工学第1章矢量分析课件

合集下载

第一章矢量分析

第一章矢量分析
位置矢量:
P0 z0
r eˆ zeˆz
O ψ0
矢量表示:
x
A r
(
rv)eˆ
A (rv)eˆ
A (rv)eˆ
z
z
2020/4/29
第一章 矢量分析
P(p0,ψ0,z0)
evz
y
ev
e
26
3、球面坐标系 ( r, , )
方向单位矢量:
eˆr , eˆ , eˆ
位置矢量:
r reˆr
x
矢量表示:
2020/4/29
8
第一章 矢量分析
4.电磁场与电磁波的应用
当今世界,电子信息系统,不论是通 信、雷达、广播、电视,还是导航、遥控 遥测,都是通过电磁波传递信息来进行工 作的。因此以宏观电磁理论为基础,电磁 信息的传输和转换为核心的电磁场与电磁 波工程技术将充分发挥其重要作用。下面 我们来看一下一些常见的天线和馈线。
本课程将在“大学物理(电磁学)”的基础 上,进一步研究宏观电磁现象和电磁过程的基 本规律及其分析计算方法。通过课程的学习, 掌握基本的宏观电磁理论,具备分析和解决基 本的电磁场工程问题的能力.
2020/4/29
3
第一章 矢量分析
2.电磁场与电磁波的概念
• 电场 • 磁场 • 电磁场 • 电磁波
2020/4/29
物理意义:表示穿入和穿出闭合 面S的矢量通量的代数和。
讨论:1)面元 d定Sv义;
矢量场的通量
2) A(r) cos (r)ds s
3) 通过闭合面S的通量的物理意义:
a) 若 ,0闭合面内有产生矢量线的正源;
b) 若 ,0闭合面内有吸收矢量线的负源;
2020/4/29

第1章 矢量分析

第1章 矢量分析
矢量A的大小为A:A=(A2x+A2y+A2z)1/2
§1 .1 矢量及其代数运算
2 矢量代数运算
矢量相加的平行四边形法则,矢量的加法的坐标分 量是两矢量对应坐标分量之和,矢量加法的结果仍 是矢量 ��
�� � �� � �� � A = ex A x + ey A y + ez A z
� � �� � �� � �� � B = e x Bx + e y B y + e z Bz
� � A = Ae
� � � 其中, A是矢量 A的大小; e 代表矢量 A 的方向。 � � e = A / A 大小等于1。
§1 .1 矢量及其代数运算
1 标量和矢量
一个大小为零的矢量称为空矢(Null Vector)或零矢 (Zero Vector),一个大小为1的矢量称为单位矢量 (Unit Vector)。 在直角坐标系中,用单位矢量 ex、 ey 、 ez 表征矢量分 别沿x、y、z轴分量的方向。
r
r=exX+eyY+ezZ
§1 .1 矢量及其代数运算
1 标量和矢量
X、Y、Z是位置矢量r在x、y、z轴上的投影。
任一矢量A在三维正交坐标系中都可以给出其三个分 量。例如,在直角坐标系中,矢量A的三个分量分别 是Ax、Ay、Az,利用三个单位矢量ex、ey、ez可以将矢 量A表示成:
A=exAx+eyAy+ezAz
§1 .2 标量场的梯度
5 梯度的性质
4)标量场的梯度垂直
于通过该点的等值 面(或切平面)
§1 .2 标量场的梯度
6 梯度运算的基本公式
⎧ ⎪ ⎪∇ ⎪∇ ⎪ ⎪∇ ⎪ ⎨∇ ⎪∇ ⎪ ⎪∇ ⎪ ⎪∇ ⎪ ⎩

