人教版初中数学八年级上册第1213章全等三角形及轴对称知识点

合集下载

人教版 初中数学八年级上册第 1213章 全等三角形及轴对称知识点-精选学习文档

人教版 初中数学八年级上册第 1213章 全等三角形及轴对称知识点-精选学习文档

全等三角形知识总结一、知识网络二、基础知识梳理(一)、基本概念1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等;3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:①夹边相等(ASA)②任一组等角的对边相等(AAS)(2)已知条件中有两边对应相等,可找①夹角相等(SAS)②第三组边也相等(SSS)(3)已知条件中有一边一角对应相等,可找①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)轴对称知识梳理一、基本概念1.轴对称图形如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.2.线段的垂直平分线经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线3.轴对称变换由一个平面图形得到它的轴对称图形叫做轴对称变换.4.等腰三角形有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.5.等边三角形三条边都相等的三角形叫做等边三角形.二、主要性质1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.2.线段垂直平分钱的性质线段垂直平分线上的点与这条线段两个端点的距离相等.3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).4.等腰三角形的性质(1)等腰三角形的两个底角相等(简称“等边对等角”).(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

初二数学三角形与全等三角形、轴对称知识点归纳

初二数学三角形与全等三角形、轴对称知识点归纳

一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰和底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边和腰不等的等腰三角形等边三角形7、三角形两边之和大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之和大于第三边,则可说明能组成三角形 2)在实际运用中,已经两边,则第三边的取值范围为:两边之差〈第三边<两边之和3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边 BC上的高9、三角形的中线:连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角和定理:三角形三个内角的和等于180度. 证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的和4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角和为360度6、等腰三角形两个底角相等一、全等三角形能够完全重合的两个三角形叫做全等三角形。

一个三角形经过平移、翻折、旋转可以得到它的全等形.2、全等三角形有哪些性质(1):全等三角形的对应边相等、对应角相等。

(2):全等三角形的周长相等、面积相等。

八年级上册数学《全等三角形》三角形全等 知识点整理

八年级上册数学《全等三角形》三角形全等 知识点整理

12.1全等三角形一、本节学习指导这一节我们来认识全等三角形,这一节我们要重点掌握三角形全等的表示方法,以及全等三角形的性质。

本节有配套学习视频。

二、知识要点1、全等形的概念:能够完全重合的两个图形叫做全等形。

注:完全能重合的图形那么固然:形状完全相同,大小固然相等,对应角也相等。

2、全等三角形的概念:能够完全重合的两个三角形叫做全等三角形。

用符号“≌”表示,读作:全等。

3、全等三角形的表示:(1)两个全等的三角形重合时:重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角.(2)如图,△ABC和△A'B'C'全等,记作△ABC≌△A'B'C'.通常对应顶点字母写在对应位置上.注意:在写三角形全等的时候一定要把相对应角的顶点对应写,比如上图中写成△ABC ≌△A'B'C',而不能写成△ACB≌△A'B'C',因为C对应的是C’所以这种写法是错误的。

4、全等三角形的性质:(1)全等三角形的对应边相等;全等三角形的对应角相等.(2)全等三角形的周长、面积相等.5、全等变换:只改变位置,不改变形状和大小的图形变换.平移、翻折(对称)、旋转变换都是全等变换.6、全等三角形常见类型翻折法:找到中心线经此翻折后能互相重合的两个三角形,易发现其对应元素旋转法:两个三角形绕某一定点旋转一定角度能够重合时,易于找到对应元素平移法:将两个三角形沿某一直线推移能重合时也可找到对应元素三、经验之谈:本节开始我们学习全等三角形,全等三角形在初中几何中应用非常广泛,同学们要认真学习。

