抛物线焦点弦的性质(1)

合集下载

抛物线焦点弦的性质结论归纳与应用

抛物线焦点弦的性质结论归纳与应用

抛物线焦点弦的性质结论归纳与应用抛物线焦点弦的性质结论归纳与应用如下:
首先,抛物线焦弦的性质决定了抛物线的几何特性。

抛物线的焦弦公式是y=4ax,这个式子定义了抛物线的性质,一般在其中,a是抛物线的两个焦点之间的距离,因此可以用这个性质来确定抛物线的几何特性。

其次,抛物线焦弦的性质也可以应用于统计学中。

在统计学中,抛物线焦弦是一种线性回归的拟合方法。

它能推断出两个变量之间的相关性,从而用于市场营销、供应链管理以及其他方面的数据预测和分析研究。

最后,抛物线焦弦的性质也可以用于科学研究中。

以抛物线焦弦为模型,可以表达出粒子动力学中问题的数学解。

例如在分子动力学中,用抛物线焦弦可以解释温度和粒子冲突频率之间的关系,从而为科学研究提供新的指导思想。

抛物线焦弦的性质使抛物线变得更加精妙。

它对于几何的解决、统计的分析以及科学研究的指导都具有重要的意义,为我们探究物理现象提供了新的可能性。

抛物线焦点弦的性质

抛物线焦点弦的性质

抛物线焦点弦的性质过抛物线C :22y px =(0p >)的焦点F (2p,0)斜率为k (0k ≠)的直线l 与抛物线C 交于A 、B 两点,若),(11y x A 、),(22y x B ,则:(1)4221p x x =⋅,221p y y -=⋅;(2)焦点弦122212||2(1)sin p AB x x p p k θ=++=+=(θ为直线l 的倾斜角): (3)pBF AF 2||1||1=+; (4)22sin AOBp S θ∆=。

证明:(1)由于直线l 过点(0)2p F ,斜率为k ,故其方程为()2py k x =-,联立抛物线方程22y px =得到2220ky py kp --=①,所以221p y y -=⋅,212122()4y y x x p ⋅=24p = (2)由抛物线定义可知11||2p PF x =+,22||2pPF x =+,所以p x x AB ++=21||,又因为()2p y k x =-(0k ≠),所以12p x y k =+,所以12121()x x y y p k +=++,由①式可知122p y y k +=,所以2121||2(1)p AB p p p k k k=⋅++=+,又因为θ为直线l 的倾斜角,当90θ≠︒时,θtan =k ,代入21||2(1)AB p k =+化简得θ2sin 2||p AB =,当90θ=︒时,直线l 垂直x 轴,122p x x ==,22||2sin pAB p θ==,所以θ2sin 2||p AB =成立。

(3)因为1221212121111||||()2224x x p p p p p AF BF x x x x x x +++=+=+++++,把4221p x x =⋅代入化简得pBF AF 2||1||1=+。

(4)由于11||||sin()||||sin 22AOB AOF BOF S S S OF AF OF BF πθθ∆∆∆=+=⋅⋅-+⋅⋅ 221112||sin (||||)||||sin sin 2222sin 2sin p p p OF AF BF OF AB θθθθθ=⋅⋅+=⋅⋅=⋅⋅⋅=抛物线焦点弦的性质在解题过程中有着广泛的应用,特别是在解选择题与填空题时,运用抛物线焦点弦的性质可以提高解题速度。