第一章 矢量分析.ppt

第一章 矢量分析.ppt
dr (a sin d )2 (b cosd )2 a2 sin2 b2 cos2 d .
2019/11/5
30
第一章 矢量分析
(2)ddrs 的几何意义 把矢性函数 A(t) Ax (t)i Ay j Az (t)k
看作其终点M(x,y,z)的矢径函数
2019/11/5
27
第一章 矢量分析
指向:当 dt >0时,与A(t)的方向一致;而且当 dt <0时,则与A(t) 的方向相反。
图1-8
2019/11/5
28
第一章 矢量分析
微分dA 的坐标表示式为
dA A(t)dt
Ax (t)dti Ay (t)dtj Az(t)dtk
2019/11/5
8
第一章 矢量分析
等于其终点M的三个坐标x,y,z
x Ax (t) y Ay (t) z Az (t) (1.3)
此式就是曲线l的以t为参数的参数方程。 曲线l的矢量方程(1.2)和参数方程(1.3)
之间,有着一一对应关系,只要知道其中的一 个,就可以立刻写出另一个来。
ds
ds

dr dr 1
ds ds
(2.9)
矢性函数对(其矢端曲线的)弧长s的导 数 dr 在几何上为一切向单位矢量,恒指向s增
端曲线的切向矢量,指向对应t值增大的一方。
2019/11/5
26
第一章 矢量分析
3.矢性函数的微分
(1)微分的概念与几何意义 设有矢性函数A=A(t),我们把
dA A(t)dt (dt t) (2.4)
称为矢性函数A(t)在t处的微分。
微分dA 是一个矢量,而且和导矢A(t) 一

《矢量分析基础》课件

《矢量分析基础》课件
源自《矢量分析基础》PPT课件
# 矢量分析基础 矢量是什么? - 矢量的定义 - 矢量的表示方法 - 矢量的基本运算
矢量空间
矢量空间的定义 - 矢量空间的性质 - 矢量空间的例子
点积和叉积
- 点积的定义及其性质 - 叉积的定义及其性质 - 点积和叉积的关系
曲线和曲面
- 曲线的定义 - 曲线参数化表示及其性质 - 曲面的定义 - 曲面参数化表示及其性质
曲线积分和曲面积分
- 曲线积分的定义及其性质 - 曲线积分的计算方法 - 曲面积分的定义及其性质 - 曲面积分的计算方法
广义矢量分析
- 广义矢量定义及其性质 - 广义矢量的表示方法 - 广义矢量的运算法则
总结
- 矢量分析的重要性 - 矢量分析的未来发展趋势 - 矢量分析的应用前景
应用实例
- 矢量分析在物理中的应用举例 - 矢量分析在工程中的应用举例

大学物理第一章矢量分析 ppt课件

大学物理第一章矢量分析 ppt课件

6
(2)标量乘矢量
(3)矢量的标积(点积)
两矢量的标量积也称为点积(本书称为标积)。
定义一个矢量在另一矢量上的投影与另一矢 B
量模的乘积,结果为标量。
θ
A
电磁场与电磁波
第1章 矢量分析
7
(4)矢量的矢积(叉积)
亦称叉积,结果仍为一个矢量,用矢量C表示,C的大小 为A和B组成的平行四边形的面积,方向垂直与矢量A和B构成 的平面且A、B和C三者符合右手螺旋法则。
电磁场与电磁波
第1章 矢量分析
16
4. 坐标单位矢量之间的关系
电磁场与电磁波
第1章 矢量分析
17
1.3 标量场的梯度
标量场和矢量场 确定空间区域上的每一点都有确定物理量与之对应,称在
该区域上定义了一个场。 如果物理量是标量,称该场为标量场。
例如:温度场、电位场、高度场等。
如果物理量是矢量,称该场为矢量场。
梯度在该方向上的投影。 • 标量场的梯度垂直于通过该点的等值面(或切平面)
梯度运算的基本公式:
电磁场与电磁波
第1章 矢量分析
24
例1.3.1 设一标量函数 ( x, y, z ) = x2+y2-z 描述了空间标量
场。试求:
(1) 该函数 在点 P(1,1,1) 处的梯度,以及表示该梯度方向
的单位矢量。
电磁场与电磁波
第1章 矢量分析
33
同理,分析穿出另两组侧面的净通量,并合成之,即得由点P 穿出该六面体的净通量为
根据定义,则得到直角坐标系中的散度 表达式为
电磁场与电磁波
第1章 矢量分析
34
散度的表达式: 直角坐标系
圆柱坐标系
球坐标系

