始兴县高级中学2018-2019学年高二上学期第一次月考试卷数学
2018-2019学年高二上学期第一次月考试卷数学(242)

宾县高中2018-2019学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .562. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成( ) A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥03. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1)4. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .5. 已知直线ax+by+c=0与圆O :x 2+y 2=1相交于A ,B 两点,且,则的值是( )A .B .C .D .06. 全称命题:∀x ∈R ,x 2>0的否定是( )A .∀x ∈R ,x 2≤0B .∃x ∈R ,x 2>0C .∃x ∈R ,x 2<0D .∃x ∈R ,x 2≤07. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( )A .3B .72C .D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.8. 甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:乙校:则x,yA、12,7B、10,7C、10,8D、11,99.如图,四面体OABC的三条棱OA,OB,OC两两垂直,OA=OB=2,OC=3,D为四面体OABC外一点.给出下列命题.①不存在点D,使四面体ABCD有三个面是直角三角形②不存在点D,使四面体ABCD是正三棱锥③存在点D,使CD与AB垂直并且相等④存在无数个点D,使点O在四面体ABCD的外接球面上其中真命题的序号是()A.①② B.②③ C.③D.③④10.定义在[1,+∞)上的函数f(x)满足:①当2≤x≤4时,f(x)=1﹣|x﹣3|;②f(2x)=cf(x)(c为正常数),若函数的所有极大值点都落在同一直线上,则常数c的值是()A.1 B.±2 C.或3 D.1或2。
始兴县第三中学2018-2019学年上学期高二数学12月月考试题含解析

始兴县第三中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 有30袋长富牛奶,编号为1至30,若从中抽取6袋进行检验,则用系统抽样确定所抽的编号为( ) A .3,6,9,12,15,18 B .4,8,12,16,20,24 C .2,7,12,17,22,27 D .6,10,14,18,22,262. 从5名男生、1名女生中,随机抽取3人,检查他们的英语口语水平,在整个抽样过程中,若这名女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是( )A .B .C .D .3. 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知a=3,,A=60°,则满足条件的三角形个数为( ) A .0B .1C .2D .以上都不对4. 已知x ,y ∈R ,且,则存在θ∈R ,使得xcos θ+ysin θ+1=0成立的P (x ,y )构成的区域面积为( )A .4﹣B .4﹣C .D . +5. 记,那么ABC D6. 执行右面的程序框图,如果输入的[1,1]t ∈-,则输出的S 属于( ) A.[0,2]e - B. (,2]e -? C.[0,5] D.[3,5]e -【命题意图】本题考查程序框图、分段函数等基础知识,意在考查运算能力和转化思想的运用. 7. 已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny8. 某个几何体的三视图如图所示,其中正(主)视图中的圆弧是半径为2的半圆,则该几何体的表面积为 ( )A .π1492+B .π1482+C .π2492+D .π2482+【命题意图】本题考查三视图的还原以及特殊几何体的面积度量.重点考查空间想象能力及对基本面积公式的运用,难度中等.9.已知f(x)是定义在R上周期为2的奇函数,当x∈(0,1)时,f(x)=3x﹣1,则f(log35)=()A.B.﹣C.4 D.10.已知集合A={x|a﹣1≤x≤a+2},B={x|3<x<5},则A∩B=B成立的实数a的取值范围是()A.{a|3≤a≤4} B.{a|3<a≤4} C.{a|3<a<4} D.∅11.利用独立性检验来考虑两个分类变量X和Y是否有关系时,通过查阅下表来确定断言“X和Y有关系”的可信度,如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k)0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828A.25% B.75% C.2.5% D.97.5%12.将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是()A.x=πB.C.D.二、填空题13.在下列给出的命题中,所有正确命题的序号为.①函数y=2x3+3x﹣1的图象关于点(0,1)成中心对称;②对∀x,y∈R.若x+y≠0,则x≠1或y≠﹣1;③若实数x,y满足x2+y2=1,则的最大值为;④若△ABC为锐角三角形,则sinA<cosB.⑤在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且•=5,则△ABC的形状是直角三角形.14.若a,b是函数f(x)=x2﹣px+q(p>0,q>0)的两个不同的零点,且a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于.15.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.16.如图,在平行四边形ABCD中,点E在边CD上,若在平行四边形ABCD内部随机取一个点Q,则点Q 取自△ABE内部的概率是.17.若函数f(x)=﹣m在x=1处取得极值,则实数m的值是.18.命题“∃x∈R,2x2﹣3ax+9<0”为假命题,则实数a的取值范围为.三、解答题19.(1)求与椭圆有相同的焦点,且经过点(4,3)的椭圆的标准方程.(2)求与双曲线有相同的渐近线,且焦距为的双曲线的标准方程.20.若点(p,q),在|p|≤3,|q|≤3中按均匀分布出现.(1)点M(x,y)横、纵坐标分别由掷骰子确定,第一次确定横坐标,第二次确定纵坐标,则点M(x,y)落在上述区域的概率?(2)试求方程x2+2px﹣q2+1=0有两个实数根的概率.21.设极坐标与直角坐标系xOy有相同的长度单位,原点O为极点,x轴坐标轴为极轴,曲线C1的极坐标方程为ρ2cos2θ+3=0,曲线C2的参数方程为(t是参数,m是常数).(Ⅰ)求C1的直角坐标方程和C2的普通方程;(Ⅱ)若C1与C2有两个不同的公共点,求m的取值范围.22.如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,PA=AB=BC=CD=2,PD=2,PA⊥PD,Q为PD的中点.(Ⅰ)证明:CQ∥平面PAB;(Ⅱ)若平面PAD⊥底面ABCD,求直线PD与平面AQC所成角的正弦值.23.已知椭圆C1:+=1(a>b>0)的离心率为e=,直线l:y=x+2与以原点为圆心,以椭圆C1的短半轴长为半径的圆O相切.(1)求椭圆C1的方程;(2)抛物线C2:y2=2px(p>0)与椭圆C1有公共焦点,设C2与x轴交于点Q,不同的两点R,S在C2上(R,S与Q不重合),且满足•=0,求||的取值范围.24.设,证明:(Ⅰ)当x>1时,f(x)<(x﹣1);(Ⅱ)当1<x<3时,.始兴县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:从30件产品中随机抽取6件进行检验,采用系统抽样的间隔为30÷6=5,只有选项C中编号间隔为5,故选:C.2.【答案】B【解析】解:由题意知,女生第一次、第二次均未被抽到,她第三次被抽到,这三个事件是相互独立的,第一次不被抽到的概率为,第二次不被抽到的概率为,第三次被抽到的概率是,∴女生第一次、第二次均未被抽到,那么她第三次被抽到的概率是=,故选B.3.【答案】B【解析】解:∵a=3,,A=60°,∴由正弦定理可得:sinB===1,∴B=90°,即满足条件的三角形个数为1个.故选:B.【点评】本题主要考查三角形个数的判断,利用正弦定理是解决本题的关键,考查学生的计算能力,属于基础题.4.【答案】A【解析】解:作出不等式组对应的平面区域如图:对应的区域为三角形OAB,若存在θ∈R,使得xcosθ+ysinθ+1=0成立,则(cosθ+sinθ)=﹣1,令sinα=,则cosθ=,则方程等价为sin(α+θ)=﹣1,即sin(α+θ)=﹣,∵存在θ∈R,使得xcosθ+ysinθ+1=0成立,∴|﹣|≤1,即x2+y2≥1,则对应的区域为单位圆的外部,由,解得,即B(2,2),A(4,0),则三角形OAB的面积S=×=4,直线y=x的倾斜角为,则∠AOB=,即扇形的面积为,则P(x,y)构成的区域面积为S=4﹣,故选:A【点评】本题主要考查线性规划的应用,根据条件作出对应的图象,求出对应的面积是解决本题的关键.综合性较强.5.【答案】B【解析】【解析1】,所以【解析2】,6.【答案】B7.【答案】C【解析】解:∵实数x、y满足a x<a y(1>a>0),∴y<x.对于A.取x=1,y=0,不成立,因此不正确;对于B.取y=﹣2,x=﹣1,ln(x2+1)>ln(y2+1)不成立;对于C.利用y=x3在R上单调递增,可得x3>y3,正确;对于D.取y=﹣π,x=,但是sinx=,siny=,sinx>siny不成立,不正确.故选:C.【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.8.【答案】A9.【答案】B【解析】解:∵f(x)是定义在R上周期为2的奇函数,∴f(log35)=f(log35﹣2)=f(log3),∵x∈(0,1)时,f(x)=3x﹣1∴f(log3)═﹣故选:B10.【答案】A【解析】解:∵A={x|a﹣1≤x≤a+2}B={x|3<x<5}∵A∩B=B∴A⊇B∴解得:3≤a≤4故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.11.【答案】D【解析】解:∵k>5、024,而在观测值表中对应于5.024的是0.025,∴有1﹣0.025=97.5%的把握认为“X和Y有关系”,故选D.【点评】本题考查独立性检验的应用,是一个基础题,这种题目出现的机会比较小,但是一旦出现,就是我们必得分的题目.12.【答案】B【解析】解:将函数y=cosx的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到y=cos x,再向右平移个单位得到y=cos[(x)],由(x)=kπ,得x=2kπ,即+2kπ,k∈Z,当k=0时,,即函数的一条对称轴为,故选:B【点评】本题主要考查三角函数的对称轴的求解,利用三角函数的图象关系求出函数的解析式是解决本题的关键.二、填空题13.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC<0,即有C为钝角.则三角形ABC为钝角三角形;⑤不正确.故答案为:①②③14.【答案】9.【解析】解:由题意可得:a+b=p,ab=q,∵p>0,q>0,可得a>0,b>0,又a,b,﹣2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,可得①或②.解①得:;解②得:.∴p=a+b=5,q=1×4=4,则p+q=9.故答案为:9.15.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.16.【答案】.【解析】解:由题意△ABE的面积是平行四边形ABCD的一半,由几何概型的计算方法,可以得出所求事件的概率为P=,故答案为:.【点评】本题主要考查了几何概型,解决此类问题的关键是弄清几何测度,属于基础题.17.【答案】﹣2【解析】解:函数f(x)=﹣m的导数为f′(x)=mx2+2x,由函数f(x)=﹣m在x=1处取得极值,即有f′(1)=0,即m+2=0,解得m=﹣2,即有f′(x)=﹣2x2+2x=﹣2(x﹣1)x,可得x=1处附近导数左正右负,为极大值点.故答案为:﹣2.【点评】本题考查导数的运用:求极值,主要考查由极值点求参数的方法,属于基础题.18.【答案】﹣2≤a≤2【解析】解:原命题的否定为“∀x∈R,2x2﹣3ax+9≥0”,且为真命题,则开口向上的二次函数值要想大于等于0恒成立,只需△=9a2﹣4×2×9≤0,解得:﹣2≤a≤2.故答案为:﹣2≤a≤2【点评】存在性问题在解决问题时一般不好掌握,若考虑不周全、或稍有不慎就会出错.所以,可以采用数学上正难则反的思想,去从它的反面即否命题去判定.注意“恒成立”条件的使用.三、解答题19.【答案】【解析】解:(1)由所求椭圆与椭圆有相同的焦点,设椭圆方程,由(4,3)在椭圆上得,则椭圆方程为;(2)由双曲线有相同的渐近线,设所求双曲线的方程为﹣=1(λ≠0),由题意可得c2=4|λ|+9|λ|=13,解得λ=±1.即有双曲线的方程为﹣=1或﹣=1.20.【答案】【解析】解:(1)根据题意,点(p,q),在|p|≤3,|q|≤3中,即在如图的正方形区域,其中p、q都是整数的点有6×6=36个,点M(x,y)横、纵坐标分别由掷骰子确定,即x、y都是整数,且1≤x≤3,1≤y≤3,点M(x,y)落在上述区域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9个点,所以点M(x,y)落在上述区域的概率P1=;(2)|p|≤3,|q|≤3表示如图的正方形区域,易得其面积为36;若方程x2+2px﹣q2+1=0有两个实数根,则有△=(2p)2﹣4(﹣q2+1)>0,解可得p2+q2≥1,为如图所示正方形中圆以外的区域,其面积为36﹣π,即方程x2+2px﹣q2+1=0有两个实数根的概率,P2=.【点评】本题考查几何概型、古典概型的计算,解题时注意区分两种概率的异同点.21.【答案】【解析】解:(I)曲线C1的极坐标方程为ρ2cos2θ+3=0,即ρ2(cos2θ﹣sin2θ)+3=0,可得直角坐标方程:x2﹣y2+3=0.曲线C2的参数方程为(t是参数,m是常数),消去参数t可得普通方程:x﹣2y﹣m=0.(II)把x=2y+m代入双曲线方程可得:3y2+4my+m2+3=0,由于C1与C2有两个不同的公共点,∴△=16m2﹣12(m2+3)>0,解得m<﹣3或m>3,∴m<﹣3或m>3.