高二数学抛物线焦点弦的性质

高二数学抛物线焦点弦的性质
2p y k ( x p) 2 由 2 y y 2 p 2 0 y1 y2 2 p 2 k y 2 px
2p 焦点弦长 | AB | sin2
(其中为直线AB与对称轴的夹角)
4.过抛物线y2=2px(p>0)的焦点的一条直线和 抛物线相交于P(x1,y1)、Q(x2,y2),则y1y2=-p2是 直线PQ过抛物线焦点的 A.充分非必要条件 B.必要非充分条件 C.充要条件 D.非充分非必要条件
抛物线焦点弦的性质
目标
1.巩固抛物线的标准方程、几何性质等有关知识;
2.会用二次方程根的判别式,根与系数的关系判定直 线与抛物线的关系; 3.掌握处理直线与抛物线焦点弦有关的问题(坐标, 角度,长度,综合问题)的处理方法,进一步熟悉
焦点弦的性质。
一、复习 ⒈焦点弦的定义 ⒉焦半径公式 若M ( x0 , y0 )在焦点为F的抛物线 y 2 2 px ( p 0) 上, ⒊通径
2
p l AB : y ( x ) tan 2
p2 x1 x2 4
2p 2 p2 tan 2 1 2 p | AB | 1 tan ( p ) 4 2p 2 sin 2 tan 4 tan 2
AB为抛物线y =2px(p>0)的焦点弦, A、B在准线 上的射影分别为C、D, C、D的中点为M
1、过抛物线 焦点的一条直线,与它交于P、Q两 点, 经过点P和抛物线顶点的直线交准线于点M, 求证直线MQ平行于抛物线的对称轴。(课本137-6)
2、过抛物线 焦点的一条直线,与它交于P、Q两 点, 过Q作QM⊥准线L垂足为M,则M、O、P三点共线. (2000年高考题) 3、抛物线 的一条弦PQ,过Q作QM⊥准线L垂足为M, 若 M、O、P三点共线,则弦PQ过焦点. (201x年高考题)

高中数学过抛物线的焦点的弦的一般性质

高中数学过抛物线的焦点的弦的一般性质

过抛物线的焦点的弦的一般性质不妨设抛物线方程为)0(22>=p px y ,则焦点)0,2(p F ,准线l 的方程:2p x -=. 过焦点F 的直线交抛物线于A(x 1,y 1)、B(x 2,y 2)两点,又作AA 1⊥l , BB 1⊥l ,垂足分别为A 1、B 1.基本概念:1.若AB 垂直于抛物线的对称轴,则称线段AB 为抛物线的通径。

|AB|= .2.设P(x 0,y 0)是抛物线y 2=2px(p>0)上的一点,则P 到抛物线焦点F 的距离|PF|称为P 点的焦半径。

|PF|= ;直线AB 经过抛物线y 2=2px(p>0)的焦点,且与抛物线相交于A(x 1,y 1)、B(x 2,y 2)(AB 则为抛物线的焦点弦).结论1:4221p x x =⋅ (定值),22212k p p k x x +=+. 结论2:221p y y -=⋅ (定值),k p y y 221=+.结论3:(1)弦长p x x p x p x BB AA BF AF AB ++=+++=+=+=21211122||||||||||. (2) 若AB 所在的直线的倾斜角为α,则 α2sin 2||p AB =.结论4:若此焦点弦AB 被焦点F 分成n m ,两部分,则p n m 211=+.结论5:抛物线)0(22>=p px y 的焦点弦中通径最小.结论6:以焦点弦AB 为直径的圆与抛物线的准线l 相切.结论7:以抛物线焦半径||AF 为直径的圆与y 轴相切.结论8:F B F A 11⊥.结论9:若M 为11B A 的中点,则AB MF ⊥.结论10:在梯形AA 1B 1B 中,两对角线AB 1与BA 1相交于点抛物线顶点O .。

抛物线“焦点弦的性质”及解题策略

抛物线“焦点弦的性质”及解题策略
注意抛物线开口方向的影响,正确处理各种情况下的计 算过程。
03
解题策略
利用焦点弦性质解题
焦点弦性质
对于抛物线上的任意一点P,其到焦 点F的距离等于到准线的距离。利用这 一性质,可以快速找到与焦点弦相关 的点P的坐标。
解题方法
利用焦点弦性质,可以求出点P的坐 标,进而求出与焦点弦相关的其他量, 如弦长、面积等。
在抛物线中,焦点弦的倾斜角可以通过轴线的倾斜角和该弦与轴线的夹角的补角之和(或差)来计算 。这个补角等于该弦与轴线的夹角的两倍。当焦点弦与轴线垂直时,其倾斜角等于轴线的倾斜角。
焦点弦的倾斜角
解题策略
根据题目给出的条件,选择适当的方法计算焦点弦的长 度、中点坐标或倾斜角。
熟悉抛物线的定义和性质,理解焦点弦的意义和特点。
02
焦点弦的性质
焦点弦的长度
总结词
焦点弦的长度等于通径的长度,等于焦准距的平方根。
详细描述
在抛物线中,焦点弦是指通过焦点的弦,其长度可以通过通径的长度来计算。 通径是过焦点的最短的弦,其长度等于焦准距的平方根。当焦点弦与抛物线的 轴线不垂直时,其长度还会受到其他因素的影响。
焦点弦的中点坐标
总结词
焦点弦的中点坐标等于焦点坐标加上弦中点与轴线的垂直距 离。
详细描述
在抛物线中,焦点弦的中点坐标可以通过焦点坐标和弦中点 与轴线的垂直距离之和来计算。这个垂直距离等于弦的长度 的一半乘以该弦与轴线的夹角的正切值。
焦点弦的倾斜角
总结词
焦点弦的倾斜角等于轴线的倾斜角加上或减去该弦与轴线的夹角的补角。
详细描述
解题方法
利用代数方法,可以建立方程组、不等式组等,进而求解与抛物线相关的问题。在解题过程中,需要注意方程组 的解法、不等式的性质等。