第一章矢量分析与场论-ppt课件

第一章矢量分析与场论-ppt课件

坐标元
1.8 微分元 恣意元 微分元是矢量微、积分的根底。
坐标元
坐标线元
坐标平面元dσ
坐标体元dv
dx 直 dy
dz dρ
dx= dx ex
dy= dz=
ey dy ez
dρ= dz eρ
dφ= dρ ej
dddσσσ=假yx ==设: xd=σc,z =
yd=σc,ρ = zdd=σσc,φz ==
A× (B×C) = (A ·C) B - (A·B) C
A·(B×C) = B ·(C×A) = C ·(A×B)


‖ Ax Ay Az
[ABC] = [BCA] = [CAB] = Bx By Bz
Cx Cy Cz
假设 B=C 那么 A·B = A ·C及A×B = A ×C 成立 B C 假设 A·B = A ·C及A×B = A ×C 那么 B=C不一定成立
er(90°s,iφn+θ9c0o°sφ)·ez ez sinθ sinφ
cosθ
ex
= sin(θ+90°) cosφ
sin (θ+90°) sinφ cos (θ+90°)
ey
sin90° cos(φ+90°) sin90° sin(φ+90°) cos90°
ez sinθ cosφ
sinθ sinφ
因此:ex = 1/√2er-1/√2eφ , ey = 1/√2er+1/√2eφ , ez = - eθ
∴ A = 3√2er -2 eθ +√2 eφ ②对于点(√2,√2,2) : sinθ = sinφ= cosθ= cosφ=1/√2

第1章矢量分析

第1章矢量分析
在直角坐标系中,标量场 的梯度可表示为
grad
ex
x
ey
y
ez
z
式中的grad 是英文字 gradient 的缩写。
若引入算符,在直角坐标系中该算符 可表
示为
ex
x
ey
y
ez
z
则梯度可以表示为
grad
z P'(x ', y ', z ')
例 计算 1 及 1 。
R
R
r – r'
磁石吸铁
电荷之间的作用力 库仑定律
电流产生磁场
电流之间的作用力 安培定律
时变磁场产生时变电场 电磁感应定律
重大突破
1873年英国科学家麦克斯韦(1831—1879)提出了位 移电流的假设,认为时变电场可以产生时变磁场,并建 立了严格的数学方程——麦克斯韦方程。
麦克斯韦预言电磁波的存在,后来在1887年被德国物 理学家赫兹(1857—1894)的实验证实。
r'
P(x, y, z)
这里 R r r 0
O
r
y
表示对 x, y, z 运算
x
表示对 x, y, z 运算
z P'(x ', y ', z ') r – r'

r xex yey zez
r xex yey zez
r' r
O
P(x, y, z) y
R (x x)ex ( y y)ey (z z)ez
静电场与恒定磁场相互无关、彼此独立,可以分别 进行研究。因此,本书先讨论静电场和恒定磁场,然 后再介绍时变电磁场。
物质属性
电磁场与电磁波是客观存在的一种物质,因为它 具有物质的两种重要属性:能量和质量。但是,电磁 场与电磁波的质量极其微小,因此,通常仅研究电磁 场与电磁波的能量特性。