【点评】本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、直线与双曲线的位置关系,考查了推理能力与计算能力,属于中档题.22.【答案】【解析】(Ⅰ)证明:取PA的中点N,连接QN,BN.∵Q,N是PD,PA的中点,∴QN∥AD,且QN=AD.∵PA=2,PD=2,PA⊥PD,∴AD=4,∴BC=AD.又BC∥AD,∴QN∥BC,且QN=BC,∴四边形BCQN为平行四边形,∴BN∥CQ.又BN⊂平面PAB,且CQ⊄平面PAB,∴CQ∥平面PAB.(Ⅱ)解:取AD的中点M,连接BM;取BM的中点O,连接BO、PO.由(Ⅰ)知PA=AM=PM=2,∴△APM为等边三角形,∴PO⊥AM.同理:BO⊥AM.∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.以O为坐标原点,分别以OB,OD,OP所在直线为x轴,y轴,z轴建立空间直角坐标系,则D(0,3,0),A(0,﹣1,0),P(0,0,),C(,2,0),Q(0,,).∴=(,3,0),=(0,3,﹣),=(0,,).设平面AQC的法向量为=(x,y,z),∴,令y=﹣得=(3,﹣,5).∴cos<,>==﹣.∴直线PD与平面AQC所成角正弦值为.23.【答案】【解析】解:(1)由直线l:y=x+2与圆x2+y2=b2相切,∴=b,解得b=.联立解得a=,c=1.∴椭圆的方程是C1:.(2)由椭圆的右焦点(1,0),抛物线y2=2px的焦点,∵有公共的焦点,∴,解得p=2,故抛物线C2的方程为:y2=4x.易知Q(0,0),设R(,y1),S(,y2),∴=(,y1),=,由•=0,得,∵y1≠y2,∴,∴=64,当且仅当,即y1=±4时等号成立.又||===,当=64,即y=±8时,||min=8,2故||的取值范围是[8,+∞).【点评】本题考查了椭圆与抛物线的标准方程及其性质、向量的数量积运算和基本不等式的性质、点到直线的距离公式等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.24.【答案】【解析】证明:(Ⅰ)(证法一):记g(x)=lnx+﹣1﹣(x﹣1),则当x>1时,g′(x)=+﹣<0,又g(1)=0,有g(x)<0,即f(x)<(x﹣1);…4′(证法二)由均值不等式,当x>1时,2<x+1,故<+.①令k(x)=lnx﹣x+1,则k(1)=0,k′(x)=﹣1<0,故k(x)<0,即lnx<x﹣1②由①②得当x>1时,f(x)<(x﹣1);(Ⅱ)记h(x)=f(x)﹣,由(Ⅰ)得,h′(x)=+﹣=﹣<﹣=,令g(x)=(x+5)3﹣216x,则当1<x<3时,g′(x)=3(x+5)2﹣216<0,∴g(x)在(1,3)内是递减函数,又由g(1)=0,得g(x)<0,∴h′(x)<0,…10′因此,h(x)在(1,3)内是递减函数,又由h(1)=0,得h(x)<0,于是,当1<x<3时,f(x)<…12′。
2018_2019学年高二数学上学期第一次月考试题

2018——2019学年第一学期第一次月考试卷高二数学一、选择题(本大题共12小题,每小题5分,共60分。
在每小题列出的四个选项中只有一项符合要求). 41.在△ABC 中,若B A sin sin >,则与的大小关系为( ) A .B A > B. B A < C. ≥D. 、的大小关系不能确定 2.在△ABC 中,已知a=7,b=10,c=6判断△ABC 的形状( ) A.锐角三角形 B.直角三角形 C.锐角或直角三角形 D.钝角三角形3.在△ABC 中,AC =7,BC =2,B =60°,则BC 边上的高等于( )A.32B.332C.3+62D.3+3944.已知A ,B 两地的距离为10km ,B ,C 两地的距离为20km ,现测得∠ABC =120°,则A ,C 两地的距离为( ).A .10kmB .10kmC .10kmD .10km5.若△ABC 中,sin A ∶sin B ∶sinC =2∶3∶4,那么cos C =( ) A .-14B.14C .-23D.236.△ABC 的三边长分别为AB =7,BC =5,AC =6,则AB →·BC →的值为( ) A .19 B .14C .-18 D .-197.在等差数列{}n a 中,已知4816a a +=,则该数列前11项和=( ) A .58 B .88C .143 D .1768.在等比数列{}n a 中,4510a a +=,6720a a +=,则89a a +=( )A.90B.30C.70D.409.设等差数列{}n a 的前n 项和为,若111a =-,466a a +=-,则当取最小值时,n 等于( )A .6B .7C .8D .910.设为等比数列{}n a 的前n 项和,2580a a -=,则42S S =( ) ……………………………………………………密…………………封…………………线……………………………………………………………A.5B.8C.-8D.1511.根据下列条件解三角形:①∠B =30°,a =14,b =7;②∠B =60°,a =10,b =9.那么,下面判断正确的是( ).A .①只有一解,②也只有一解.B .①有两解,②也有两解.C .①有两解,②只有一解.D .①只有一解,②有两解.12.△ABC 中,a ,b ,c 分别为∠A,∠B,∠C 的对边,如果a ,b ,c 成等差数列, ∠B=30°,△ABC 的面积为23,那么b =( ). A .231+B .1+C .232+D .2+ 二.填空题(本大题共4小题,每小题5分共20分).13.在△ABC 中,a ,b 分别是∠A 和∠B 所对的边,若a =,b =1,∠B =30°,则∠A 的值是 .14.△ABC 中,若a cos A 2=b cos B 2=ccosC 2,则△ABC 的形状是________.15.已知等比数列{a n }的前10项和为32,前20项和为56,则它的前30项和为. 16.已知数列{}n a 的前项和n n S 23+=,则=___________.三.解答题(本大题共6小题,共70分,解答应写出必要的文字说明,证明过程或计算步骤). 17.(本小题满分10分)在△ABC 中,BC =5,AC =3,sin C =2sin A.(1)求AB 的值; (2)求sin A 的值.18.(本小题满分12分)△ABC 中,D 在边BC 上,且BD=2,DC=1,∠B=60°, ∠ADC=150°,求AC 的长及△ABC 的面积.19.(本小题满分12分)在△ABC 中,已知∠A =30°,a ,b 分别为∠A ,∠B 的对边, 且a =4=33b ,解此三角形.20.(本小题满分12分)已知等差数列{}n a . (1)若12=31a ,32=151a 求; (2)若1=5,d=3,=2009n a a ,求.21.(本小题满分12分)数列{}n a 满足14a =,144n n a a -=-(2)n ≥,设=12n a -. (1)判断数列{}n b 是否为等差数列并试证明; (2)求数列{}n a 的通项公式.22.在数列{a n }中,S n +1=4a n +2,a 1=1.(1)设b n =a n +1-2a n ,求证数列{b n }是等比数列; (2)设c n =nna 2,求证数列{c n }是等差数列; (3)求数列{a n }的通项公式及前n 项和的公式.2018——2019学年第一学期第一次月考答案 高二 数学 ……………………………………………………密…………………封…………………线…级: 学号: 姓名:。
高二数学上学期第一次月考试题

2018年—2019年高二上学期第一次月考卷数学试卷一、选择题(本大题共12小题,共分)1.在中,,,,则A。
B、C、D、2.在中,,,,则A、B。
ﻩC。
ﻩD、或3.在等差数列中,,则A、 20ﻩB。
12 C。
10ﻩD。
364.在中,若,,,则边b等于A、B。
ﻩC。
D。
15.若的三个内角A,B,C满足:::12:13,则一定是A。
锐角三角形B、钝角三角形C、直角三角形ﻩD、无法确定6.已知数列满足,若,则等于A、 1 B、2ﻩC、 64ﻩD、1287.在中,,,,则a的值为A。
3 B。
23ﻩC、ﻩD、28.在中,,且的外接圆半径,则A、ﻩB。
C、D、9.已知等差数列中,,,则的前n项和的最大值是A、15 B。
20ﻩC、26ﻩD。
3010.已知数列满足,且,则A、B。
ﻩC。
ﻩD、 211.已知是等比数列,且,,那么的值等于A。
5ﻩB、 10ﻩC。
15 D。
2012.数列,前n项和为A。
B、ﻩC。
ﻩD、第II卷二、填空题(本大题共4小题,共分)13.在中,,,,则______、14.设等差数列的公差不为0,已知,且、、成等比数列,则______、15.如图所示,为测量一水塔AB的高度,在C处测得塔顶的仰角为,后退20米到达D处测得塔顶的仰角为,则水塔的高度为______米16.17.ﻭ18.数列前n项和为,则的通项等于______ 。
三、解答题(本大题共6小题,共分)19.已知等比数列,,20.求数列的通项公式、21.求的值、ﻭﻭ22.ﻭ23.24.ﻭ25.在三角形ABC中,角A,B,C所对的边为a,b,c,,,且、ﻭⅠ求b;26.Ⅱ求、ﻭ27.ﻭﻭﻭﻭﻭ28.已知等差数列满足:,,其前n项和为。
29.求数列的通项公式及;ﻭ若,求数列的前n项和为、ﻭ30.在中,角A,B,C所对的边分别为a,b,c,且、ﻭ求角A的值;31.若,求的面积S、ﻭ32.33.34.ﻭﻭﻭ35.设等差数列的前n项和满足,且,,成公比大于1的等比数列、36.求数列的通项公式;ﻭ设,求数列的前n项和、37.ﻭﻭ22、在海岸A处,发现北偏东方向,距离A为海里的B处有一艘走私船,在A处北偏西方向,距离A为2 海里的C处有一艘缉私艇奉命以海里时的速度追截走私船,此时,走私船正以10 海里时的速度从B处向北偏东方向逃窜Ⅰ问C船与B船相距多少海里?C船在B船的什么方向?Ⅱ问缉私艇沿什么方向行驶才能最快追上走私船?并求出所需时间、ﻭﻭﻭ2018-2019上学期高二第一次月考数学答案和解析【答案】1、D2、Dﻩ3、C4。
始兴县高中2018-2019学年高二上学期数学期末模拟试卷含解析

始兴县高中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A . B .12+ C .122+ D .122+2. 实数x ,y 满足不等式组,则下列点中不能使u=2x+y 取得最大值的是( )A .(1,1)B .(0,3)C .(,2)D .(,0)3. 如图所示,阴影部分表示的集合是( )A .(∁UB )∩A B .(∁U A )∩BC .∁U (A ∩B )D .∁U (A ∪B ) 4. 已知集合23111{1,(),,}122i A i i i i -=-+-+(其中为虚数单位),2{1}B x x =<,则A B =( ) A .{1}- B .{1} C .{1,}2- D .{}25. 执行如图所示的程序框图,若输出的结果是,则循环体的判断框内①处应填( )A .11?B .12?C .13?D .14?6. 方程(x 2﹣4)2+(y 2﹣4)2=0表示的图形是( ) A .两个点 B .四个点C .两条直线D .四条直线7. 在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线EF 相交的是( )A .直线1AAB .直线11A B C. 直线11A D D .直线11BC 8. 如果a >b ,那么下列不等式中正确的是( ) A .B .|a|>|b|C .a 2>b 2D .a 3>b 39. 已知a >b >0,那么下列不等式成立的是( )A .﹣a >﹣bB .a+c <b+cC .(﹣a )2>(﹣b )2D .10.若函数f (x )=ax 2+bx+1是定义在[﹣1﹣a ,2a]上的偶函数,则该函数的最大值为( ) A .5 B .4 C .3 D .211.数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )A .﹣16B .14C .28D .3012.设全集U={1,3,5,7,9},集合A={1,|a ﹣5|,9},∁U A={5,7},则实数a 的值是( )A .2B .8C .﹣2或8D .2或8二、填空题13.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是 .14.【盐城中学2018届高三上第一次阶段性考试】已知函数()()ln f x x x ax =-有两个极值点,则实数a 的取值范围是. 15.在△ABC 中,,,,则_____.16.直线l 过原点且平分平行四边形ABCD 的面积,若平行四边形的两个顶点为B (1,4),D (5,0),则直线l 的方程为 .17.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=3x x +,对任意的m ∈[﹣2,2],f (mx﹣2)+f (x )<0恒成立,则x 的取值范围为_____.18.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .三、解答题19.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).(1)求函数f (x )的定义域;(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.20.(本小题满分12分)如图,四棱柱1111ABCD A B C D -中,侧棱1A A ^底面ABCD ,//AB DC , AB AD ^,1AD CD ==,12AA AB ==,E 为棱1AA 的中点.(Ⅰ)证明:11B C ^面1CEC ;(II )设点M 在线段1C E 上,且直线AM 与平面11ADD A,求线段AM 的长.11121.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=()x.(1)求当x>0时f(x)的解析式;(2)画出函数f(x)在R上的图象;(3)写出它的单调区间.22.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.23.设集合A={x|0<x﹣m<3},B={x|x≤0或x≥3},分别求满足下列条件的实数m的取值范围.(1)A∩B=∅;(2)A∪B=B.24.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.始兴县高中2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】B 【解析】试题分析:化简为标准形式()()11122=-+-y x ,圆上的点到直线的距离的最大值为圆心到直线的距离加半径,22211=--=d ,半径为1,所以距离的最大值是12+,故选B.考点:直线与圆的位置关系 1 2. 