八年级数学上册《全等三角形》知识点梳理

八年级数学上册《全等三角形》知识点梳理

千里之行,始于足下。

八年级数学上册《全等三角形》知识点梳理
1. 什么是全等三角形?
- 全等三角形指的是两个三角形的对应边长相等,对应角度也相等的三角形。

2. 全等三角形的性质和判定方法有哪些?
- 全等三角形的性质包括:对应边长相等,对应角度相等,对应线段相等,对应角平分线相等。

- 判定两个三角形全等的方法有:SSS 判定法(边边边)、SAS 判定法
(边角边)、ASA 判定法(角边角)和 HL 判定法(斜边直角边)。

3. 全等三角形的基本性质有哪些?
- 对应的边相等:若两个三角形全等,则它们的对应边长相等。

- 对应的角度相等:若两个三角形全等,则它们的对应角度相等。

- 对应的线段相等:若两个三角形的对应边相等,它们的对应线段(如中线、高线、角平分线等)也相等。

4. 如何应用全等三角形解题?
- 利用全等三角形的性质可以在图形中推导出其他线段和角度的长度或关系,从而解决各种三角形的问题。

第1页/共2页
锲而不舍,金石可镂。

- 典型的应用包括求角度的大小、线段长度的关系、面积的比较等。

5. 如何证明两个三角形全等?
- 根据要证明的条件选择合适的判定方法(SSS、SAS、ASA 或 HL)。

- 使用已知条件和全等三角形的性质,逐步推导出两个三角形的对应边长和对应角度相等。

- 利用已知条件的等式和全等三角形的性质,一步一步证明两个三角形全等。

注意:以上为八年级数学上册《全等三角形》的知识点梳理,具体内容可能与教材有所差异,建议参考教材进行学习。

全等、轴对称知识点归纳

全等、轴对称知识点归纳

全等三角形知识点归纳一、定义:能够完全重合的两个三角形称为全等三角形,重合的顶点叫做对应点,重合的边叫做对应边,重合的角叫做对应角.二、性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应边上的高相等;(4)全等三角形的对应角的平分线相等;(5)全等三角形的对应边的中线相等;(6)全等三角形的周长相等;(7)全等三角形的面积相等.三、判定公理及推论:1、三组边分别相等的两个三角形全等(简称“SSS”或“边边边”);2、两边和它们的夹角分别相等的两个三角形全等(简称“SAS”或“边角边”);3、两角和它们的夹边分别相等的两个三角形全等(简称“ASA”或“角边角”);4、两角和其中一个角的对边分别相等的两个三角形全等(简称“AAS”或“角角边”);5、斜边和一条直角边分别相等的两个直角三角形全等(简称“HL”或“斜边,直角边”);注:A是英文角的缩写(angle),S是英文边的缩写(side).四、角平分线的定义:(1)角的平分线定义:如果以角的顶点为端点的射线把这个角分成两个相等的角,那么这条射线叫做这个角的角平分线.(2)三角形的角平分线的定义:三角形的一个内角的平分线与它的对边相交,连接这个角的顶点和交点之间的线段叫三角形的角平分线.五、角平分线的性质:角平分线上的点到角两边的距离相等.六、角平分线的判定:角的内部到角两边距离相等的点在这个角的平分线上.七、尺规作一个角的角平分线:(1)要点:三段弧;(2)依据:SSS.轴对称知识点归纳一、轴对称图形的定义:如果一个图形沿某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.二、轴对称的定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.三、轴对称的性质:1、成轴对称的两个图形一定全等;2、如果两个图形成轴对称,那么对称轴是任何一对对应点所连线段的垂直平分线.四、轴对称与轴对称图形的区别:轴对称是指两个图形之间的形状与位置关系,成轴对称的两个图形是全等形;轴对称图形是一个具有特殊形状的图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.五、线段的垂直平分线:(1)定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线(或线段的中垂线).(2)性质:线段的垂直平分线上的点与这条线段两个端点的距离相等;(3)判定:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.六、轴对称作图:(1)作出一些关键点或特殊点的对称点.(2)按原图形的连接方式连接所得到的对称点,即得到原图形的轴对称图形.七、用坐标表示轴对称:(1)点P(a,b)关于x轴对称的点的坐标是(a,-b);(2)点P(a,b)关于y轴对称的点的坐标是(-a,b);(3)点P(a,b)关于原点对称的点的坐标是(-a,-b).八、关于坐标轴夹角平分线对称:(1)点P(a,b)关于一、三象限夹角平分线对称的点的坐标是(b,a);(2)点P(a,b)关于二、四象限夹角平分线对称的点的坐标是(-b,-a).九、关于平行于坐标轴的直线对称:(3)点P(a,b)关于直线x=m对称的点的坐标是(2m-a,b);(4)点P(a,b)关于直线y=n对称的点的坐标是(a,2n-b).十、等腰三角形:有两条边相等的三角形是等腰三角形.相等的两条边叫做腰,另一条边叫做底边.两腰所夹的角叫做顶角,腰与底边的夹角叫做底角.十一、等腰三角形的性质:(1)等腰三角形的两个底角相等(简写成“等边对等角”);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.十二、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等,简称为“等角对等边”.十二、等边三角形:三条边都相等的三角形叫做等边三角形,也叫做正三角形.十三、等边三角形的性质:(1)边:三条边都相等;(2)角:三个角都相等,并且都等于600;(3)对称性:它是轴对称图形,有三条对称轴.十四、等边三角形的判定方法:(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.仅供个人用于学习、研究;不得用于商业用途。

