2016-2017年山东省济南外国语学校初三上学期期末数学试卷含答案解析

合集下载

济南外国语学校九年级上册期末精选试卷检测题

济南外国语学校九年级上册期末精选试卷检测题

济南外国语学校九年级上册期末精选试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.阅读与应用:阅读1:a,b为实数,且a>0,b>0,因为()2≥0,所以a﹣2+b≥0,从而a+b≥2(当a=b时取等号).阅读2:若函数y=x+(m>0,x>0,m为常数),由阅读1结论可知:x+≥2,所以当x=,即x=时,函数y=x+的最小值为2.阅读理解上述内容,解答下列问题:问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为2(x+),求当x=时,周长的最小值为;问题2:汽车的经济时速是汽车最省油的行驶速度,某种汽车在每小时70~110公里之间行驶时(含70公里和110公里),每公里耗油()L.若该汽车以每小时x公里的速度匀速行驶,1h的耗油量为yL.(1)求y关于x的函数关系式(写出自变量x的取值范围);(2)求该汽车的经济时速及经济时速的百公里耗油量.【答案】问题1:2,8;问题2:(1)y=;(2)10.【解析】【分析】(1)利用题中的不等式得到x+=4,从而得到x=2时,周长的最小值为8;(2)根据耗油总量=每公里的耗油量×行驶的速度列出函数关系式即可,经济时速就是耗油量最小的形式速度.【详解】(1)∵x+≥2=4,∴当x=时,2(x+)有最小值8.即x=2时,周长的最小值为8;故答案是:2;8;问题2:,当且仅当,即x=90时,“=”成立,所以,当x=90时,函数取得最小值9,此时,百公里耗油量为,所以,该汽车的经济时速为每小时90公里,经济时速的百公里耗油量为10L.【点睛】本题考查了配方法及反比例函数的应用,最值问题,解题的关键是读懂题目提供的材料,易错点是了解“耗油总量=每公里的耗油量×行驶的速度”,难度中等偏上.2.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)【答案】详见解析【解析】试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.试题解析:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量最多不超过y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.考点:一元二次方程—增长率的问题3.机械加工需用油进行润滑以减小摩擦,某企业加工一台设备润滑用油量为90kg,用油的重复利用率为60%,按此计算,加工一台设备的实际耗油量为36kg,为了倡导低碳,减少油耗,该企业的甲、乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台设备润滑油用油量下降到70kg,用油的重复利用率仍然为60%,问甲车间技术革新后,加工一台设备的实际油耗量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑油用油量,同时也提高了用油的重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,例如润滑用油量为89kg 时,用油的重复利用率为61.6%. ①润滑用油量为80kg ,用油量的重复利用率为多少?②已知乙车间技术革新后实际耗油量下降到12kg ,问加工一台设备的润滑用油量是多少千克?用油的重复利用率是多少? 【答案】(1)28(2)①76%②75,84% 【解析】试题分析:(1)直接利用加工一台设备润滑油用油量下降到70kg ,用油的重复利用率仍然为60%,进而得出答案;(2)①利用润滑用油量每减少1kg ,用油的重复利用率将增加1.6%,进而求出答案; ②首先表示出用油的重复利用率,进而利用乙车间技术革新后实际耗油量下降到12kg ,得出等式求出答案.试题解析:(1)根据题意可得:70×(1﹣60%)=28(kg ); (2)①60%+1.6%(90﹣80)=76%; ②设润滑用油量是x 千克,则 x{1﹣[60%+1.6%(90﹣x )]}=12, 整理得:x 2﹣65x ﹣750=0, (x ﹣75)(x+10)=0, 解得:x 1=75,x 2=﹣10(舍去), 60%+1.6%(90﹣x )=84%,答:设备的润滑用油量是75千克,用油的重复利用率是84%. 考点:一元二次方程的应用4.如图,已知AB 是⊙O 的弦,半径OA=2,OA 和AB 的长度是关于x 的一元二次方程x 2﹣4x+a=0的两个实数根. (1)求弦AB 的长度; (2)计算S △AOB ;(3)⊙O 上一动点P 从A 点出发,沿逆时针方向运动一周,当S △POA =S △AOB 时,求P 点所经过的弧长(不考虑点P 与点B 重合的情形).【答案】(1)AB=2;(2)S △AOB 33)当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π. 【解析】试题分析:(1)OA 和AB 的长度是一元二次方程的根,所以利用一元二次方程的根与系数的关系即可求出AB 的长度;(2)作出△AOB 的高OC ,然后求出OC 的长度即可求出面积; (3)由题意知:两三角形有公共的底边,要面积相等,即高要相等. 