【答案】 D【解析】解:由题意作出其平面区域,将u=2x+y 化为y=﹣2x+u ,u 相当于直线y=﹣2x+u 的纵截距, 故由图象可知,使u=2x+y 取得最大值的点在直线y=3﹣2x 上且在阴影区域内,故(1,1),(0,3),(,2)成立,而点(,0)在直线y=3﹣2x 上但不在阴影区域内,故不成立;故选D .【点评】本题考查了简单线性规划,作图要细致认真,注意点在阴影区域内;属于中档题.3.【答案】A【解析】解:由图象可知,阴影部分的元素由属于集合A,但不属于集合B的元素构成,∴对应的集合表示为A∩∁U B.故选:A.4.【答案】D【解析】考点:1.复数的相关概念;2.集合的运算 5. 【答案】C【解析】解:由已知可得该程序的功能是计算并输出S=+++…+=的值,若输出的结果是,则最后一次执行累加的k 值为12, 则退出循环时的k 值为13, 故退出循环的条件应为:k ≥13?, 故选:C【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.6. 【答案】B【解析】解:方程(x 2﹣4)2+(y 2﹣4)2=0则x 2﹣4=0并且y 2﹣4=0,即,解得:,,,,得到4个点. 故选:B .【点评】本题考查二元二次方程表示圆的条件,方程的应用,考查计算能力.7. 【答案】D 【解析】试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断.8.【答案】D【解析】解:若a>0>b,则,故A错误;若a>0>b且a,b互为相反数,则|a|=|b|,故B错误;若a>0>b且a,b互为相反数,则a2>b2,故C错误;函数y=x3在R上为增函数,若a>b,则a3>b3,故D正确;故选:D【点评】本题以命题的真假判断与应用为载体,考查了函数的单调性,难度不大,属于基础题.9.【答案】C【解析】解:∵a>b>0,∴﹣a<﹣b<0,∴(﹣a)2>(﹣b)2,故选C.【点评】本题主要考查不等式的基本性质的应用,属于基础题.10.【答案】A【解析】解:函数f(x)=ax2+bx+1是定义在[﹣1﹣a,2a]上的偶函数,可得b=0,并且1+a=2a,解得a=1,所以函数为:f(x)=x2+1,x∈[﹣2,2],函数的最大值为:5.故选:A.【点评】本题考查函数的最大值的求法,二次函数的性质,考查计算能力.11.【答案】B【解析】解:∵a n=(﹣1)n(3n﹣2),∴S11=()+(a2+a4+a6+a8+a10)=﹣(1+7+13+19+25+31)+(4+10+16+22+28)=﹣16,S20=(a1+a3+…+a19)+(a2+a4+…+a20)=﹣(1+7+...+55)+(4+10+ (58)=﹣+=30,∴S11+S20=﹣16+30=14.故选:B.【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.12.【答案】D 【解析】解:由题意可得3∈A ,|a ﹣5|=3,∴a=2,或a=8, 故选 D .二、填空题13.【答案】 .【解析】解:在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥,8个三棱锥的体积为:=.剩下的凸多面体的体积是1﹣=.故答案为:.【点评】本题考查几何体的体积的求法,转化思想的应用,考查空间想象能力计算能力.14.【答案】.【解析】由题意,y ′=ln x +1−2mx令f ′(x )=ln x −2mx +1=0得ln x =2mx −1,函数()()ln f x x x mx =-有两个极值点,等价于f ′(x )=ln x −2mx +1有两个零点, 等价于函数y =ln x 与y =2mx −1的图象有两个交点,,当m=12时,直线y=2mx−1与y=ln x的图象相切,由图可知,当0<m<12时,y=ln x与y=2mx−1的图象有两个交点,则实数m的取值范围是(0,12),故答案为:(0,12).15.【答案】2【解析】【知识点】余弦定理同角三角函数的基本关系式【试题解析】因为所以又因为解得:再由余弦定理得:故答案为:216.【答案】.【解析】解:∵直线l过原点且平分平行四边形ABCD的面积,则直线过BD的中点(3,2),故斜率为=,∴由斜截式可得直线l的方程为,故答案为.【点评】本题考查直线的斜率公式,直线方程的斜截式.17.【答案】2 2,3⎛⎫-⎪⎝⎭【解析】18.【答案】()53,44--【解析】试题分析:()23f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足()10,0,0f f m ><<,解得51534244m m >-⇒-<<- 考点:函数零点【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.三、解答题19.【答案】【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,∵m>0,∴(x﹣1)(x﹣)>0,若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.所以,解得:.【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.20.【答案】【解析】【命题意图】本题考查直线和平面垂直的判定和性质、直线和平面所成的角、两点之间的距离等基础知识,意在考查空间想象能力和基本运算能力21.【答案】【解析】解:(1)若x>0,则﹣x<0…(1分)∵当x<0时,f(x)=()x.∴f(﹣x)=()﹣x.∵f(x)是定义在R上的奇函数,f(﹣x)=﹣f(x),∴f(x)=﹣()﹣x=﹣2x.…(4分)(2)∵(x)是定义在R上的奇函数,∴当x=0时,f(x)=0,∴f(x)=.…(7分)函数图象如下图所示:(3)由(2)中图象可得:f(x)的减区间为(﹣∞,+∞)…(11分)(用R表示扣1分)无增区间…(12分)【点评】本题考查的知识点是函数的奇偶性,函数的解析式,函数的图象,分段函数的应用,函数的单调性,难度中档.22.【答案】【解析】(本题满分为12分)解:(Ⅰ)f(x)=2cosx(sinx+cosx)﹣1=2sinxcosx+2cos2x﹣1=sin2x+2×﹣1=sin2x+cos2x=sin(2x+),∵x∈[0,],∴2x+∈[,],∴当2x+=,即x=时,f(x)min=…6分(Ⅱ)由(Ⅰ)可知f(B)=sin(+)=1,∴sin(+)=,∴+=,∴B=,由正弦定理可得:b==∈[1,2)…12分【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,正弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.23.【答案】【解析】解:∵A={x|0<x﹣m<3},∴A={x|m<x<m+3},(1)当A∩B=∅时;如图:则,解得m=0,(2)当A∪B=B时,则A⊆B,由上图可得,m≥3或m+3≤0,解得m≥3或m≤﹣3.24.【答案】【解析】解:(1)由题意作出可行域如下,,结合图象可知,当过点A(2,﹣1)时有最大值,故Z max=2×2﹣1=3;(2)由题意作图象如下,,根据距离公式,原点O到直线2x+y﹣z=0的距离d=,故当d有最大值时,|z|有最大值,即z有最值;结合图象可知,当直线2x+y﹣z=0与椭圆+=1相切时最大,联立方程化简可得,116x2﹣100zx+25z2﹣400=0,故△=10000z2﹣4×116×(25z2﹣400)=0,故z2=116,故z=2x+y的最大值为.【点评】本题考查了线性规划的应用及圆锥曲线与直线的位置关系的应用.。
高二数学上学期第一次月考试题 人教版 新版.doc

2019学年高二数学上学期第一次月考试题本卷共150分,考试时间120分钟, 班级 姓名一、选择题(本题共12小题每小题5分共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项公式a n 可能是( )A .2nB .2n +1C .2n -1D .2n -1 2.若a <1,b >1,那么下列不等式中正确的是( )A.1a >1b B .ba >1 C .a 2<b 2 D .ab <a +b 3.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3 4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±155.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( ) A .5 2 B .5 3 C .2 5 D .3 5 6,已知命题p :∀x ∈R ,sin x ≤1,则( ).A .¬p :∃x 0∈R ,sin x 0≥1B .¬p :∀x ∈R ,sin x ≥1C .¬p :∃x 0∈R ,sin x 0>1D .¬p :∀x ∈R ,sin x >17.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .78.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .49.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6B .5C .4D .310.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,则三角形△F 1MF 2的面积= ( ).A. 16B. 8C. 6 D .1211. 已知椭圆:E )0(12222>>=+b a by a x 的右焦点)0,3(F ,过点F 的直线交E 于A ,B两点,若AB 的中点坐标为)1,1(-,则E 的方程为( )A. 1364522=+y xB. 1273622=+y xC. 1182722=+y xD. 191822=+y x12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn 取最大值时,n 的值为( )A .8B .9C .8或9D .17二、填空题(本大题共4小题每小题5分共20分,把正确答案填在题中的横线上) 13.不等式752>+x 的解集为________.14.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.则双曲线C 的方程为_________.15. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =18(a n +2)2.若b n =12a n -30. 则数列{b n }的前n 项和的最小值为_________.16.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. 则2211b a +的值为_________. 三、解答题(本大题有6题共70分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分10分)已知函数f (x )=ax 2-4ax -3.(1)当a =-1时,求关于x 的不等式f (x )>0的解集;(4分)(2)若对于任意的x ∈R ,均有不等式f (x )≤0成立,求实数a 的取值范围.(6分)18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(6分)(2)若p 是q 的必要不充分条件,求实数a 的取值范围.(6分)19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A ,B ,C 成等差数列.(1)若b =23,c =2,求△ABC 的面积;(6分)(2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.(6分)20.(本小题满分12分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=4 2.过椭圆焦点F 1作一直线,交椭圆于两点M ,N . (1)求椭圆的方程;(5分)(2)当∠F 2F 1M =π4时,求|MN |.(7分)21.(本小题满分12分) 已知n S 是数列{n a }的前n 项和,并且1a =1, 对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(5分) (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .(7分)22.(本小题满分12分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P . (1)求椭圆C 的离心率;(5分)(2)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.(7分)高二年级数学教学质量第一次月考检测(10.8)本卷共150分,考试时间120分钟, 班级 姓名 一、选择题(本题共12小题每小题5分共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.数列1,3,7,15,…的通项公式a n 可能是( )A .2nB .2n +1C .2n -1D .2n -1 解析:取n =1时,a 1=1,排除A 、B ,取n =2时,a 2=3,排除D. 选C. 2.若a <1,b >1,那么下列不等式中正确的是( )A.1a >1b B .ba >1 C .a 2<b 2 D .ab <a +b解析:利用特值法,令a =-2,b =2,则1a <1b ,A 错;ba <0,B 错;a 2=b 2,C 错.选D. 3.若f (x )=-x 2+mx -1的函数值有正值,则m 的取值范围是( ) A .m <-2或m >2 B .-2<m <2 C .m ≠±2 D .1<m <3 解析:因为f (x )=-x 2+mx -1有正值,所以Δ=m 2-4>0,所以m >2或m <-2. 选A. 4.等差数列{a n }满足a 24+a 27+2a 4a 7=9,则其前10项之和为( ) A .-9 B .-15 C .15 D .±15解析:因为a 24+a 27+2a 4a 7=(a 4+a 7)2=9,所以a 4+a 7=±3,所以a 1+a 10=±3,所以S 10=10(a 1+a 10)2=±15. 选D. 5.在△ABC 中,B =135°,C =15°,a =5,则此三角形的最大边长为( ) A .5 2 B . 5 3 C .2 5 D .3 5解析:依题意,知三角形的最大边为b .由于A =30°,根据正弦定理bsin B =asin A ,得b =a sin B sin A =5sin 135°sin 30°=5 2.选A.6,已知命题p :∀x ∈R ,sin x ≤1,则( ).A .