工学第1章矢量分析ppt课件

工学第1章矢量分析ppt课件
x
力的图示法:
F
FN
Ff
FFNFf
G
二、矢量的运算法则
1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。
B
C
C
CAB
B
A
A
a.满足交换律: ABBA
b.满足结合律: ( A B ) ( C D ) ( A C ) ( B D )
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆ x , aˆ y , aˆ z表示。
• 12.奥斯特的电生磁和法拉第的磁生电奠定了电磁学的基 础。
电磁学理论的完成者——英国的物理学家麦克斯韦(18311879)。麦克斯韦方程组——用最完美的数学形式表达了宏 观电磁学的全部内容 ,从理论上预言了电磁波的存在。
三、电磁学应用突飞猛进(19世纪中至今)
• 1866年,德国的西门子发明了使用电磁铁的发电机, 为电力工业开辟了道路。
动态场也称为时变场。Fra bibliotek第1章 矢量分析
一、矢量和标量的定义 二、矢量的运算法则 三、矢量微分元:线元,面元,体元 四、标量场的梯度 五、矢量场的散度 六、矢量场的旋度 七、重要的场论公式
一、矢量和标量的定义
1.标量:只有大小,没有方向的物理量。 如:温度 T、长度 L 等
2.矢量:不仅有大小,而且有方向的物理量。
如:力 F、速度 、v 电场 等 E
矢量表示为: A | A| aˆ
其中:|
A
|
为矢量的模,表示该矢量的大小。
为aˆ 单位矢量,表示矢量的方向,其大小为1。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
例1:在直角坐标系中,x 方向的大小为 6 的矢量如何表
示?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Ay
y
方向角与方向余弦: , ,
co sA x, co sA y, co sA z
|A |
|A |
|A |
在直角坐标系中三个矢量加法运算:
• 12.奥斯特的电生磁和法拉第的磁生电奠定了电磁学的基 础。
电磁学理论的完成者——英国的物理学家麦克斯韦(18311879)。麦克斯韦方程组——用最完美的数学形式表达了宏 观电磁学的全部内容 ,从理论上预言了电磁波的存在。
工学第1章矢量分析
三、电磁学应用突飞猛进(19世纪中至今)
• 1866年,德国的西门子发明了使用电磁铁的发电机,为 电力工业开辟了道路。
Ay
y
所以: AAxa ˆxAya ˆyAza ˆz
工学第1章矢量分析
矢量: AAxa ˆxAya ˆyAza ˆz
z
模的计算: |A| Ax2Ay2Az2
Az
A
单位矢量:
a ˆ|A A||A A x|a ˆx|A A y|a ˆy|A A z|a ˆz
o
Ax
cosa ˆxcosa ˆycosa ˆz x
工学第1章矢量分析
• 5. 1785年,法国科学家库仑在实验规律的基础上,提出了 第一个电学定律:库仑定律。使电学研究走上了理论研究的 道路。
• 6. 1820年,由丹麦的科学家奥斯特在课堂上的一次试验中, 发现了电的磁效应,从此将电和磁联系在一起 。
• 7. 1822年,法国科学家安培提出了安培环路定律,将奥斯 特的发现上升为理论。
所以:一个矢量就表示成矢量的模与单位矢量的乘积。
工学第1章矢量分析
例1:在直角坐标系中,x 方向的大小为 6 的矢量如何表
示?
6 aˆ x
y
图示法:
6 aˆ x
x
力的图示法:
F
FN
Ff
FFNFf
G
工学第1章矢量分析
二、矢量的运算法则
1.加法: 矢量加法是矢量的几何和,服从平行四边形规则。
B
C
C
CAB
• 第一章:电磁学的数学基础 ——矢量运算 • 第二章:电磁学的理论基础 ——麦克斯韦方程组 • 第三、四、五章:麦克斯韦方程组的应用
(边界条件,静态场) • 第六章:(平面)电磁波的传输特性 • 第七章:电磁波在波导中的传播(光纤通信) • 第八章:电磁波的产生(电磁波的辐射)