试题解析:(1)由题意知:OA 和AB 的长度是x 2﹣4x+a=0的两个实数根, ∴OA+AB=﹣41-=4, ∵OA=2, ∴AB=2;(2)过点C 作OC⊥AB 于点C ,∵OA=AB=OB=2,∴△AOB 是等边三角形,∴AC=12AB=1, 在Rt△ACO 中,由勾股定理可得:OC=3,∴S △AOB =12AB ﹒OC=12×2×3=3; (3)延长AO 交⊙O 于点D ,由于△AOB 与△POA 有公共边OA , 当S △POA =S △AOB 时,∴△AOB 与△POA 高相等,由(2)可知:等边△AOB 的高为3,∴点P 到直线OA 的距离为3,这样点共有3个 ①过点B 作BP 1∥OA 交⊙O 于点P 1,∴∠BOP 1=60°, ∴此时点P 经过的弧长为:1202180π⨯=43π, ②作点P 2,使得P 1与P 2关于直线OA 对称,∴∠P 2OD=60°, ∴此时点P 经过的弧长为:2402180π⨯=83π, ③作点P 3,使得B 与P 3关于直线OA 对称,∴∠P 3OP 2=60°, ∴此时P 经过的弧长为:3002180π⨯ =103π, 综上所述:当S △POA =S △AOB 时,P 点所经过的弧长分别是43π、83π、103π.【点睛】本题主要考查了一元二次方程与圆的综合知识.涉及等边三角形性质,圆的对称性等知识,能综合运用所学知识,选择恰当的方法进行解题是关键.5.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1y x =-,令y=0,可得x=1,我们就说1是函数1y x =-的零点. 己知函数222(3)y x mx m =--+(m m 为常数).(1)当m=0时,求该函数的零点;(2)证明:无论m取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x和2x ,且121114x x+=-,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线10y x=-上,当MA+MB最小时,求直线AM 的函数解析式.【答案】(1)当m=0时,该函数的零点为6和6-.(2)见解析,(3)AM的解析式为112y x=--.【解析】【分析】(1)根据题中给出的函数的零点的定义,将m=0代入y=x2-2mx-2(m+3),然后令y=0即可解得函数的零点;(2)令y=0,函数变为一元二次方程,要想证明方程有两个解,只需证明△>0即可;(3)根据题中条件求出函数解析式进而求得A、B两点坐标,个、作点B关于直线y=x-10的对称点B′,连接AB′,求出点B′的坐标即可求得当MA+MB最小时,直线AM的函数解析式【详解】(1)当m=0时,该函数的零点为6和6-.(2)令y=0,得△=∴无论m取何值,方程总有两个不相等的实数根.即无论m取何值,该函数总有两个零点.(3)依题意有,由解得.∴函数的解析式为.令y=0,解得∴A(),B(4,0)作点B关于直线10y x=-的对称点B’,连结AB’,则AB’与直线10y x=-的交点就是满足条件的M点.易求得直线10y x=-与x轴、y轴的交点分别为C(10,0),D(0,10).连结CB’,则∠BCD=45° ∴BC=CB’=6,∠B’CD=∠BCD=45° ∴∠BCB’=90° 即B’(106-,)设直线AB’的解析式为y kx b =+,则20{106k b k b -+=+=-,解得112k b =-=-, ∴直线AB’的解析式为112y x =--, 即AM 的解析式为112y x =--.二、初三数学 二次函数易错题压轴题(难)6.如图,直线l :y =﹣3x +3与x 轴,y 轴分别相交于A 、B 两点,抛物线y =﹣x 2+2x +b 经过点B .(1)该抛物线的函数解析式;(2)已知点M 是抛物线上的一个动点,并且点M 在第一象限内,连接AM 、BM ,设点M 的横坐标为m ,△ABM 的面积为S ,求S 与m 的函数表达式,并求出S 的最大值; (3)在(2)的条件下,当S 取得最大值时,动点M 相应的位置记为点M '. ①写出点M '的坐标;②将直线l 绕点A 按顺时针方向旋转得到直线l ',当直线l ′与直线AM '重合时停止旋转,在旋转过程中,直线l '与线段BM '交于点C ,设点B ,M '到直线l '的距离分别为d 1,d 2,当d 1+d 2最大时,求直线l '旋转的角度(即∠BAC 的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M的坐标为(m,﹣m2+2m+3),然后根据面积关系将△ABM的面积进行转化.(3)①由(2)可知m=52,代入二次函数解析式即可求出纵坐标的值.②可将求d1+d2最大值转化为求AC的最小值.【详解】(1)令x=0代入y=﹣3x+3,∴y=3,∴B(0,3),把B(0,3)代入y=﹣x2+2x+b并解得:b=3,∴二次函数解析式为:y=﹣x2+2x+3.