¬p :∃x 0∈R ,sin x 0≥1B .¬p :∀x ∈R ,sin x ≥1C .¬p :∃x 0∈R ,sin x 0>1D .¬p :∀x ∈R ,sin x >1解: 命题p 是全称命题,全称命题的否定是特称命题. 答C7.已知变量x ,y 满足⎩⎪⎨⎪⎧x -y ≤1,2x +y ≤5,x ≥1,则z =3x +y 的最大值为( )A .4B .5C .6D .7解析:在坐标平面内画出题中的不等式组表示的平面区域及直线3x +y =0,平移该直线,当平移到经过该平面区域内的 点B (2,1)时,相应直线在x 轴上的截距达到最大,此时z =3x +y 取得最大值,最大值是7.答案:D8.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2x -2×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3, 即a =3.答 C9.已知F 1,F 2是椭圆x 216+y 29=1的两焦点,过点F 2的直线交椭圆于A ,B 两点.在△AF 1B 中,若有两边之和是10,则第三边的长度为( ) A .6B .5C .4D .3解:据椭圆定义知△AF 1B 的周长为4a =16,所求的第三边的长度为16-10=6.答案:A10.F 1、F 2是116922=-x y 双曲线的两个焦点,M 是双曲线上一点,且3221=⋅MF MF ,则三角形△F 1MF 2的面积= ( ).A. 16B. 8C. 6D .12[解析]:由题意可得双曲线的两个焦点是F 1(0,-5)、F 2(0,5),由双曲线定义得:621=-MF MF ,联立3221=⋅MF MF 得21MF +22MF=100=221F F , 所以△F 1MF 2是直角三角形,从而其面积为S =162121=⋅MF MF 答案:A 11. 已知椭圆:E )0(12222>>=+b a by a x 的右焦点)0,3(F ,过点F 的直线交E 于A ,B两点,若AB 的中点坐标为)1,1(-,则E 的方程为( )A. 1364522=+y xB. 1273622=+y xC. 1182722=+y xD. 191822=+y x【解析】由椭圆12222=+by a x 得,222222b a y a x b =+,因为过F 点的直线与椭圆)0(12222>>=+b a by a x 交于A ,B 两点,设),(11y x A ,),(22y x B ,则1221=+x x ,1221-=+y y 则22212212b a y a x b =+ ①22222222b a y a x b =+ ② 由①-②得0)()(2221222212=-+-y y a x x b ,化简得0))(())((2121221212=+-++-y y y y a x x x x b .0)(2)(2212212=---y y a x x b ,222121a b x x y y =--又直线的斜率为0(1)1312k --==-, 即2122=a b .因为92222-=-=a c a b ,所以21922=-a a ,解得182=a ,92=b . 故椭圆方程为191822=+y x .选D.12.在各项均为正数的等比数列{a n }中,公比q ∈(0,1).若a 3+a 5=5,a 2·a 6=4,b n =log 2a n ,数列{b n }的前n 项和为S n ,则当S 11+S 22+…+S nn 取最大值时,n 的值为( )A .8B .9C .8或9D .17解析:因为a 2·a 6=a 3·a 5=4,且a 3+a 5=5,所以a 3,a 5是方程x 2-5x +4=0的 两个根.又因为等比数列{a n }各项均为正数且q ∈(0,1),所以a 3=4,a 5=1.所以q 2=a 5a 3=14,所以q =12.所以a n =4·⎝ ⎛⎭⎪⎫12n -3,所以b n =log 2a n =5-n .所以S n =(9-n )·n 2, 所以S n n =9-n 2.T n =S 11+S 22+…+S n n =14(-n 2+17n )=14⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫n -1722+2894.所以当n =8或9时,T n 取得最大值.选C.二、填空题(本大题共4小题每小题5分共20分,把正确答案填在题中的横线上) 13.不等式752>+x 的解集为________.解:由原不等式可得752-<+x ,或752>+x .整理,得6-<x ,或1>x .∴原不等式的解集是{}1,6>-<x x x 或.答案:{}1,6>-<x x x 或 14.已知中心在原点的双曲线C 的右焦点为(2,0),实轴长为2 3.则双曲线C 的方程为_________.解:设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知得:a =3,c =2,再由a 2+b 2=c 2,∴b 2=1,∴双曲线C 的方程为x 23-y 2=1.答案:x 23-y 2=115. 已知在正整数数列{a n }中,前n 项和S n 满足:S n =18(a n +2)2.若b n =12a n -30. 则数列{b n }的前n 项和的最小值为_________.解:当n =1时,S 1=a 1=18(a 1+2)2,∴(a 1-2)2=0,∴a 1=2.当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,∴a n -a n -1=4,∴{a n }为等差数列. a n =a 1+(n -1)4=4n -2,由b n =12a n -30=2n -31≤0得n ≤312. ∴{b n }的前15项之和最小,且最小值为-225.16.椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点. 则2211ba +的值为_________. [解析]:设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得:Θ 又将代入x y -=112222=+by a x 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221b a a x x +=+∴>∆Θ222221)1(b a b a x x +-=代入①化简得 21122=+b a . 三、解答题(本大题有6题共70分,解答应写出文字说明、证明过程或演算步骤). 17.(本小题满分10分)已知函数f (x )=ax 2-4ax -3. (1)当a =-1时,求关于x 的不等式f (x )>0的解集;(4分)(2)若对于任意的x ∈R ,均有不等式f (x )≤0成立,求实数a 的取值范围.(6分) 解:(1)当a =-1时,不等式ax 2-4ax -3>0,即-x 2+4x -3>0.可化为x 2-4x +3<0, 即(x -1)(x -3)<0,解得1<x <3,故不等式f (x )>0的解集为(1,3). (2)①当a =0时,不等式ax 2-4ax -3≤0恒成立; ②当a ≠0时,要使得不等式ax 2-4ax -3≤0恒成立;只需⎩⎪⎨⎪⎧a <0,Δ≤0,即⎩⎪⎨⎪⎧a <0,-4a 2-4a -3≤0,解得⎩⎪⎨⎪⎧a <0,-34≤a ≤0,即-34≤a <0,综上所述,a 的取值范围为⎣⎢⎡⎦⎥⎤-34,0.18.(本小题满分12分)设p :实数x 满足x 2-4ax +3a 2<0,其中a ≠0,q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围;(6分)(2)若p 是q 的必要不充分条件,求实数a 的取值范围.(6分)解:(1)由x 2-4ax +3a 2<0,得(x -3a )(x -a )<0,当a =1时,解得1<x <3,即p 为真时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0x 2+2x -8>0,得2<x ≤3,即q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则p 真且q 真, 所以实数x 的取值范围是2<x <3. (2)p 是q 的必要不充分条件,即q ⇒p 且p q ,设A ={x |p (x )},B ={x |q (x )},则AB ,又B =(2,3],当a >0时,A =(a,3a );a <0时,A =(3a ,a ).所以当a >0时,有⎩⎪⎨⎪⎧a ≤2,3<3a ,解得1<a ≤2;当a <0时,显然A ∩B =∅,不合题意.综上所述,实数a 的取值范围是1<a ≤2.19.(本小题满分12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c , 且A ,B ,C 成等差数列.(1)若b =23,c =2,求△ABC 的面积;(6分) (2)若sin A ,sin B ,sin C 成等比数列,试判断△ABC 的形状.(6分) 解:因为A ,B ,C 成等差数列,所以2B =A +C .又A +B +C =π,所以B =π3.(1)法一:因为b =23,c =2,所以由正弦定理得b sin B =csin C ,即b sin C =c sin B , 即23sin C =2×32,得sin C =12.因为b >c ,所以B >C ,即C 为锐角,所以C =π6, 从而A =π2.所以S △ABC =12bc =2 3.法二:由余弦定理得b 2=a 2+c 2-2ac cos B , 即a 2-2a -8=0,得a =4.所以S △ABC =12ac sin B =12×4×2×32=2 3.(2)因为sin A ,sin B ,sin C 成等比数列,所以sin 2B =sin A ·sin C .由正弦定理得b 2=ac ;由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac .所以ac =a 2+c 2-ac ,即(a -c )2=0,即a =c .又因为B =π3,所以△ABC 为等边三角形.20.(本小题满分12分)如图,已知椭圆长轴|A 1A 2|=6,焦距|F 1F 2|=4 2. 过椭圆焦点F 1作一直线,交椭圆于两点M ,N .(1)求椭圆的方程;(5分) (2)当∠F 2F 1M =π4时,求|MN |.(7分)解 (1)由题意知:2a =6,2c =42,∴b 2=a 2-c 2=9-8=1,且焦点在x 轴上,∴椭圆的方程为x 29+y 2=1.(2)当∠F 2F 1M =π4时,直线MN 的斜率k =1.又F 1(-22,0),∴直线MN 的方程为y =x +2 2.由⎩⎨⎧x29+y 2=1,y =x +22得:10x 2+362x +63=0.若M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-1825,x 1x 2=6310. ∴|MN |=1+k 2·|x 1-x 2|=2·x 1+x 22-4x 1x 2=65.即|MN |的长为65.21.(本小题满分12分) 已知n S 是数列{n a }的前n 项和,并且1a =1, 对任意正整数n ,241+=+n n a S ;设Λ,3,2,1(21=-=+n a a b n n n ). (I )证明数列}{n b 是等比数列,并求}{n b 的通项公式;(5分) (II )设}log log 1{,32212++⋅=n n n n n C C T b C 为数列的前n 项和,求n T .(7分) 解:(I )),2(24,2411≥+=∴+=-+n a S a S n n n n Θ两式相减:),2(4411≥-=-+n a a a n n n *),(2)2(2,2)(42,2),2)((41111121111N n b a a b a a a a a b a a b n a a a n n n n n n n n n n n n n n n n ∈=-=--=-=∴-=∴≥-=∴++++++++-+,21=∴+nn b b }{n b ∴是以2为公比的等比,325,523,24,2112121121=-==+=∴+=+-=b a a a a a a a b 而Θ*)(231N n b n n ∈⋅=∴-(II ),231-==n nn b C ,)1(12log 2log 1log log 11222212+=⋅=⋅∴+++n n C C n n n n 而,111)1(1+-=+n n n n .111)111()4131()3121()211(+-=+-++-+-+-=∴n n n T n Λ22.(本小题满分12分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(1)求椭圆C 的离心率;(5分)(2)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.(7分)【解析】(1)由椭圆定义知,2a =|PF 1|+|PF 2|=(43+1)2+(13)2+(43−1)2+(13)2=22,所以a =2,又由已知,c =1,所以椭圆的离心率e =c a =12=22.(2)由(1)知,椭圆C 的方程为x 22+y 2=1, 设点Q 的坐标为(x ,y ).(ⅰ) 当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,,此时点Q 的坐标为(0,2−355).(ⅱ) 当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,因为M,N 在直线l 上,可设点M,N的坐标分别为1122(x ,kx +2),(x ,kx +2) 则|AM |2=(1+k 2)x 12, |AN |2=(1+k 2)x 22,又|A Q|2=(1+k 2)x 2,由2|AQ |2=1|AM |2+1|AN |2,得2 (1+k 2)x 2=1(1+k 2)x 12+1(1+k 2)x 22,即2x 2=1x 12+1x 22=(x 1+x 2)2−2 x 1x 2 x 12x 12, ① 将y =kx +2代入x 22+y 2=1中,得(2k 2+1)x 2+8kx +6=0.② 由=(8k )2−4(2k 2+1)6>0,得k 2>32. 由②可知,x 1+x 2=−8k 2k 2+1,x 1x 2=62k 2+1, 代入①并化简得x 2=21810k 3-. ③因为点Q 在直线y =kx +2上, 所以k =y −2x , 代入③并化简,得10(y −2)2−3x 2=18.由③及k 2>32,可知0<x 2<32,即x(−62,0)∪(0,62).又(0,2−355)满足10(y −2)2−3x 2=18, 故x (−62,62).由题意,Q(x ,y )在椭圆C 内,所以−1y 1,又由10(y −2)2=3x 2+18 有(y −2)2[95,94) 且−1y 1, 则y(12,2−355]. 所以点Q 的轨迹方程为10(y −2)2−3x 2=18,其中x(−62,62), y(12,2−355].。