人教版八年级上册第十二章全等三角形知识点总结及复习

人教版八年级上册第十二章全等三角形知识点总结及复习

全等三角形知识点总结及复习一、知识网络⎧⎧⎨⎪⎩⎪⎪⎧⎪⎪→⇒⎨⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩⎩⎧⎨⎩对应角相等性质对应边相等边边边 SSS 全等形全等三角形应用边角边 SAS 判定角边角 ASA 角角边 AAS 斜边、直角边 HL 作图 角平分线性质与判定定理二、基础知识梳理 (一)、基本概念1、“全等”的理解 全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

全等三角形定义 :能够完全重合的两个三角形称为全等三角形。

(注:全等三角形是相似三角形中的特殊情况)当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

由此,可以得出:全等三角形的对应边相等,对应角相等。

(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边; (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角; (3)有公共边的,公共边一定是对应边; (4)有公共角的,角一定是对应角;(5)有对顶角的,对顶角一定是对应角; 2、全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等; 3、全等三角形的判定方法(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上(二)灵活运用定理1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

(完整版)八年级上十二章轴对称知识点总结(最全最新)

(完整版)⼋年级上⼗⼆章轴对称知识点总结(最全最新)轴对称知识点(⼀)轴对称和轴对称图形1、有⼀个图形沿着某⼀条直线折叠,如果它能够与另⼀个图形重合,?那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.两个图形关于直线对称也叫做轴对称.2、轴对称图形:如果⼀个图形沿⼀条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

(对称轴必须是直线)3、对称点:折叠后重合的点是对应点,叫做对称点。

4、轴对称图形的性质:如果两个图形关于某条直线对称,那么对称轴是任何⼀对对应点所连线段的垂直平分线。

类似的,轴对称图形的对称轴,是任何⼀对对应点所连线段的垂直平分线。

连接任意⼀对对应点的线段被对称轴垂直平分.轴对称图形上对应线段相等、对应⾓相等。

5.画⼀图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

(⼆)、轴对称与轴对称图形的区别和联系区别:轴对称是指两个图形之间的形状与位置关系,?成轴对称的两个图形是全等形;轴对称图形是⼀个具有特殊形状的图形,把⼀个轴对称图形沿对称轴分成两个图形,这两个图形是全等形,并且成轴对称.联系:1:都是折叠重合2;如果把成轴对称的两个图形看成⼀个图形那么他就是轴对称图形,反之亦然。

(三)线段的垂直平分线(1)经过线段的中点并且垂直于这条线段的直线,?叫做这条线段的垂直平分线(或线段的中垂线).(2)线段的垂直平分线上的点与这条线段两个端点的距离相等;反过来,?与⼀条线段两个端点距离相等的点在这条线段的垂直平分线上.(证明是必须有两个点)因此线段的垂直平分线可以看成与线段两个端点距离相等的所有点的集合.(四)⽤坐标表⽰轴对称1、点(x,y)关于x轴对称的点的坐标为(-x,y);2、点(x,y)关于y轴对称的点的坐标为(x,-y);3、点(x,y)关于原点对称的点的坐标为(-x,-y)。