(2)令y=0代入y=﹣x2+2x+3,∴0=﹣x2+2x+3,∴x=﹣1或3,∴抛物线与x轴的交点横坐标为-1和3,∵M在抛物线上,且在第一象限内,∴0<m<3,令y=0代入y=﹣3x+3,∴x=1,∴A的坐标为(1,0),由题意知:M的坐标为(m,﹣m2+2m+3),∴S=S四边形OAMB﹣S△AOB=S△OBM+S△OAM﹣S△AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F ,根据题意知:d 1+d 2=BF , 此时只要求出BF 的最大值即可, ∵∠BFM′=90︒,∴点F 在以BM′为直径的圆上, 设直线AM′与该圆相交于点H , ∵点C 在线段BM′上, ∴F 在优弧'BM H 上, ∴当F 与M′重合时, BF 可取得最大值, 此时BM′⊥l 1,∵A (1,0),B (0,3),M′(52,74), ∴由勾股定理可求得:AB 10,M′B 55M′A 85, 过点M ′作M′G ⊥AB 于点G , 设BG =x ,∴由勾股定理可得:M′B 2﹣BG 2=M′A 2﹣AG 2, ∴851610﹣x )2=12516﹣x 2,∴x 510cos ∠M′BG ='BG BM =22,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.7.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移. 【解析】 【分析】(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c . 得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩.∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2).(2)∵点B 坐标为(2,2). ∴∠BOA=45°.∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m . ∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ).当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m . 解得:12m =,20m =(舍去).∴m=2.当点C′在y=12-x2+2x上,则12-×(32m)2+2×32m=12m,解得:120 9m=,20m=(舍去).∴m=20 9(3)存在n=27,抛物线向左平移.当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B平移,使得C′与B重合,点A落在A′处.以过点B的直线y=2为对称轴,作A′的对称点A″,连接OA″.当B′为OA″与直线y=2的交点时,四边形OB′C″A的周长最短.∵BA′∥AC′,且BA′=AC′,点A(4,0),点C′(103,109),点B(2,2).∴点A′(83,89).∴点A″的坐标为(83,289).设直线OA″的解析式为y=kx,将点A″代入得:828 39k=,解得:k=76.∴直线OA″的解析式为y=76 x.将y=2代入得:76x=2,解得:x=127,∴点B′得坐标为(127,2).∴n=212277-=.∴存在n=27,抛物线向左平移.【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m,m),点C′坐标为:(32m,2m)以及点B′的坐标是解题的关键.8.如图1所示,抛物线223y x bx c=++与x轴交于A、B两点,与y轴交于点C,已知C 点坐标为(0,4),抛物线的顶点的横坐标为72,点P是第四象限内抛物线上的动点,四边形OPAQ是平行四边形,设点P 的横坐标为m.(1)求抛物线的解析式;(2)求使△APC 的面积为整数的P 点的个数;(3)当点P在抛物线上运动时,四边形OPAQ可能是正方形吗?若可能,请求出点P的坐标,若不可能,请说明理由;(4)在点Q随点P运动的过程中,当点Q恰好落在直线AC上时,则称点Q为“和谐点”,如图(2)所示,请直接写出当Q为“和谐点”的横坐标的值.【答案】(1)2214433y x x=-+;(2)9个;(3)33,22或44,;(4)33【解析】【分析】(1)抛物线与y轴交于点C,顶点的横坐标为72,则472223cb,即可求解;(2)APC∆的面积PHA PHCS S S,即可求解;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP为等腰直角三角形,设点(,)P x y ,则0x y +=,即可求解; (4)求出直线AP 的表达式为:2(1)(6)3y m x ,则直线OQ 的表达式为:2(1)3ym x ②,联立①②求出Q 的坐标,又四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点,即可求解. 【详解】解:(1)抛物线与y 轴交于点C ,顶点的横坐标为72,则472223cb ,解得1434bc,故抛物线的抛物线为:2214433y x x =-+; (2)对于2214433y x x =-+,令0y =,则1x =或6,故点B 、A 的坐标分别为(1,0)、(6,0);如图,过点P 作//PH y 轴交AC 于点H ,设直线AC 的表达式为:y kx b =+ 由点A (6,0)、C (0,4)的坐标得460b kb,解得423b k, ∴直线AC 的表达式为:243y x =-+①, 设点2214(,4)33P x x x ,则点2(,4)3H x x ,APC ∆的面积221122146(44)212(16)22333PHAPHCSSSPH OA x x x x x,当1x =时,10S =,当6x =时,0S =, 故使APC ∆的面积为整数的P 点的个数为9个;(3)当四边形OPAQ 是正方形时,点P 只能在x 轴的下方,此时OAP 为等腰直角三角形,设点(,)P x y ,则0x y +=,即2214433yx x x ,解得:32x =或4, 故点P 