始兴县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析
始兴县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( )A .πB .2πC .4πD .π2. 对于任意两个正整数m ,n ,定义某种运算“※”如下:当m ,n 都为正偶数或正奇数时,m ※n=m+n ;当m ,n 中一个为正偶数,另一个为正奇数时,m ※n=mn .则在此定义下,集合M={(a ,b )|a ※b=12,a ∈N *,b ∈N *}中的元素个数是()A .10个B .15个C .16个D .18个3. 已知数列的各项均为正数,,,若数列的前项和为5,则{}n a 12a =114n n n n a a a a ++-=+11n n a a +⎧⎫⎨⎬+⎩⎭n ( )n =A .B .C .D .35361201214. 执行如图所示的程序框图,若输入的分别为0,1,则输出的()A .4B .16C .27D .365. 把“二进制”数101101(2)化为“八进制”数是( )A .40(8)B .45(8)C .50(8)D .55(8)6. 三个数a=0.52,b=log 20.5,c=20.5之间的大小关系是( )A .b <a <cB .a <c <bC .a <b <cD .b <c <a7. 设偶函数f (x )在(0,+∞)上为减函数,且f (2)=0,则不等式>0的解集为( )A .(﹣2,0)∪(2,+∞)B .(﹣∞,﹣2)∪(0,2)C .(﹣∞,﹣2)∪(2,+∞)D .(﹣2,0)∪(0,2)8. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠09. 命题“∃x ∈R ,使得x 2<1”的否定是( )A .∀x ∈R ,都有x 2<1B .∃x ∈R ,使得x 2>1C .∃x ∈R ,使得x 2≥1D .∀x ∈R ,都有x ≤﹣1或x ≥110.若不等式1≤a ﹣b ≤2,2≤a+b ≤4,则4a ﹣2b 的取值范围是( )A .[5,10]B .(5,10)C .[3,12]D .(3,12)11.已知命题p :“∀∈[1,e],a >lnx ”,命题q :“∃x ∈R ,x 2﹣4x+a=0””若“p ∧q ”是真命题,则实数a 的取值范围是()A .(1,4]B .(0,1]C .[﹣1,1]D .(4,+∞) 12.已知曲线的焦点为,过点的直线与曲线交于两点,且,则2:4C y x =F F C ,P Q 20FP FQ += OPQ ∆的面积等于()A .B .CD 二、填空题13.如图是函数y=f (x )的导函数y=f ′(x )的图象,对此图象,有如下结论:①在区间(﹣2,1)内f (x )是增函数;②在区间(1,3)内f (x )是减函数;③在x=2时,f (x )取得极大值;④在x=3时,f (x )取得极小值.其中正确的是 .14.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若6a=4b=3c ,则cosB= .15.方程(x+y ﹣1)=0所表示的曲线是 .16.如图是一个正方体的展开图,在原正方体中直线AB 与CD 的位置关系是 .17.无论m 为何值时,直线(2m+1)x+(m+1)y ﹣7m ﹣4=0恒过定点 .18.要使关于的不等式恰好只有一个解,则_________.x 2064x ax ≤++≤a =【命题意图】本题考查一元二次不等式等基础知识,意在考查运算求解能力.三、解答题19.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6,(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.20.(本小题满分12分)已知函数.21()(3)ln 2f x x a x x =+-+(1)若函数在定义域上是单调增函数,求的最小值;()f x (2)若方程在区间上有两个不同的实根,求的取值范围.21()()(4)02f x a x a x -+--=1[,]e e21.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系;(2)若,求实数组成的集合C .A B B = 22.(本小题满分10分)选修4-5:不等式选讲已知函数.()()f x x a a R =-∈(1)当时,解不等式;1a =()211f x x <--(2)当时,,求的取值范围.(2,1)x ∈-121()x x a f x ->---23.(本小题满分12分)在中,内角的对边为,已知ABC ∆C B A ,,c b a ,,.1cos )sin 3(cos 2cos 22=-+C B B A(I )求角的值;C(II )若,且的面积取值范围为,求的取值范围.2b =ABC ∆c 【命题意图】本题考查三角恒等变形、余弦定理、三角形面积公式等基础知识,意在考查基本运算能力.24.已知命题p :不等式|x ﹣1|>m ﹣1的解集为R ,命题q :f (x )=﹣(5﹣2m )x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.始兴县第一高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为: cm ;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C . 2. 【答案】B【解析】解:a ※b=12,a 、b ∈N *,若a 和b 一奇一偶,则ab=12,满足此条件的有1×12=3×4,故点(a ,b )有4个;若a 和b 同奇偶,则a+b=12,满足此条件的有1+11=2+10=3+9=4+8=5+7=6+6共6组,故点(a ,b )有2×6﹣1=11个,所以满足条件的个数为4+11=15个.故选B3. 【答案】C【解析】解析:本题考查等差数列的定义通项公式与“裂项法”求数列的前项和.由n 114n n n na a a a ++-=+得,∴是等差数列,公差为,首项为,∴,由得2214n n a a +-={}2n a 44244(1)4n a n n =+-=0n a >.,∴数列的前项和为na=1112n n a a +==+11n n a a +⎧⎫⎨⎬+⎩⎭n,∴,选C.11111)1)52222+++=-= 120n =4. 【答案】D【解析】【知识点】算法和程序框图【试题解析】A=0,S=1,k=1,A=1,S=1,否;k=3,A=4,S=4,否;k=5,A=9,S=36,是,则输出的36。
2018-2019学年高二数学上学期第一次月考试题 文 (VI)
h2018-2019学年高二数学上学期第一次月考试题 文 (VI)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.数列1-,3,5-,7,9-,,的一个通项公式为( )A .21n a n =-B .()()112nn a n =-- C .()()121nn a n =-- D .()()1121n n a n +=--2.设n S 是等差数列{}n a 的前n 项和,12a =,533a a =,则9S =( ) A .90B .54C .54-D .72-3.已知等比数列{}n a 中,2341a a a =,67864a a a =,则5a =( ) A .2±B .2-C .2D .44.在锐角ABC △中,角A ,B 所对的边分别为a ,b,若2sin b A ⋅,则角B 等于( )A .π3B .π4C .π6D .5π125.在ABC △中,222a b c bc =+-,则A 等于( ) A .45︒B .120︒C .60︒D .30︒6.已知数列{}n a 是等差数列,满足1252a a S +=,下列结论中错误的是( ) A .90S =B .5S 最小C .36S S =D .50a =7.在ABC △中,60A ∠=︒,4AC =,BC =,则ABC △的面积为( ) A.B .4C.D8.设n S 为等比数列{}n a 的前n 项和,且关于x 的方程21320a x a x a -+=有两个相等的实根,则93S S =( ) A .27B .21C .14D .59.设n S 为等差数列{}n a 的前n 项和,44a =,515S =,若数列11n n a a +⎧⎫⎨⎬⎩⎭的前m 项和为1011,则m =( ) A .8B .9C .10D .1110.某船开始看见灯塔A 时,灯塔A 在船南偏东30︒方向,后来船沿南偏东60︒的方向航行45km 后,看见灯塔A 在船正西方向,则这时船与灯塔A 的距离是( ) A.B .30kmC .15kmD.km11.已知等比数列{}n a 的前n 项和为n S ,若37S =,663S =,则数列{}n na 的前n 项和为( )A .()312n n -++⨯B .()312n n ++⨯C .()112n n ++⨯D .()112n n +-⨯12.已知ABC △的内角A ,B ,C 对的边分别为a ,b ,c,且sin 2sin A B C =,则cos C 的最小值等于( ) ABCD第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.若数列{}n a 的前n 项和为22n S n =,则34a a +的值为__________.14.在ABC △中,已知2AB =,3AC =,120A ∠=︒,则ABC △的面积为_______.15.在ABC △中,三个角A ,B ,C 所对的边分别为a ,b ,c .若角A ,B ,C 成等差数列,且边a ,b ,c 成等比数列,则ABC △的形状为__________.16.已知首项为2的正项数列{}n a 的前n 项和为n S ,且当2n ≥时,21323n n n S S a --=-.若12nn S m ≤+恒成立,则实数m 的取值范围为_______________.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)已知数列{}n a 中,12a =,12n n a a +=.h(1)求n a ;(2)若n n b n a =+,求数列{}n b 的前5项的和5S .18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知())sin ,cos ,A C c ==,m n ,已知∥m n , (1)求角C 的值;(2)若4b c ==,ABC △的面积.19.(12分)已知{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根. (1)求{}n a 的通项公式;(2)求数列2n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S .h 20.(12分)在ABC△中,角A,B,C的对边分别为a,b,c,若cosc A,cosb B,cosa C成等差数列.(1)求B;(2)若a c+=,b=ABC△的面积.21.(12分)如图所示,在斜度一定的山坡上的一点A测得山顶上一建筑物顶端C对于山坡的斜度为15°,向山顶前进10米后到达点B,又从点B测得斜度为α,建筑物的高CD为5米.(1)若30α=︒,求AC的长;(2)若45α=︒,求此山对于地平面的倾斜角θ的余弦值.h22.(12分)已知数列{}n a 前n 项和为n S ,12a =,且满足112n n S a n +=+,()n ∈*N .(1)求数列{}n a 的通项公式;(2)设()142n n b n a +=-,求数列{}n b 的前n 项和n T .h第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C【解析】首先是符号规律:()1n-,再是奇数规律:21n -,因此()()121nn a n =--,故选C . 2.【答案】C【解析】因为533a a =,所以()24322d d +=+,24d ∴=-,2d ∴=-,()998922542S ⨯∴=⨯+-=-,故答案为C . 3.【答案】C【解析】因为等比数列{}n a 中,2341a a a =,67864a a a =,所以331a =,3764a =,即31a =,74a =,因此25374a a a ==,因为5a 与3a 同号,所以52a =,故选C . 4.【答案】B【解析】由2sin 2b A a ⋅=,依正弦定理,可得:2sin sin 2sin B A A =.∵0πA <<,∴sin 0A ≠.∴2sin B =.∵π02B <<,∴π4B =.故选B . 5.【答案】C【解析】由等式可得:222a b c bc =+-,代入关于角A 的余弦定理:2221cos 222b c a bc A bc bc +-===.所以60A =︒.故选C . 6.【答案】B【解析】由题设可得11132510280a d a d a d +=+⇒+=,即50a =,所以答案D 正确; 由等差数列的性质可得19520a a a +==,则()19959902a a S a +===,所以答案A 正确;又()361115336153430S S a d a d a d a -=+--=-+=-=,故答案C 正确. 所以答案B 是错误的,应选答案B . 7.【答案】C【解析】因为ABC △中,60A ∠=︒,4AC =,23BC =,由正弦定理得:sin sin BC ACA B=,所以234sin B =,所以sin 1B =, 所以90B ∠=︒,30C ∠=︒,所以1234sin30232ABC S =⨯⨯⨯︒=△,故选C .8.【答案】B【解析】根据题意,关于x 的方程21320a x a x a -+=有两个相等的实根,则有()231240a a a -=,代入等比数列的通项公式变形可得440q q -=,即34q =,则()()919393331111412111411a q S q qS q a q q----====----,故选B . 9.【答案】C【解析】n S 为等差设列{}n a 的前n 项和,设公差为d ,44a =,515S =, 则4534155a S a ===⎧⎨⎩,解得1d =,则()44n a n n =+-=.由于()1111111n n a a n n n n +==-++,则11111110112231111m S m m m =-+-++-=-=++, 解得10m =,故答案为10.故选C . 10.【答案】D【解析】根据题意画出图形,如图所示,可得60DBC ∠=︒,30DBA ∠=︒,45km BC =,30ABC ∴∠=︒,120BAC ∠=︒, 在ABC △中,利用正弦定理得:45sin120sin30AC︒︒=,)153km AC ∴=, 则这时船与灯塔的距离是)153km .