抛物线焦点弦8个结论

抛物线焦点弦8个结论

抛物线焦点弦8个结论抛物线是一种常见的二次曲线,在数学和物理学中有广泛的应用。

抛物线的焦点是其特殊的性质之一,下面将介绍抛物线焦点的八个结论。

一、焦点到顶点的距离等于焦半径的长度。

抛物线的焦半径是从焦点到抛物线的准线的垂直距离,而抛物线的顶点是其最高点。

这个结论表明,焦点到顶点的距离等于焦半径的长度。

二、焦半径与准线垂直。

焦半径是从焦点到抛物线上的任意一点的线段,而准线是抛物线的对称轴。

这个结论说明,焦半径与准线垂直。

三、焦点到直线的距离等于焦半径的长度。

抛物线上的任意一点与其焦点之间的距离等于该点到抛物线的准线的垂直距离。

这个结论说明,焦点到直线的距离等于焦半径的长度。

四、焦点到抛物线的切线的距离等于焦半径的长度。

抛物线上的任意一点与其焦点之间的距离等于该点到抛物线的切线的垂直距离。

这个结论表明,焦点到抛物线的切线的距离等于焦半径的长度。

五、焦点是抛物线上的所有切线的焦点。

抛物线上的任意一点都可以作为抛物线的切点,而焦点是抛物线上的所有切线的焦点。

这个结论说明,抛物线上的所有切线都会经过焦点。

六、抛物线上的所有切线与准线的交点都在焦点上。

抛物线上的任意一点都可以作为抛物线的切点,而抛物线上的所有切线与准线的交点都在焦点上。

这个结论表明,抛物线上的所有切线都会与准线在焦点上相交。

七、焦点是抛物线上的所有法线的焦点。

抛物线上的任意一点都可以作为抛物线的切点,而焦点是抛物线上的所有法线的焦点。

这个结论说明,抛物线上的所有法线都会经过焦点。

八、抛物线上的所有法线与准线的交点都在焦点上。

抛物线上的任意一点都可以作为抛物线的切点,而抛物线上的所有法线与准线的交点都在焦点上。

这个结论表明,抛物线上的所有法线都会与准线在焦点上相交。

通过以上八个结论,我们可以更好地理解抛物线的性质和特点。

抛物线焦点的研究不仅对于数学学科有重要意义,也在物理学、工程学等领域中有广泛的应用。

对于工程设计、物理实验等方面的问题,我们可以利用抛物线焦点的性质来解决。

有关抛物线焦点弦的十条性质[1]

有关抛物线焦点弦的十条性质[1]

有关抛物线焦点弦的十条性质—————从一道高考题的八种证法谈起本文对2009年湖北省高考数学理科第20题第(Ⅰ)问给出八种解法,同时总结有关抛物线焦点弦的十条性质。