的坐标为3(2,3)2或(4,4)-; (4)设点2214(,4)33P m m m ,为点(6,0)A ,设直线AP 的表达式为:y kx t =+,由点A ,P 的坐标可得260214433kt kmt m m ,解之得:2(1)326(1)3km tm∴直线AP 的表达式为:2(1)(6)3ym x , //AP OQ ,则AP 和OQ 表达式中的k 值相同,故直线OQ 的表达式为:2(1)3ym x ②, 联立①②得:2(1)3243ym x yx ,解得:446mm y x ,则点6(Q m ,44)m, 四边形OPAQ 是平行四边形,则AO 的中点即为PQ 的中点, 如图2,作QC x ⊥轴于点C ,PD x ⊥轴于点D ,∴OC AD =, 则有,66m m ,解得:33m,经检验,33m 是原分式方程得跟,则633m,故Q 的横坐标的值为33 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形正方形的性质、面积的计算等,能熟练应用相关性质是解题的关键.9.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣12)2+278当x=12时,yP=x2﹣1=﹣34.∴△ABP面积最大值为,此时点P坐标为(12,﹣34).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣1k,0),F(0,1),OE=1k,OF=1.在Rt△EOF中,由勾股定理得:EF=22 111=k k+⎛⎫+⎪⎝⎭.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°, ∴△EQN ∽△EOF ,∴NQ EN OF EF=,即:1221kk k k-=,解得:, ∵k >0, ∴. ∴存在唯一一点Q ,使得∠OQC=90°,此时. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.10.平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知M (4,1),N (﹣2,3),点P (m ,n ).(1)①若m =1,n =4,则点M ,N ,P 的“最佳三点矩形”的周长为 ,面积为 ;②若m =1,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值; (2)若点P 在直线y =﹣2x +4上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围; ②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点P (m ,n )在抛物线y =ax 2+bx +c 上,且当点M ,N ,P 的“最佳三点矩形”面积为12时,﹣2≤m ≤﹣1或1≤m ≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键三、初三数学旋转易错题压轴题(难)11.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=2DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE2DG.(3)①如图3﹣1中,当E,F,C共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6,∴CG =12CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8+),F 1(,,G 2,F 2,) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131t -4+=,2t -4=,分两类讨论,分别求出G 、F 坐标。

济南市市中区2016届九年级上期末数学试卷含答案解析

济南市市中区2016届九年级上期末数学试卷含答案解析
山东省济南市市中区 2016 届九年级上学期期末数学试卷
一.选择题:(每小题 3 分,共 24 分.下列各小题均有四个答案,其中只有一个是正确的,将正 确答案的代号字母在答题卡指定位置涂黑) 1.二次函数 y=﹣ (x﹣ 2)2﹣ 1 的图象的顶点坐标是( ) A.(2,﹣ 1) B.(﹣ 2,﹣ 1 C.(﹣ 2,1) D.(2,1) ) 2.两名同学进行了 10 次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成 绩哪一位更稳定,通常还需要比较他们成绩的( ) A.众数 B.中位数 C.方差 D.以上都不对 3.若△ABC 与△DEF 相似,相似比为 2:3,则这两个三角形的面积比为( ) A.2:3 B.3:2 C.4:9 D.9:4 4.一元二次方程 x2+x﹣ 3=0 的根的情况是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.只有一个实数根 D.没有实数根 5.如图,点 A、B、C 是⊙O 上的三点,若∠BOC=80°,则∠A 的度数是( )
25.如图,在 Rt△ABC 中,∠ACB=90°,以斜边 AB 上一点 O 为圆心,OB 为半径作⊙O,交 AC 于 点 E,交 AB 于点 D,且∠BEC=∠BDE. (1)求证:AC 是⊙O 的切线;
(2)连接 OC 交 BE 于点 F,若
,求 的值.