故选D . 11.【答案】D【解析】当1q =时,不成立,h当1q ≠时,,解得:2q =,11a =, 即1112n n n a a q--==,12n n n a n -⋅=⋅,21122322n n S n -=+⋅+⋅++⋅,()2121222 (12)2n n n S n n -=⋅+⋅++-⋅+⋅,两式相减得到:所以()112n n Sn =+-⋅,故选D . 12.【答案】A【解析】已知等式sin 2sin A B C=,利用正弦定理化简可得:2a c =,两边平方可得:()224a c =,即22224a b c ++=,2222244432a b c a b ∴+-=-+,即22222324ab a bc -++-=,222132cos 28a b c a b C ab b a +-⎛∴==+-≥⎝,当且仅当32a bb a=时取等号,则cos C A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.【答案】24【解析】因为数列{}n a 的前n 项和为22n S n =,所以22332232210a S S =-=⨯-⨯=, 22443242314a S S =-=⨯-⨯=,3424a a ∴+=,故答案为24.14. 【解析】2AB=,3AC =,120A ∠=︒,11sin 23sin12022ABC SAB AC A ∴=⋅⋅⋅=⨯⨯⨯︒=△. 15.【答案】等边三角形【解析】角A ,B ,C 成等差数列,则2B A C =+,A B C ++=π,解得3B π=, 边a ,b ,c 成等比数列,则2b ac =,余弦定理可知()22222cos 0b a c ac B ac a c a c =+-=⇒-=⇒=,故为等边三角形.16.【答案】1516⎡⎫+∞⎪⎢⎣⎭, 【解析】由题意可得:21211323323n n n n n nS a S S a S -++-⎧=--=-⎪⎨⎪⎩,两式相减可得:2211330n n n n a a a a ++---=, 因式分解可得:()()1130n n n n a a a a +++--=,又因为数列为正项数列, 所以130n n a a +--=,故数列{}n a 为以2为首项,3为公差的等差数列, 所以()312n n n S +=,所以()2312n n n m ++≤恒成立,即其最大值小于等于m .由于函数分母为指数型函数,增长速度较快,所以当n 较大时,函数值越来越小,n 较小时存在最大值,经代入验证,当3n =时有最大值1516,所以1516m ≥.三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1)2n n a =;(2)77. 【解析】(1)12a =,12n n a a +=,则数列{}n a 是首项为2,公比为2的等比数列,1222n n n a -=⨯=. (2)2n n n b n a n =+=+,()()()()()234551222324252S =+++++++++ ()()23451234522222=+++++++++ ()515522277212+⨯-⨯=+=-.18.【答案】(1)3π;(2)【解析】(1)由∥m n得sin cos c AC =, ∵sin 0A ≠,∴sin tan 3C C C C π=⇒=. (2)由余弦定理:2222cos c a b ab C =+-,得2a =,则1sin 2S ab C ==19.【答案】(1)112n a n =+;(2)1422n n n S ++=-.【解析】(1)方程2560x x -+=的两个根为2,3,由题意得因为22a =,43a =.h设数列{}n a 的公差为d ,则422a a d -=,故12d =,从而132a =. 所以{}n a 的通项公式为112n a n =+.(2)设2n na ⎧⎫⎨⎬⎩⎭的前n 项和为n S ,由(1)知1222n n n a n ++=, 则23134122222n n n n n S +++=++++ ① 34121341222222n n n n n S ++++=++++② ①-②得341212131112311212422224422n n n n n n n S ++-+++⎛⎫=++++-=+-- ⎪⎝⎭. 所以1422n n n S ++=-. 20.【答案】(1)3B π=;(2)53.【解析】(1)∵cos c A ,cos b B ,cos a C 成等差数列,∴2cos cos cos b B c A a C =+, 由正弦定理2sin a R A =,2sin c R C =,2sin b R B =,R 为ABC △外接圆的半径, 代入上式得:2sin cos sin cos sin cos B B C A A C =+,即()2sin cos sin B B A C =+. 又A C B +=π-,∴()2sin cos sin B B B =π-,即2sin cos sin B B B =. 而sin 0B ≠,∴1cos 2B =,由0B <<π,得3B π=.(2)∵2221cos 22a c b B ac +-==,∴()222122a c ac b ac+--=,又33a c +=,3b =, ∴27234ac ac --=,即54ac =, ∴115353sin 224ABC S ac B ==⨯⨯=△. 21.【答案】(1)5652AC =+;(2)cos 31θ=-.【解析】(1)当30α=︒时,150ABC ∠=︒,15ACB BAC ∠=∠=︒, 所以10BC AB ==,由余弦定理得:222101021010cos1502001003AC =+-⨯⨯⨯︒=+,故10235652AC =+=+.(2)当45α=︒,在ABC △中,由正弦定理有 ()sin 6220562sin AB BAC BC ACB ⋅∠-==⋅=-∠,在BCD △中,sin sin 31BC DBCBDC CD⋅∠∠==-,又cos cos sin 312ADC ADC θπ⎛⎫=∠-=∠=- ⎪⎝⎭.22.【答案】(1)22,131,2n n n a n -=⎧=⎨+≥⎩;(2)()222232n n T n n =+-⋅+.【解析】(1)()()11122112n n n nS a n n S a n +-⎧⎪⎪⎨⎪⎪=⎩=+≥+-时,111122n n n a a a +=-+,即()1322n n a a n +=-≥,即()()1131n n a a +-=-,当12a =时,22a =,211=131a a -≠-, {}1n a -以211a -=为首项,3为公比的等比数列,∴2113n n a --=⋅,即231n n a -=+,∴-22,1 231,n n n a n =⎧=⎨≥+⎩. (2)()()()()()11142423142342n n n n b n a n n n --+=-=-⋅+=-+-, 记()'01212363103423n n S n -=⋅+⋅+⋅++-, ①()()'12132363463423n n n S n n -⋅+⋅++-+-=②由①②得,()()'01212=2343+3++3423n n n S n --⋅+⋅--⋅,∴()'2223nn S n =+-,()()()24222223222322n n n n nT n n n -+∴=+-⋅+=+-⋅+.欢迎您的下载,资料仅供参考!。
始兴县实验中学2018-2019学年上学期高二数学12月月考试题含解析
始兴县实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 高考临近,学校为丰富学生生活,缓解高考压力,特举办一场高三学生队与学校校队的男子篮球比赛.由于爱好者众多,高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.首发要求每个班至少1人,至多2人,则首发方案数为( ) A .720 B .270 C .390 D .3002. 已知x >0,y >0, +=1,不等式x+y ≥2m ﹣1恒成立,则m 的取值范围( )A .(﹣∞,]B .(﹣∞,]C .(﹣∞,] D .(﹣∞,]3. 设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,若OF 的垂直平分线与渐近线在第一象限内的交点到另一条渐近线的距离为1||2OF ,则双曲线的离心率为( )A .BC .D .3【命题意图】本题考查双曲线方程与几何性质,意在考查逻辑思维能力、运算求解能力、方程思想. 4. 函数f (x )=x 2﹣x ﹣2,x ∈[﹣5,5],在定义域内任取一点x 0,使f (x 0)≤0的概率是( ) A .B .C .D .5. 已知直线x+ay ﹣1=0是圆C :x 2+y 2﹣4x ﹣2y+1=0的对称轴,过点A (﹣4,a )作圆C 的一条切线,切点为B ,则|AB|=( )A .2B .6C .4D .26. 若复数2b ii++的实部与虚部相等,则实数b 等于( ) (A ) 3 ( B ) 1 (C )13 (D ) 12-7. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=18. 已知角α的终边上有一点P (1,3),则的值为( )A .﹣B .﹣C .﹣D .﹣49. 在《张邱建算经》中有一道题:“今有女子不善织布,逐日所织的布比同数递减,初日织五尺, 末一日织一尺,计织三十日”,由此推断,该女子到第10日时,大约已经完成三十日织布总量的( ) A .33% B .49% C .62% D .88% 10.设f (x )与g (x )是定义在同一区间[a ,b]上的两个函数,若函数y=f (x )﹣g (x )在x ∈[a ,b]上有两个不同的零点,则称f (x )和g (x )在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,则m 的取值范围为( )A .(﹣,﹣2]B .[﹣1,0]C .(﹣∞,﹣2]D .(﹣,+∞)11.给出函数()f x ,()g x 如下表,则(())f g x 的值域为( )A .{}4,2B .{}1,3C .{}1,2,3,4D .以上情况都有可能12.已知AC ⊥BC ,AC=BC ,D 满足=t+(1﹣t ),若∠ACD=60°,则t 的值为( )A .B .﹣C .﹣1D .二、填空题13.在直三棱柱中,∠ACB=90°,AC=BC=1,侧棱AA 1=,M 为A 1B 1的中点,则AM 与平面AA 1C 1C 所成角的正切值为( )A .B .C .D .14.已知奇函数f (x )的定义域为[﹣2,2],且在定义域上单调递减,则满足不等式f (1﹣m )+f (1﹣2m )<0的实数m 的取值范围是 .15.设某双曲线与椭圆1362722=+y x 有共同的焦点,且与椭圆相交,其中一个交点的坐标为 )4,15(,则此双曲线的标准方程是 .16.已知f (x ),g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )>f (x )g ′(x ),且f (x )=a x g(x )(a >0且a ≠1),+=.若数列{}的前n 项和大于62,则n 的最小值为 .17.已知直线l过点P(﹣2,﹣2),且与以A(﹣1,1),B(3,0)为端点的线段AB相交,则直线l的斜率的取值范围是.18.△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,则c的值为.三、解答题19.已知集合A={x|>1,x∈R},B={x|x2﹣2x﹣m<0}.(Ⅰ)当m=3时,求;A∩(∁R B);(Ⅱ)若A∩B={x|﹣1<x<4},求实数m的值.20.如图,M、N是焦点为F的抛物线y2=2px(p>0)上两个不同的点,且线段MN中点A的横坐标为,(1)求|MF|+|NF|的值;(2)若p=2,直线MN与x轴交于点B点,求点B横坐标的取值范围.21.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线1C 的极坐标方程是2=ρ,曲线2C 的参数方程是θππθθ],2,6[,0(21sin 2,1∈>⎪⎩⎪⎨⎧+==t t y x 是参数).(Ⅰ)写出曲线1C 的直角坐标方程和曲线2C 的普通方程;(Ⅱ)求t 的取值范围,使得1C ,2C 没有公共点.22.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为( ) ABC D23.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周得到如图所示的几何体σ. (1)求几何体σ的表面积;(2)点M时几何体σ的表面上的动点,当四面体MABD的体积为,试判断M点的轨迹是否为2个菱形.24.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金.(1)员工甲抽奖一次所得奖金的分布列与期望;(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?始兴县实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C解析:高三学生队队员指定由5班的6人、16班的8人、33班的10人按分层抽样构成一个12人的篮球队.各个班的人数有5班的3人、16班的4人、33班的5人,首发共有1、2、2;2、1、2;2、2、1类型;所求方案有:++=390.故选:C.2.【答案】D【解析】解:x>0,y>0,+=1,不等式x+y≥2m﹣1恒成立,所以(x+y)(+)=10+≥10=16,当且仅当时等号成立,所以2m﹣1≤16,解得m;故m的取值范围是(﹣];故选D.3.【答案】B【解析】4.【答案】C【解析】解:∵f(x)≤0⇔x2﹣x﹣2≤0⇔﹣1≤x≤2,∴f(x0)≤0⇔﹣1≤x0≤2,即x0∈[﹣1,2],∵在定义域内任取一点x0,∴x0∈[﹣5,5],∴使f(x0)≤0的概率P==故选C【点评】本题考查了几何概型的意义和求法,将此类概率转化为长度、面积、体积等之比,是解决问题的关键5. 【答案】B【解析】解:∵圆C :x 2+y 2﹣4x ﹣2y+1=0,即(x ﹣2)2+(y ﹣1)2=4,表示以C (2,1)为圆心、半径等于2的圆.由题意可得,直线l :x+ay ﹣1=0经过圆C 的圆心(2,1), 故有2+a ﹣1=0,∴a=﹣1,点A (﹣4,﹣1).∵AC==2,CB=R=2,∴切线的长|AB|===6.故选:B .【点评】本题主要考查圆的切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题.6. 【答案】C【解析】b +i 2+i =(b +i)(2-i)(2+i)(2-i)=2b +15+2-b 5i ,因为实部与虚部相等,所以2b +1=2-b ,即b =13.