八年级数学上册《全等三角形》知识点整理人教版

八年级数学上册《全等三角形》知识点
整理人教版
经过翻转、平移后,能够完全重合的两个三角形叫做全等三角形,全等三角形知识点大家都学会了吗?还有疑问的同学看过来!
.全等图形:能够完全重合的两个图形就是全等图形。

2.全等图形的性质:全等多边形的对应边、对应角分别相等。

3.全等三角形:三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。

同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。

说明:
全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。

这里要注意:
周长相等的两个三角形,不一定全等;
面积相等的两个三角形,也不一定全等。

小练习
.下列说法中正确的说法为
①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等,
A.①②③④
B.①③④ c.①②④ D.
②③④
2.一个正方形的侧面展开图有个全等的正方形.
A.2个
B.3个c.4个D.6个
3.对于两个图形,给出下列结论,其中能获得这两个图形全等的结论共有
①两个图形的周长相等;②两个图形的面积相等;③两个图形的周长和面积都相等;④两个图形的形状相同,大小也相等.
A.1个
B.2个
c.3个D.4个
小编为大家提供的人教版八年级上学期数学全等三角形知识点大家仔细阅读了吗?最后祝同学们学习进步。

人教版八年级上册第十二章全等三角形知识点复习


A. ①④
B.①②
C.②③
D.③④
2.如图,ABD ≌ CDB ,且 AB 和 CD 是对应边,下面四个结论中不正确的是( )
A. ABD和CDB 的面积相等
A
D
B. ABD和CDB 的周长相等 C. A + ABD = C + CBD
B
C
D.DAD//BC 且 AD=BC
3.如图, ABC ≌ BAD ,A 和 B 以及 C 和 D 分别是对应点,如果
4.全等三角形的判定(一):三边对应相等的两个三角形全等,简与成“边边边”或“SSS”.
AB = DE 如图,在 ABC 和 DEF 中 BC = EF
AC =
【典型例题】
例1.如图, ABC ≌ ADC ,点 B 与点 D 是对应点, BAC = 26 ,且 B = 20 , SABC = 1,求 CAD , D, ACD 的度数及 ACD 的面积.
数及 BC 的长.
E
F
A
BC
D
本文来源于网络,如果侵权行为,请联系删除!
精品文档,助力人生,欢迎关注小编!
11.如图,在 ABC与ABD 中,AC=BD,AD=BC,求证: ABC ≌ ABD
D A
C B
全等三角形(一)作业
1.如图, ABC ≌ CDA ,AC=7cm,AB=5cm.,则 AD 的长是( )
求证:(1) DE ⊥ AB ; (2)BD 平分 ABC (角平分线的相关证明及性质)
B
A E
D
C
【巩固练习】 1.下面给出四个结论:①若两个图形是全等图形,则它们形状一定相同;②若两个图形的
形状相同,则它们一定是全等图形;③若两个图形的面积相等,则它们一定是全等图形; ④若两个图形是全等图形,则它们的大小一定相同,其中正确的是( )

八年级上册数学第11、12、13章知识要点

第十一章三角形知识要点1、三角形的定义:不在同一直线上的三条线段首尾顺次连接而成的平面图形。

记为△ABC2、三角形的有关重要线段:⑴三角形的三边:三角形的两边之和大于第三边;①组成三角形的条件:较小的两边之和大于第三边②若两边为a、b,则第三边取值范围是: a-b <c< a+b⑵三角形的高线、中线、角平分线:都是线段3、三角形的分类:按边分可分为不等边三角形与等腰三角形(含等边三角形)解有关等腰三角形的问题时,通常要对等腰三角形的腰与底边进行分类讨论。

4、三角形的稳定性: 三角形具有稳定性5、三角形有关的角:⑴三角形内角和等于180°;⑵三角形的一个外角等于与它不相邻的两个内角的和,⑶三角形的一个外角大于与它不相邻的任何一个内角。