26.盐阜人民商场经营某种品牌的服装,购进时的单价是 40 元,根据市场调查:在一段时间内, 销售单价是 50 元时,销售量是 400 件,而销售单价每涨 1 元,就会少售出 10 件服装. (1)设该种品牌服装的销售单价为 x 元(x>50),销售量为 y 件,请写出 y 与 x 之间的函数关系 式; (2)若商场获得了 6000 元销售利润,该服装销售单价 x 应定为多少元? (3)在(1)问条件下,若该商场要完成不少于 350 件的销售任务,求商场销售该品牌服装获得的 最大利润是多少?

山东省济南市九年级(上)期末数学试卷(含答案)

山东省济南市九年级(上)期末数学试卷(含答案)

山东省济南市九年级(上)期末数学试卷一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)如图所示的工件,其俯视图是()2.(4分)若反比例函数y=的图象经过点A(2,m),则m的值()A.2B.C.﹣D.﹣23.(4分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.4.(4分)一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是()A.B.C.D.5.(4分)抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)6.(4分)在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是()A.8B.12C.16D.207.(4分)用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=258.(4分)把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣19.(4分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0D.k>且k≠010.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y211.(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH 的长是()A.B.C.D.12.(4分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分:满分分24分)13.(4分)如果4x=5y,那么x:y=.14.(4分)Rt△ABC中,∠C=90°,BC=2.5,sin A=,则AB=.15.(4分)如图,点P是反比例函数(x<0)图象的一点,P A垂直于y轴,垂足为点A,PB垂直于x轴,垂足为点B.若矩形PBOA的面积为6,则k的值为.16.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC=4米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为米.17.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于(3,0),对称轴是直线x=1,当函数值y>0时,自变量x的取值范围是.18.(4分)如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE=2,则k的值是.三、解答题(本大题共9个小题,共78分.)19.(6分)解方程:x2﹣3x+2=0.20.(6分)计算:﹣cos30°+﹣(﹣1)0﹣2﹣1.21.(6分)已知二次函数的图象如图所示,求该抛物线的解析式.22.(8分)如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.23.(8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.24.(10分)济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求一次函数与反比例函数的表达式;(2)求△AOB的面积;(3)根据所给条件,请直接写出不等式kx+b<的解集.26.(12分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,△BPE和△CQE的形状有什么关系,请证明;(2)如图②,当点Q在线段CA的延长线上时,△BPE和△CQE有什么关系,说明理由;(3)当BP=1,CQ=时,求P、Q两点间的距离.27.(12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.【解答】解:∵反比例函数y=的图象经过点A(2,m),∴1=2m∴m=故选:B.3.【解答】解:在直角△ABC中,∵∠ABC=90°,∴tan A==.故选:D.4.