一、原题再现 过抛物线22(0)y px p =>对称轴上一点(,0)A a(0)a >的直线与抛物线相交于M 、N 两点,自M 、N分别向直线:l x a =-作垂线,垂足分别为1M 、1N .(Ⅰ)当2pa =时,求证:11AM AN ⊥.二、一题多证证法1:设11(,)M x y 、22(,)N x y ,则11(,)2p M y -、12(,)2pN y -,则11(,)AM p y =-12(,)AN p y =-.显然直线MN的斜率不为0,故可设直线MN的方程为:2p x ty =+. 由222p x ty y px ⎧=+⎪⎨⎪=⎩得2220y pty p --=, 因为1y 、2y 是方程2220y pty p --=的两根, 由韦达定理得212y y p =-,从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法2: 设211(,)2y M y p 、222(,)2y N y p ,因为M 、A 、N 三点共线,所以//AM AN,所以221221()()02222y y p p y y p p ---=,得212y y p =-,从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法3:由抛物线定义可得:11MN MA AN MM NN =+=+,设211(,)2y M y p 、222(,)2y N y p,则11(,)2p M y -、12(,)2p N y -,将MN MA AN =+222122y y p p p++,化简得:2212()0y y p +=, 所以212y y p =-,从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法4:设A 点内分MN 的比为λ,221212221201y y p p p y yλλλλ⎧+⎪⎪=⎨+⎪+⎪=+⎩,消去λ得:212y y p =-, 从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法5:设211(,)2y M y p 、222(,)2y N y p ,则11(,)2P M y -,12(,)2P N y -∴211(,)2y OM y p= ,12(,)2P ON y =- ,由21122111()2222y y y P Py y y y p p --=+, 由性质1 212y y p =-,可得2121()022y P y y p --=,所以M 、O 、1N 三点共线,可求出,221p y y =-,即可得212y y p =-,从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法6:设抛物线的参数方程为222x pt y pt⎧=⎨=⎩(t 为参数),于是可设211(2,2)M pt pt ,222(2,2)N pt pt ,因为M 、N 为两个不同点,则12t t ≠,由M 、A 、N 三点共线,所以//AM AN,可得方程221212()(4)0t t p t t p -+=,所以221240p t t p +=,得1214t t =-, 所以22121212224y y pt pt p t t p =⋅==-,从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法7:以抛物线焦点为极点则其极坐标方程为1c o spρθ=-,则(,)M ρθ、(,)N ρπθ+,所以212sin (sin )1cos 1cos p py y p θθθθ=⋅-=--+,从而可证得2111212(,)(,)0AM AN p y p y p y y ⋅=-⋅-=-+=,即证得11AM AN ⊥.证法8:由抛物线定义得:1MM MA =、1NN NA =, 所以11MM A MAM ∠=∠、11NN A NAN ∠=∠, 因为11//MM NN ,所以11M MA N NA π∠+∠=, 即11(2)()MAM NAN πππ-∠+-∠=, 可得112MAM NAN π∠+∠=,所以112M AN π∠=,即证得11AM AN ⊥.四、引出性质性质1:已知抛物线y 2=2px(p >0)焦点弦AB 的坐标分别为(x 1,y 1)、B(x 2,y 2),则y 1y 2=-p 2,4221p x x =.性质2:以抛物线y 2=2px(p >0)焦点弦AB 端点向准线作垂线,垂足分别为M 、N ,则FM ⊥FN.(其中F 为焦点).性质3:以抛物线焦点弦在准线上的射影为直径的圆必与焦点弦相切于焦点。

抛物线的焦点弦_经典性质及其证明过程

抛物线的焦点弦_经典性质及其证明过程

有关抛物线焦点弦问题的探讨过抛物线px y 22=(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1:p x x AB ++=21结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2pAB =证: (1)若2πθ=时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2(2)若2πθ≠时,设直线L 的方程为:θtan )2(p x y -=即2cot py x +⋅=θ 代入抛物线方程得0cot 222=-⋅-p py y θ由韦达定理θcot 2,21221p y y p y y =+-=由弦长公式得θθθ22212sin 2)cot 1(2cot 1pp y y AB =+=-+= 结论3: 过焦点的弦中通径长最小p p2sin 21sin 22≥∴≤θθ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短.结论4: )(832为定值p AB S oAB =∆结论5: (1) 221p y y -= (2) x 1x 2=42p证44)(,2,22222121222211P P y y x x p y x p y x ==∴== 结论6:以AB 为直径的圆与抛物线的准线相切证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 222111AB BFAF BB AA MM =+=+=故结论得证结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F同理︒=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ⋅=21(4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5)2121214M M B M AM =+证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 111FB A ∆为直角三角形, M 1 是斜边A 1 B 1 的中点∴M 1F ⊥ABBF AF F M ⋅=∴21 AM 1⊥BM 1 F B F A 90111⊥︒=∠∴ 又B AM︒=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,22121AB B M AM =+结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线(3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴(4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴 证:因为p y p y k y pp y y x y k oB oA2212111122,221-=-====,而221p y y -=所以122222oB oAk p y y ppk =-=-=所以三点共线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档