -=-=- 其中,1v 、2v 分别是卫星在远地点与近地点时的速率,可求出r r 231=,r r 212= 3-12 如本题图所示,质量为M 长为L 的均匀直杆可绕过端点o 的水平轴转动,一质量为m 的质点以水平速度v 与静止杆的下端发生碰撞,如图示,若M =6m ,求质点与杆分别作完全弹性碰撞和完全非弹性碰撞后杆的角速度大小。
解:(1)质点与杆完全弹性碰撞,则能量守恒2122212121mv J mv +=ω 又因为角动量守恒 ωJ Lmv Lmv +=1且 231ML J =,m M 6=图3-34 习题3-9图图3-35 习题3-10图图3-36 习题3-11图Lo M m v习题3-7图Lv 32=∴ω (2) 完全非弹性碰撞,角动量守恒 ωJ Lmv Lmv +=2 又 L v ω=2 Lv3=∴ω3-13如本题图所示,A 与B 两飞轮的轴杆由摩擦啮合器连接,A 轮的转动惯量J 1=10.0kg·m 2,开始时B 轮静止,A 轮以n 1=600r/min 的转速转动,然后使A 与B 连接,因而B 轮得到加速而A 轮减速,直到两轮的转速都等于n=200r/min 为止。
求:(1)B 轮的转动惯量;(2)在啮合过程中损失的机械能。
解:(1)取两飞轮为系统,啮合过程中系统角动量守恒,即22111)(ωωJ J J +=112n πω= 222n πω=所以B 轮的转动惯量为2122120.20m kg J n n n J ⋅=-=(2)啮合过程中系统机械能变化J J J J E 421122211032.121)(21⨯-=-+=∆ωω3-14 如图3-39所示,长为l 的轻杆(质量不计),两端各固定质量分别为m 和m 2的小球,杆可绕水平光滑固定轴O 在竖直面内转动,转轴O 距两端分别为l 31和l 32。
轻杆原来静止在竖直位置。
今有一质量为m 的小球,以水平速度v 0与杆下端小球m 作对心碰撞,碰后以021v 的速度返回,试求碰撞后轻杆所获得的角速度。
解:根据角动量守衡 有022021322)3()32(32v ml m l m l l mv ⋅-⋅+=ωω lv 230=ω3-15 如图3-40所示,有一空心圆环可绕竖直轴OO ′自由转动,转动惯量为J 0 ,环的半径为R ,初始的角速度为ω0 ,今有一质量为m 的小球静止在环内A 点,由于微小扰动使小球向下滑动。
问小球到达B 、C 点时,环的角速度与小球相对于环的速度各为多少? (假习题3-13图图3-39 习题3-14图设环内壁光滑。
)解: (1)小球与圆环系统对竖直轴的角动量守恒,当小球滑至B 点时,有 ωω)(2000mR I I += ①该系统在转动过程中,机械能守恒,设小球相对于圆环的速率为B v ,以B 点为重力势能零点,则有222020021)(2121B mv mR I mgR I ++=+ωω ②联立①、②两式,得2022002mR I RI gR v B ++=ω(2)当小球滑至C 点时,∵0I I c = ∴0ωω=c故由机械能守恒,有221)2(c mv R mg =∴ gR v c2=3-16一长为2L 的均匀细杆,一端靠墙上,另一端放在的水平地板上,如本题图所示,所有的摩擦均可略去不计,开始时细杆静止并与地板成θ0角,当松开细杆后,细杆开始滑下。