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,从中随机摸出一个,则摸到红球的概率是=.故选:A.5.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.6.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,,∴△ADE∽△ABC,∴,∵△ADE的面积为4,∴,∴S△ABC=16.故选:C.7.【解答】解:x2+10x+9=0,x2+10x=﹣9,x2+10x+52=﹣9+52,(x+5)2=16.故选:A.8.【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.9.【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选:C.10.【解答】解:∵A(x1,y1)在反比例函数y=﹣图象上,x1<0,∴y1>0,对于反比例函数y=﹣,在第二象限,y随x的增大而增大,∵0<x2<x3,∴y2<y3<0,∴y2<y3<y1故选:C.11.【解答】解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.12.【解答】解:①∵直线x=﹣1是对称轴,∴﹣=﹣1,即b﹣2a=0,①正确;②x=﹣2时,y>0,∴4a﹣2b+c>0,②错误;∵x=﹣4时,y=0,∴16a﹣4b+c=0,又b=2a,∴a﹣b+c=﹣9a,③正确;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等,∴y1>y2,④正确,故选:C.二、填空题(共6小题,每小题4分:满分分24分)13.【解答】解:∵4x=5y,∴=,∴x:y=5:4.故答案为:5:4.14.【解答】解:如图所示:∵Rt△ABC中,∠C=90°,BC=2.5,sin A=,∴==,∴AB=6.5.故答案为:6.5.15.【解答】解:∵矩形PBOA的面积为6,∴|k|=6,∵反比例函数(x<0)的图象过第二象限,∴k<0,∴k=﹣6;故答案为:﹣6.16.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长EF为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=,∴=,∴DE=(m)故答案为.17.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(3,0),对称轴是直线x=1,∴图象与x轴的另一个交点为:(﹣1,0),故当函数值y>0时,自变量x的取值范围是:﹣1<x<3.故答案为:﹣1<x<3.18.【解答】解:过点D作DF⊥x轴于点F,如图所示.∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.又∵BC⊥AC,∴DA⊥AC.∵CD平行于x轴,∴∠ACD=∠CEO.∵CO⊥OE,DA⊥AC,∴∠ECO=∠D.设点D的坐标为(m,)(m>0),则CD=m,OC=DF=.在Rt△CAD中,CD=m,∠CAD=90°,AD=m•cos∠D.在Rt△COE中,OC=,∠COE=90°,CE==.S△BCE=CE•BC=•m•cos∠D=k=2,解得:k=4.故答案为:4.三、解答题(本大题共9个小题,共78分.)19.【解答】解:∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2.20.【解答】解:原式=﹣+2﹣1﹣=+2﹣.21.【解答】解:∵抛物线与x轴的一个交点坐标为(﹣1,0),抛物线与x轴的另一个交点坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),把(0,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.22.【解答】证明:∵∠B=90°,AB=4,BC=2,∴AC==2,∵CE=AC,∴CE=2,∵CD=5,∵==,=,∴=,∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△ABC∽△CED.23.【解答】解:(Ⅰ)方法一:,摸出两球出现的所有可能结果共有6种;方法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.(Ⅱ)设两个球号码之和等于5为事件A,摸出的两个球号码之和等于5的结果有2种,它们是:(2,3)(3,2),∴P(A)=.24.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)25.