故选C.7. 【答案】C【解析】解:如图,++().故选C .8. 【答案】A【解析】解:∵点P (1,3)在α终边上, ∴tan α=3,∴====﹣.故选:A .9. 【答案】B 【解析】10.【答案】A【解析】解:∵f (x )=x 2﹣3x+4与g (x )=2x+m 在[0,3]上是“关联函数”,故函数y=h (x )=f (x )﹣g (x )=x 2﹣5x+4﹣m 在[0,3]上有两个不同的零点,故有,即,解得﹣<m ≤﹣2,故选A . 【点评】本题考查函数零点的判定定理,“关联函数”的定义,二次函数的性质,体现了转化的数学思想,属于基础题.11.【答案】A 【解析】试题分析:()()()()((1))14,((2))14,((3))32,((4))34,f g f f g f f g f f g f ========故值域为{}4,2.考点:复合函数求值. 12.【答案】A【解析】解:如图,根据题意知,D 在线段AB 上,过D 作DE ⊥AC ,垂足为E ,作DF ⊥BC ,垂足为F ;若设AC=BC=a,则由得,CE=ta,CF=(1﹣t)a;根据题意,∠ACD=60°,∠DCF=30°;∴;即;解得.故选:A.【点评】考查当满足时,便说明D,A,B三点共线,以及向量加法的平行四边形法则,平面向量基本定理,余弦函数的定义.二、填空题13.【答案】【解析】解:法1:取A1C1的中点D,连接DM,则DM∥C1B1,在在直三棱柱中,∠ACB=90°,∴DM⊥平面AA1C1C,则∠MAD是AM与平面AA1C1C所的成角,则DM=,AD===,则tan∠MAD=.法2:以C1点坐标原点,C1A1,C1B1,C1C分别为X,Y,Z轴正方向建立空间坐标系,则∵AC=BC=1,侧棱AA=,M为A1B1的中点,1∴=(﹣,,﹣),=(0,﹣1,0)为平面AA1C1C的一个法向量设AM与平面AA1C1C所成角为θ,则sinθ=||=则tanθ=故选:A【点评】本题考查的知识点是直线与平面所成的角,其中利用定义法以及建立坐标系,求出直线的方向向量和平面的法向量,将线面夹角问题转化为向量夹角问题是解答本题的关键.14.【答案】[﹣,].【解析】解:∵函数奇函数f(x)的定义域为[﹣2,2],且在定义域上单调递减,∴不等式f(1﹣m)+f(1﹣2m)<0等价为f(1﹣m)<﹣f(1﹣2m)=f(2m﹣1),即,即,得﹣≤m≤,故答案为:[﹣,]【点评】本题主要考查不等式的求解,根据函数奇偶性将不等式进行转化是解决本题的关键.注意定义域的限制.15.【答案】15422=-x y 【解析】试题分析:由题意可知椭圆1362722=+y x 的焦点在y 轴上,且927362=-=c ,故焦点坐标为()3,0±由双曲线的定义可得()()()()4340153401522222=++---+-=a ,故2=a ,5492=-=b ,故所求双曲线的标准方程为15422=-x y .故答案为:15422=-x y . 考点:双曲线的简单性质;椭圆的简单性质.16.【答案】 1 .【解析】解:∵x 为实数,[x]表示不超过x 的最大整数, ∴如图,当x ∈[0,1)时,画出函数f (x )=x ﹣[x]的图象,再左右扩展知f (x )为周期函数. 结合图象得到函数f (x )=x ﹣[x]的最小正周期是1.故答案为:1.【点评】本题考查函数的最小正周期的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.17.【答案】 [,3] .【解析】解:直线AP 的斜率K==3,直线BP 的斜率K ′==由图象可知,则直线l 的斜率的取值范围是[,3],故答案为:[,3],【点评】本题给出经过定点P的直线l与线段AB有公共点,求l的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.18.【答案】.【解析】解:∵△ABC外接圆半径为,内角A,B,C对应的边分别为a,b,c,若A=60°,b=2,∴由正弦定理可得:,解得:a=3,∴利用余弦定理:a2=b2+c2﹣2bccosA,可得:9=4+c2﹣2c,即c2﹣2c﹣5=0,∴解得:c=1+,或1﹣(舍去).故答案为:.【点评】本题主要考查了正弦定理,余弦定理,在解三角形中的综合应用,考查了转化思想和计算能力,属于基础题.三、解答题19.【答案】【解析】解:(1)当m=3时,由x2﹣2x﹣3<0⇒﹣1<x<3,由>1⇒﹣1<x<5,∴A∩B={x|﹣1<x<3};(2)若A∩B={x|﹣1<x<4},∵A=(﹣1,5),∴4是方程x2﹣2x﹣m=0的一个根,∴m=8,此时B=(﹣2,4),满足A ∩B=(﹣1,4). ∴m=8.20.【答案】【解析】解:(1)设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=8﹣p ,|MF|=x 1+,|NF|=x 2+,∴|MF|+|NF|=x 1+x 2+p=8;(2)p=2时,y 2=4x ,若直线MN 斜率不存在,则B (3,0);若直线MN 斜率存在,设A (3,t )(t ≠0),M (x 1,y 1),N (x 2,y 2),则代入利用点差法,可得y 12﹣y 22=4(x 1﹣x 2)∴k MN=, ∴直线MN 的方程为y ﹣t=(x ﹣3), ∴B 的横坐标为x=3﹣,直线MN 代入y 2=4x ,可得y 2﹣2ty+2t 2﹣12=0△>0可得0<t 2<12,∴x=3﹣∈(﹣3,3), ∴点B 横坐标的取值范围是(﹣3,3).【点评】本题考查抛物线的定义,考查点差法,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】 【解析】(Ⅰ)曲线1C 的直角坐标方程是222=+y x ,曲线2C 的普通方程是)21221(1+≤≤+=t y t x …………5分 (Ⅱ)对于曲线1:C 222=+y x ,令1x =,则有1y =±.故当且仅当001112-122t t t t >>⎧⎧⎪⎪⎨⎨+>+<⎪⎪⎩⎩或时,1C ,2C 没有公共点, 解得12t >.……10分22.【答案】C【解析】23.【答案】【解析】解:(1)根据题意,得;该旋转体的下半部分是一个圆锥,上半部分是一个圆台中间挖空一个圆锥而剩下的几何体,其表面积为S=×4π×2×2=8π,或S=×4π×2+×(4π×2﹣2π×)+×2π×=8π;(2)由已知S=××2×sin135°=1,△ABD因而要使四面体MABD的体积为,只要M点到平面ABCD的距离为1,因为在空间中有两个平面到平面ABCD的距离为1,它们与几何体σ的表面的交线构成2个曲边四边形,不是2个菱形.【点评】本题考查了空间几何体的表面积与体积的计算问题,也考查了空间想象能力的应用问题,是综合性题目.24.【答案】【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,奖金的可能取值是0,30,60,240,∴一等奖的概率P(ξ=240)=,P(ξ=60)=P(ξ=30)=,P(ξ=0)=1﹣∴变量的分布列是ξ0 30 60 240∴E ξ==20(2)由(1)可得乙一次抽奖中奖的概率是1﹣四次抽奖是相互独立的∴中奖次数η~B(4,)∴Dη=4×【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.。
始兴县一中2018-2019学年上学期高二数学12月月考试题含解析
始兴县一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 复数i iiz (21+=是虚数单位)的虚部为( )A .1-B .i -C .i 2D .2【命题意图】本题考查复数的运算和概念等基础知识,意在考查基本运算能力. 2. 不等式的解集为( )A .或B .C .或D .3. 四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥底面ABCD ,2AB =,若该四棱锥的所有顶点都在体积为24316π同一球面上,则PA =( ) A .3 B .72 C. D .92【命题意图】本题考查空间直线与平面间的垂直和平行关系、球的体积,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力. 4. 设F 1,F 2为椭圆=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则的值为( ) A.B.C.D.5. 用一平面去截球所得截面的面积为2π,已知球心到该截面的距离为1,则该球的体积是( ) A.π B .2πC .4πD.π6. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 7.已知,,那么夹角的余弦值( )A.B.C .﹣2D.﹣8. 若函数f (x )=log a (2x 2+x )(a >0且a ≠1)在区间(0,)内恒有f (x )>0,则f (x )的单调递增区间为( )A .(﹣∞,)B .(﹣,+∞)C .(0,+∞)D .(﹣∞,﹣)9. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 10)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.10.已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U AB =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,511.已知函数f (x )=m (x ﹣)﹣2lnx (m ∈R ),g (x )=﹣,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,则实数m 的范围是( )A .(﹣∞,]B .(﹣∞,)C .(﹣∞,0]D .(﹣∞,0)12.已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A .B .C .D .二、填空题13.下列命题:①终边在y 轴上的角的集合是{a|a=,k ∈Z};②在同一坐标系中,函数y=sinx 的图象和函数y=x 的图象有三个公共点;③把函数y=3sin (2x+)的图象向右平移个单位长度得到y=3sin2x 的图象;④函数y=sin (x ﹣)在[0,π]上是减函数其中真命题的序号是 .14.等差数列{}n a 的前项和为n S ,若37116a a a ++=,则13S 等于_________.15.已知一个动圆与圆C :(x+4)2+y 2=100相内切,且过点A (4,0),则动圆圆心的轨迹方程 .16.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .17.已知函数32()39f x x ax x =++-,3x =-是函数()f x 的一个极值点,则实数a = . 18.计算sin43°cos13°﹣cos43°sin13°的值为 .三、解答题19.已知函数f (x )=sin2x+(1﹣2sin 2x ).(Ⅰ)求f (x )的单调减区间;(Ⅱ)当x ∈[﹣,]时,求f (x )的值域.20.如图,在三棱柱111ABC A B C -中,111,A A AB CB A ABB =⊥. (1)求证:1AB ⊥平面1A BC ;(2)若15,3,60AC BC A AB ==∠=,求三棱锥1C AA B -的体积.21.已知{}{}22,1,3,3,31,1A a a B a a a =+-=--+,若{}3AB =-,求实数的值.22.(本小题满分12分)已知数列{n a }的前n 项和为n S ,且满足*)(2N n a n S n n ∈=+. (1)证明:数列}1{+n a 为等比数列,并求数列{n a }的通项公式;(2)数列{n b }满足*))(1(log 2N n a a b n n n ∈+⋅=,其前n 项和为n T ,试求满足201522>++nn T n 的最小正整数n .【命题意图】本题是综合考察等比数列及其前n 项和性质的问题,其中对逻辑推理的要求很高.23.已知p :“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”;q :“方程x 2﹣x+m ﹣4=0的两根异号”.若p ∨q 为真,¬p 为真,求实数m 的取值范围.24.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.始兴县一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1. 【答案】A【解析】()12(i)122(i)i i z i i i +-+===--,所以虚部为-1,故选A. 2. 【答案】A 【解析】 令得,;其对应二次函数开口向上,所以解集为或,故选A答案:A3. 【答案】B【解析】连结,AC BD 交于点E ,取PC 的中点O ,连结OE ,则O EP A ,所以OE ⊥底面ABCD ,则O到四棱锥的所有顶点的距离相等,即O 球心,均为12PC ==可得34243316ππ=,解得72PA =,故选B .4. 【答案】C【解析】解:F1,F 2为椭圆=1的两个焦点,可得F 1(﹣,0),F 2().a=2,b=1.点P 在椭圆上,若线段PF 1的中点在y 轴上,PF 1⊥F 1F 2,|PF 2|==,由勾股定理可得:|PF 1|==.==.故选:C .【点评】本题考查椭圆的简单性质的应用,考查计算能力.5.【答案】C【解析】解:用一平面去截球所得截面的面积为2π,所以小圆的半径为:cm;已知球心到该截面的距离为1,所以球的半径为:,所以球的体积为:=4π故选:C.6.【答案】A.【解析】7.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.8.【答案】D【解析】解:当x∈(0,)时,2x2+x∈(0,1),∴0<a<1,∵函数f(x)=log a(2x2+x)(a>0,a≠1)由f(x)=log a t和t=2x2+x复合而成,0<a<1时,f(x)=log a t在(0,+∞)上是减函数,所以只要求t=2x2+x>0的单调递减区间.t=2x2+x>0的单调递减区间为(﹣∞,﹣),∴f(x)的单调增区间为(﹣∞,﹣),故选:D.【点评】本题考查复合函数的单调区间问题,复合函数的单调区间复合“同增异减”原则,在解题中勿忘真数大于0条件.9.【答案】B10.【答案】A考点:集合交集,并集和补集.【易错点晴】集合的三要素是:确定性、互异性和无序性.研究一个集合,我们首先要看清楚它的研究对象,是实数还是点的坐标还是其它的一些元素,这是很关键的一步.第二步常常是解一元二次不等式,我们首先用十字相乘法分解因式,求得不等式的解集.在解分式不等式的过程中,要注意分母不能为零.元素与集合之间是属于和不属于的关系,集合与集合间有包含关系. 