6、多边形:⑴对角线:多边形中不相邻的两个顶点之间的连线。

n边形从一个顶点出发有 n-3 对角线,这些对角线把n边形分成了n-2 三角形,n边形共有(3)2n n-条对角线;⑵n边形的内角和等于 (n-2)180°,⑶多边形的外角和都等于 360°,正n边形外角360n︒,因此内角180°-内角第十二章全等三角形知识要点1、能够完全重合的两个三角形叫,全等三角形。

全等三角形的性质:全等三角形对应边相等、对应角相等。

2、全等三角形的判定:边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)、斜边、直角边(HL)。

方法与思路:要证明两条线段或两个角相等时,通常证这两条线段或这两个角分别所在的三角形全等。

3、角平分线的性质:角平分线上的点到角两边的距离相等。

4、角平分线推论:角的内部到角的两边的距离相等的点在这个角的平分线上。

第十三章轴对称知识要点1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形轴对称图形;这条直线叫做对称轴。

2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3、重直平分线的性质:线段垂直平分线上的任意一点到线段两个端点的距离相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全等三角形知识总结
一、知识网络
二、基础知识梳理
(一)、基本概念
1、“全等”的理解全等的图形必须满足:(1)形状相同的图形;(2)大小相等的图形;
即能够完全重合的两个图形叫全等形。

同样我们把能够完全重合的两个三角形叫做全等三角形。

2、全等三角形的性质
(1)全等三角形对应边相等;(2)全等三角形对应角相等;
3、全等三角形的判定方法
(1)三边对应相等的两个三角形全等。

(2)两角和它们的夹边对应相等的两个三角形全等。

(3)两角和其中一角的对边对应相等的两个三角形全等。

(4)两边和它们的夹角对应相等的两个三角形全等。

(5)斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线的性质及判定
性质:角平分线上的点到这个角的两边的距离相等
判定:到一个角的两边距离相等的点在这个角平分线上
(二)灵活运用定理
1、判定两个三角形全等的定理中,必须具备三个条件,且至少要有一组边对应相等,
因此在寻找全等的条件时,总是先寻找边相等的可能性。

2、要善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等。

3、要善于灵活选择适当的方法判定两个三角形全等。

(1)已知条件中有两角对应相等,可找:
①夹边相等(ASA)②任一组等角的对边相等(AAS)
(2)已知条件中有两边对应相等,可找
①夹角相等(SAS)②第三组边也相等(SSS)
(3)已知条件中有一边一角对应相等,可找
①任一组角相等(AAS 或ASA)②夹等角的另一组边相等(SAS)
轴对称知识梳理
一、基本概念
1.轴对称图形
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.折叠后重合的点是对应点,叫做对称点.
2.线段的垂直平分线
经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
3.轴对称变换
由一个平面图形得到它的轴对称图形叫做轴对称变换.
4.等腰三角形
有两条边相等的三角形,叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.
5.等边三角形
三条边都相等的三角形叫做等边三角形.
二、主要性质
1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.或者说轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.
2.线段垂直平分钱的性质
线段垂直平分线上的点与这条线段两个端点的距离相等.
3.(1)点P(x,y)关于x轴对称的点的坐标为P′(x,-y).
(2)点P(x,y)关于y轴对称的点的坐标为P″(-x,y).
4.等腰三角形的性质
(1)等腰三角形的两个底角相等(简称“等边对等角”).
(2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.
(3)等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在直线就是它的对称轴.
(4)等腰三角形两腰上的高、中线分别相等,两底角的平分线也相等.
(5)等腰三角形一腰上的高与底边的夹角是顶角的一半。

(6)等腰三角形顶角的外角平分线平行于这个三角形的底边.
5.等边三角形的性质
(1)等边三角形的三个内角都相等,并且每一个角都等于60°.
(2)等边三角形是轴对称图形,共有三条对称轴.
(3)等边三角形每边上的中线、高和该边所对内角的平分线互相重合.
三、有关判定
1.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.
2.如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.。

相关文档
最新文档