【解答】解:(1)把点A(﹣2,1)代入反比例函数y=得:1=,解得:m=﹣2,即反比例函数的解析式为:y=﹣,把点B(1,n)代入反比例函数y=﹣得:n=﹣2,即点A的坐标为:(﹣2,1),点B的坐标为:(1,﹣2),把点A(﹣2,1)和点B(1,﹣2)代入一次函数y=kx+b得:,解得:,即一次函数的表达式为:y=﹣x﹣1,(2)把y=0代入一次函数y=﹣x﹣1得:﹣x﹣1=0,解得:x=﹣1,即点C的坐标为:(﹣1,0),OC的长为1,点A到OC的距离为1,点B到OC的距离为2,S△AOB=S△OAC+S△OBC=+=,(3)如图可知:kx+b<的解集为:﹣2<x<0,x>1.26.【解答】解:(1)△BPE≌△CQE.理由∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,,∴△BPE≌△CQE(SAS);(2)△BPE∽△CEQ.理由:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(3)如图②,连结PQ,∵△BPE∽△CEQ,∴=,∵BP=1,CQ=,BE=CE,∴=,∴BE=CE=,∴BC=3,在Rt△ABC中,AB=AC,∴AB=AC=3,∴AQ=CQ﹣AC=,P A=AB﹣BP=2,在Rt△APQ中,PQ==.27.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=•4•EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).。

2016届山东省济南市市中区九年级上学期期末数学试卷(带解析)

2016届山东省济南市市中区九年级上学期期末数学试卷(带解析)

绝密★启用前2016届山东省济南市市中区九年级上学期期末数学试卷(带解析)试卷副标题考试范围:xxx ;考试时间:160分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、(2015秋•市中区期末)如图,在平面直角坐标系xOy 中,直线AB 过点A (﹣3,0),B (0,3),⊙O 的半径为1(O 为坐标原点),点P 在直线AB 上,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为( )A .B .2C .3D .【答案】B试卷第2页,共23页【解析】试题分析:连接OP .根据勾股定理知PQ 2=OP 2﹣OQ 2,当OP ⊥AB 时,线段OP 最短,即线段PQ 最短. 解:连接OP 、OQ . ∵PQ 是⊙O 的切线, ∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2﹣OQ 2, ∵当PO ⊥AB 时,线段PQ 最短; 又∵A (﹣3,0),B (0,3),∴OA=OB=3, ∴AB==6,∴OP=AB=3, ∴PQ==2.故选B .考点:切线的性质;坐标与图形性质.2、(2015秋•市中区期末)已知二次函数y=x 2+bx+c 的图象如图所示,若y >0,则x 的取值范围是( )A .﹣1<x <3B .﹣1<x <4C .x <﹣1或x >3D .x <﹣1或x >4【答案】C 【解析】试题分析:求y >0时x 的取值范围,就是二次函数的图象在x 轴下方时对应的x 的范围.解:根据图象可得x 的范围是x <﹣1或x >3. 故选C .考点:二次函数与不等式(组).3、(2015•嘉兴)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F .AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则的值为( )A .B .2C .D .【答案】D 【解析】试题分析:根据AH=2,HB=1求出AB 的长,根据平行线分线段成比例定理得到=,计算得到答案. 解:∵AH=2,HB=1, ∴AB=3, ∵l 1∥l 2∥l 3, ∴==,故选:D .考点:平行线分线段成比例.4、(2015秋•市中区期末)如图,点A 、B 、C 是⊙O 上的三点,若∠BOC=80°,则∠A 的度数是( )试卷第4页,共23页A .30°B .40°C .50°D .100°【答案】B 【解析】试题分析:直接根据圆周角定理进行解答即可. 解:∵所对的圆心角是∠BOC ,圆周角是∠BAC ,又∵∠BOC=80°,∴∠A=∠BOC=×80°=40°. 故选:B .考点:圆周角定理.5、(2015秋•市中区期末)一元二次方程x 2+x ﹣3=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根【答案】A 【解析】试题分析:先计算判别式的值,然后根据判别式的意义判断方程根的情况. 解:∵△=12﹣4×(﹣3)=13>0, ∴方程有两个不相等的两个实数根. 故选A .考点:根的判别式.6、(2015秋•市中区期末)若△ABC 与△DEF 相似,相似比为2:3,则这两个三角形的面积比为( ) A .2:3B .3:2C .4:9D .9:4【答案】C【解析】试题分析:由△ABC与△DEF相似,相似比为2:3,根据相似三角形的性质,即可求得答案.