工学第1章矢量分析
五、场的基本概念
• 1876年,美国贝尔发明了电话,实现了电声通信。 • 1879年,美国发明家爱迪生发明了电灯,使电进入了人
们的日常生活。 • 1887年,德国的物理学家赫兹首次用人工的方法产生了
电磁波。随后,俄国的波波夫和意大利的马可尼,利用 电磁波通信获得成功,开创了人类无线通信的新时代。
工学第1章矢量分析
四、课程内容
• 8. 1825年,德国科学家欧姆得出了第一个电路定律:欧姆 定律。
• 9. 1831年,英国实验物理学家法拉第发现了电磁感应定律 并设计了世界上第一台感应发电机。
工学第1章矢量分析
• 10. 1840年,英国科学家焦耳提出了焦耳定律,揭示了电 磁现象的能量特性。
• 11. 1848年 ,德国科学家基尔霍夫提出了基尔霍夫电路理 论,使电路理论趋于完善。
2.场的分类 a. 按物理量的性质分:
标量场:描述场的物理量是标量。 矢量场:描述场的物理量是矢量。
b. 按场量与时间的关系分:
静态场:场量不随时间发生变化的场。 动态场:场量随时间的变化而变化的场。
动态场也称为时变场。
工学第1章矢量分析
第1章 矢量分析
一、矢量和标量的定义 二、矢量的运算法则 三、矢量微分元:线元,面元,体元 四、标量场的梯度 五、矢量场的散度 六、矢量场的旋度 七、重要的场论公式
工学第1章矢量分析
一、矢量和标量的定义
1.标量:只有大小,没有方向的物理量。 如:温度 T、长度 L 等
2.矢量:不仅有大小,而且有方向的物理量。
如:力 F、速度 、v 电场 等 E
矢量表示为: A | A | aˆ
其中:|
A
|
为矢量的模,表示该矢量的大小。
为aˆ 单位矢量,表示矢量的方向,其大小为1。
电磁场与电磁波
工学第1章矢量分析
绪论
一、电磁现象的经验认识时代(18世纪之前)
• 1.古希腊“七贤之一”的哲学家泰利斯(Thales)曾叙述过织衣者所 观察到的现象,那就是用毛织物摩擦过的琥珀能够吸引某些轻的物体。
• 2.大约在春秋末期(约公元前四、五世纪)成书的《管子·地数篇》, 战国时期的《鬼谷子》,战国末期的《吕氏春秋》等,都留记述了天然 磁石及其吸铁现象,并且出现世界上最古老的指南针“司南”。
• 3. 1638年,我国建筑学书籍中对避雷的记载:屋顶的四角都被雕饰成 龙头的形状,仰头、张口,在它们的舌头上有一根金属芯子,其末端伸 到地下,如有雷电击中房顶,会顺着龙舌引入地下,不会对房屋造成危 险。
工学第1章矢量分析
二、电磁学现代科学体系的建立 (文艺复兴之后,18世纪中-19世纪中)
1. 1745年,荷兰莱顿大学马森布罗克制成了莱顿瓶,可以将 电荷储存起来,供电学实验使用,为电学研究打下了基础。 2. 1752年7月,美国著名的科学家、文学家、政治家富兰克 林的风筝试验,证实了闪电式放电现象,从此拉开了人们研 究电学的序幕。 3.1753年,俄国著名的电学家利赫曼在验证富兰克林的实验 时,被雷电击中,为科学探索献出了宝贵的生命。 4. 1771—1773,英国科学家卡文迪什进行了大量静电试验, 证明在静电情况下,导体上的电荷只分布在导体表面上。
• 1.什么是场?
• a.从数学角度:场是给定区域内各点数值的集合,这些 数值规定了该区域内一个特定量的特性。
比如:T 是温度场中的物理量,T 就是温度场
• b.从物理角度:场是遍及一个被界定的或无限扩展的空 间内的,能够产生某种物理效应的特殊的物质,场是具 有能量的。
重力场、电磁场、……
工学第1章矢量分析
B
A
A
a.满足交换律: ABBA
b.满足结合律: ( A B ) ( C D ) ( A C ) ( B D )
工学第1章矢量分析
在直角坐标系下的矢量表示: 三个方向的单位矢量用 aˆ x , aˆ y , aˆ z表示。
z
Az
A
根据矢量加法运算:
o
AAx Ay Az
Ax
x
其中:
A x A x a ˆx,A y A y a ˆy, A z A za ˆz
相关文档
最新文档