在求交集时注意区间端点的取舍. 熟练画数轴来解交集、并集和补集的题目.11.【答案】B【解析】解:由题意,不等式f(x)<g(x)在[1,e]上有解,∴mx<2lnx,即<在[1,e]上有解,令h(x)=,则h′(x)=,∵1≤x≤e,∴h′(x)≥0,∴h(x)max=h(e)=,∴<h(e)=,∴m<.∴m的取值范围是(﹣∞,).故选:B.【点评】本题主要考查极值的概念、利用导数研究函数的单调性等基础知识,解题时要认真审题,注意导数性质的合理运用.12.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B二、填空题13.【答案】③.【解析】解:①、终边在y轴上的角的集合是{a|a=,k∈Z},故①错误;②、设f(x)=sinx﹣x,其导函数y′=cosx﹣1≤0,∴f(x)在R上单调递减,且f(0)=0,∴f(x)=sinx﹣x图象与轴只有一个交点.∴f(x)=sinx与y=x 图象只有一个交点,故②错误;③、由题意得,y=3sin[2(x﹣)+]=3sin2x,故③正确;④、由y=sin(x﹣)=﹣cosx得,在[0,π]上是增函数,故④错误.故答案为:③.【点评】本题考查的知识点是命题的真假判断及其应用,终边相同的角,正弦函数的性质,图象的平移变换,及三角函数的单调性,熟练掌握上述基础知识,并判断出题目中4个命题的真假,是解答本题的关键.14.【答案】26 【解析】试题分析:由题意得,根据等差数列的性质,可得371177362a a a a a ++==⇒=,由等差数列的求和11313713()13262a a S a +===.考点:等差数列的性质和等差数列的和.15.【答案】+=1 .【解析】解:设动圆圆心为B ,半径为r ,圆B 与圆C 的切点为D ,∵圆C :(x+4)2+y 2=100的圆心为C (﹣4,0),半径R=10,∴由动圆B 与圆C 相内切,可得|CB|=R ﹣r=10﹣|BD|, ∵圆B 经过点A (4,0),∴|BD|=|BA|,得|CB|=10﹣|BA|,可得|BA|+|BC|=10, ∵|AC|=8<10,∴点B 的轨迹是以A 、C 为焦点的椭圆,设方程为(a >b >0),可得2a=10,c=4,∴a=5,b 2=a 2﹣c 2=9,得该椭圆的方程为+=1.故答案为: +=1.16.【答案】 63 .【解析】解:∵第一圈长为:1+1+2+2+1=7 第二圈长为:2+3+4+4+2=15第三圈长为:3+5+6+6+3=23 …第n 圈长为:n+(2n ﹣1)+2n+2n+n=8n ﹣1 故n=8时,第8圈的长为63, 故答案为:63.【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.17.【答案】5 【解析】试题分析:'2'()323,(3)0,5f x x ax f a =++∴-=∴=. 考点:导数与极值.18.【答案】 .【解析】解:sin43°cos13°﹣cos43°sin13°=sin (43°﹣13°)=sin30°=,故答案为.三、解答题19.【答案】【解析】解:(Ⅰ)f (x )=sin2x+(1﹣2sin 2x )=sin2x+cos2x=2(sin2x+cos2x )=2sin (2x+),由2k π+≤2x+≤2k π+(k ∈Z )得:k π+≤x ≤k π+(k ∈Z ),故f (x )的单调减区间为:[k π+,k π+](k ∈Z );(Ⅱ)当x ∈[﹣,]时,(2x+)∈[0,],2sin (2x+)∈[0,2],所以,f (x )的值域为[0,2].20.【答案】(1)证明见解析;(2)【解析】试题分析:(1)有线面垂直的性质可得1BC AB ⊥,再由菱形的性质可得11AB A B ⊥,进而有线面垂直的判定定理可得结论;(2)先证三角形1A AB 为正三角形,再由于勾股定理求得AB 的值,进而的三角形1A AB 的面积,又知三棱锥的高为3BC =,利用棱锥的体积公式可得结果.考点:1、线面垂直的判定定理;2、勾股定理及棱锥的体积公式. 21.【答案】23a =-. 【解析】考点:集合的运算. 22.【答案】【解析】(1)当111,12n a a =+=时,解得11a =. (1分)当2n ≥时,2n n S n a +=,① 11(1)2n n S n a --+-=,②①-②得,1122n n n a a a -+=-即121n n a a -=+, (3分) 即112(1)(2)n n a a n -+=+≥,又112a +=.所以{}1n a +是以2为首项,2为公比的等比数列. 即12n n a +=故21n n a =-(*n N ∈).(5分)23.【答案】【解析】解:若命题p 是真命题:“直线x+y ﹣m=0与圆(x ﹣1)2+y 2=1相交”,则<1,解得1﹣;若命题q 是真命题:“方程x 2﹣x+m ﹣4=0的两根异号”,则m ﹣4<0,解得m <4. 若p ∨q 为真,¬p 为真, 则p 为假命题,q 为真命题.∴.∴实数m 的取值范围是或.【点评】本题考查了复合命题真假的判定方法、直线与圆的位置关系、一元二次的实数根与判别式的关系,考查了推理能力与计算能力,属于中档题.24.【答案】(1)单调递增区间为 ;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
始兴县高级中学2018-2019学年高二上学期第一次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知定义在R上的偶函数f(x)在[0,+∞)上是增函数,且f(ax+1)≤f(x﹣2)对任意都成立,则实数a的取值范围为()A.[﹣2,0] B.[﹣3,﹣1] C.[﹣5,1] D.[﹣2,1)2.《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()A.钱B.钱C.钱D.钱3.已知集合,则A0或B0或3C1或D1或34.设x,y满足线性约束条件,若z=ax﹣y(a>0)取得最大值的最优解有数多个,则实数a的值为()A.2 B.C.D.35.在△ABC中,,则这个三角形一定是()A.等腰三角形B.直角三角形C.等腰直角三角 D.等腰或直角三角形6.命题“若α=,则tan α=1”的逆否命题是()A.若α≠,则tan α≠1 B.若α=,则tan α≠1C.若tan α≠1,则α≠D.若tan α≠1,则α=7.集合U=R,A={x|x2﹣x﹣2<0},B={x|y=ln(1﹣x)},则图中阴影部分表示的集合是()A .{x|x ≥1}B .{x|1≤x <2}C .{x|0<x ≤1}D .{x|x ≤1}8. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是( )A .{, } B .{,, } C .{V|≤V≤} D .{V|0<V≤}9. 已知lga+lgb=0,函数f (x )=a x 与函数g (x )=﹣log b x 的图象可能是( )A. B. C. D.10.将正方形的每条边8等分,再取分点为顶点(不包括正方形的顶点),可以得到不同的三角形个数为( ) A .1372 B .2024 C .3136 D .449511.直线x+y ﹣1=0与2x+2y+3=0的距离是( ) A.B.C.D.12.设x ∈R ,则“|x ﹣2|<1”是“x 2+x ﹣2>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件二、填空题13.【2017-2018第一学期东台安丰中学高三第一次月考】若函数()2,0,{,0x x x f x x lnx x a+≤=->在其定义域上恰有两个零点,则正实数a 的值为______.14.设数列{a n}的前n项和为S n,已知数列{S n}是首项和公比都是3的等比数列,则{a n}的通项公式a n=.15.在复平面内,复数与对应的点关于虚轴对称,且,则____.16.在△ABC中,角A,B,C所对的边分别为a,b,c,若△ABC不是直角三角形,则下列命题正确的是(写出所有正确命题的编号)①tanA•tanB•tanC=tanA+tanB+tanC②tanA+tanB+tanC的最小值为3③tanA,tanB,tanC中存在两个数互为倒数④若tanA:tanB:tanC=1:2:3,则A=45°⑤当tanB﹣1=时,则sin2C≥sinA•sinB.,对任意的m∈[﹣2,2],f(mx 17.【盐城中学2018届高三上第一次阶段性考试】已知函数f(x)=3x x﹣2)+f(x)<0恒成立,则x的取值范围为_____.18.(本小题满分12分)点M(2pt,2pt2)(t为常数,且t≠0)是拋物线C:x2=2py(p>0)上一点,过M作倾斜角互补的两直线l1与l2与C的另外交点分别为P、Q.(1)求证:直线PQ的斜率为-2t;(2)记拋物线的准线与y轴的交点为T,若拋物线在M处的切线过点T,求t的值.三、解答题19.(本小题满分10分)如图⊙O经过△ABC的点B,C与AB交于E,与AC交于F,且AE=AF.(1)求证EF∥BC;(2)过E作⊙O的切线交AC于D,若∠B=60°,EB=EF=2,求ED的长.20.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .21.证明:f (x )是周期为4的周期函数;(2)若f (x )=(0<x ≤1),求x ∈[﹣5,﹣4]时,函数f (x )的解析式.18.已知函数f (x )=是奇函数.22.在平面直角坐标系xoy 中,已知圆C 1:(x+3)2+(y ﹣1)2=4和圆C 2:(x ﹣4)2+(y ﹣5)2=4 (1)若直线l 过点A (4,0),且被圆C 1截得的弦长为2,求直线l 的方程(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线l 1和l 2,它们分别与圆C 1和C 2相交,且直线l 1被圆C 1截得的弦长与直线l 2被圆C 2截得的弦长相等,求所有满足条件的点P 的坐标.23.已知曲线C1:ρ=1,曲线C2:(t为参数)(1)求C1与C2交点的坐标;(2)若把C1,C2上各点的纵坐标都压缩为原来的一半,分别得到曲线C1′与C2′,写出C1′与C2′的参数方程,C1与C2公共点的个数和C1′与C2′公共点的个数是否相同,说明你的理由.2015-2016学年安徽省合肥168中学高三(上)10月月考数学试卷(理科)24.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C﹣FDEO的体积(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.始兴县高级中学2018-2019学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】解:∵偶函数f(x)在[0,+∞)上是增函数,则f(x)在(﹣∞,0)上是减函数,则f(x﹣2)在区间[,1]上的最小值为f(﹣1)=f(1)若f(ax+1)≤f(x﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax≤0恒成立则﹣2≤a≤0故选A2.【答案】B【解析】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=5,∴a=1,则a﹣2d=a﹣2×=.故选:B.3.【答案】B【解析】,,故或,解得或或,又根据集合元素的互异性,所以或。
4.【答案】B【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z=ax﹣y(a>0)得y=ax﹣z,∵a>0,∴目标函数的斜率k=a>0.平移直线y=ax﹣z,由图象可知当直线y=ax﹣z和直线2x﹣y+2=0平行时,当直线经过B时,此时目标函数取得最大值时最优解只有一个,不满足条件.当直线y=ax﹣z和直线x﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.此时a=.故选:B.5.【答案】A【解析】解:∵,又∵cosC=,∴=,整理可得:b2=c2,∴解得:b=c.即三角形一定为等腰三角形.故选:A.6.【答案】C【解析】解:命题“若α=,则tan α=1”的逆否命题是“若tan α≠1,则α≠”.故选:C.7.【答案】B【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},则∁U B={x|x≥1},则A∩(∁U B)={x|1≤x<2}.故选:B.【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.8.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V≤}.故选:D.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目.9.【答案】B【解析】解:∵lga+lgb=0∴ab=1则b=从而g(x)=﹣log b x=log a x,f(x)=a x与∴函数f(x)与函数g(x)的单调性是在定义域内同增同减结合选项可知选B,故答案为B10.【答案】C【解析】【专题】排列组合.【分析】分两类,第一类,三点分别在三条边上,第二类,三角形的两个顶点在正方形的一条边上,第三个顶点在另一条边,根据分类计数原理可得.【解答】解:首先注意到三角形的三个顶点不在正方形的同一边上.任选正方形的三边,使三个顶点分别在其上,有4种方法,再在选出的三条边上各选一点,有73种方法.这类三角形共有4×73=1372个.另外,若三角形有两个顶点在正方形的一条边上,第三个顶点在另一条边上,则先取一边使其上有三角形的两个顶点,有4种方法,再在这条边上任取两点有21种方法,然后在其余的21个分点中任取一点作为第三个顶点.这类三角形共有4×21×21=1764个.综上可知,可得不同三角形的个数为1372+1764=3136.故选:C .【点评】本题考查了分类计数原理,关键是分类,还要结合几何图形,属于中档题.11.【答案】A【解析】解:直线x+y ﹣1=0与2x+2y+3=0的距离,就是直线2x+2y ﹣2=0与2x+2y+3=0的距离是:=.故选:A .12.【答案】A【解析】解:由“|x ﹣2|<1”得1<x <3,由x 2+x ﹣2>0得x >1或x <﹣2,即“|x ﹣2|<1”是“x 2+x ﹣2>0”的充分不必要条件,故选:A .二、填空题13.【答案】e【解析】考查函数()()20{x x x f x ax lnx+≤=-,其余条件均不变,则:当x ⩽0时,f (x )=x +2x ,单调递增, f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点; 则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有ln xa x =有且只有一个实根。