解:∵△ABC与△DEF相似,相似比为2:3,∴这两个三角形的面积比为4:9.故选C.考点:相似三角形的性质.7、(2015•广州)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【答案】C【解析】试题分析:根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.考点:统计量的选择.8、(2015秋•市中区期末)二次函数y=﹣(x﹣2)2﹣1的图象的顶点坐标是()A.(2,﹣1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,1)【答案】A【解析】试题分析:根据二次函数的顶点式解析式写出即可.解:∵二次函数y=﹣(x﹣2)2﹣1为顶点式,∴图象的顶点坐标是(2,﹣1).故选:A.考点:二次函数的性质.试卷第6页,共23页第II 卷(非选择题)二、填空题(题型注释)9、(2011•德州)长为1,宽为a 的矩形纸片(),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n=3时,a 的值为 .【答案】或. 【解析】试题分析:根据操作步骤,可知每一次操作时所得正方形的边长都等于原矩形的宽.所以首先需要判断矩形相邻的两边中,哪一条边是矩形的宽.当<a <1时,矩形的长为1,宽为a ,所以第一次操作时所得正方形的边长为a ,剩下的矩形相邻的两边分别为1﹣a ,a .由1﹣a <a 可知,第二次操作时所得正方形的边长为1﹣a ,剩下的矩形相邻的两边分别为1﹣a ,a ﹣(1﹣a )=2a ﹣1.由于(1﹣a )﹣(2a ﹣1)=2﹣3a ,所以(1﹣a )与(2a ﹣1)的大小关系不能确定,需要分情况进行讨论.又因为可以进行三次操作,故分两种情况:①1﹣a >2a ﹣1;②1﹣a <2a ﹣1.对于每一种情况,分别求出操作后剩下的矩形的两边,根据剩下的矩形为正方形,列出方程,求出a 的值.解:由题意,可知当<a <1时,第一次操作后剩下的矩形的长为a ,宽为1﹣a ,所以第二次操作时正方形的边长为1﹣a ,第二次操作以后剩下的矩形的两边分别为1﹣a ,2a ﹣1.此时,分两种情况:①如果1﹣a >2a ﹣1,即a <,那么第三次操作时正方形的边长为2a ﹣1. ∵经过第三次操作后所得的矩形是正方形, ∴矩形的宽等于1﹣a ,即2a ﹣1=(1﹣a )﹣(2a ﹣1),解得a=;②如果1﹣a <2a ﹣1,即a >,那么第三次操作时正方形的边长为1﹣a . 则1﹣a=(2a ﹣1)﹣(1﹣a ),解得a=. 故答案为:或.考点:一元一次方程的应用.10、(2015秋•市中区期末)如图,平行四边形ABCD 中,E 、F 分别为AB 、AD 上的点,且BE=2AE ,AF=3DF ,连结EF 、AC ,交于点G ,则的值为 .【答案】.【解析】试题分析:延长FE ,CB 交于H ,根据已知条件得到=,=,于是得到=,根据平行四边形的性质得到AD=BC ,AD ∥BC ,推出△AEF ∽△HBE ,由相似三角形的性质得到=,由于△AFG ∽△CHG ,根据相似三角形的性质即可得到结论.解:延长FE ,CB 交于H , ∵BE=2AE ,AF=3DF , ∴=,=,∴=,在平行四边形ABCD 中, ∵AD=BC ,AD ∥BC , ∴△AEF ∽△HBE , ∴=,∵AD ∥CH , ∴△AFG ∽△CHG , ∴=. 故答案为:.试卷第8页,共23页考点:相似三角形的判定与性质;平行四边形的性质.11、(2015秋•市中区期末)如图,点D 是△ABC 的边AC 的上一点,且∠ABD=∠C ;如果=,那么= .【答案】. 【解析】试题分析:由已知先证△ABC ∽△ADB ,得出==,再根据=,求出AB ,最后根据=,即可求出答案.解:∵∠A=∠A ,∠ABD=∠C , ∴△ABC ∽△ADB , ∴==,∵=,设AD=1,则CD=3,AC=4, ∴=,∴AB=2, ∴===2,∴=.故答案为:.考点:相似三角形的判定与性质.12、(2015秋•市中区期末)若关于x 的一元二次方程ax 2+bx+5=0(a≠0)的一个解是x=1,则2016﹣a ﹣b 的值是 .【答案】2021【解析】试题分析:先根据一元二次方程的解的定义把x=1代入ax 2+bx+5=0得a+b=﹣5,再变形2016﹣a ﹣b 得到2016﹣(a+b ),然后利用整体代入的方法计算. 解:把x=1代入ax 2+bx+5=0得a+b+5=0, 所以a+b=﹣5,所以2016﹣a ﹣b=2016﹣(a+b )=2016﹣(﹣5)=2021. 故答案为2021.考点:一元二次方程的解.13、(2015秋•市中区期末)如图,AB 是⊙O 的直径,C 是⊙O 上的一点,OD ⊥BC 于点D ,AC=6,则OD 的长为 .【答案】3. 【解析】试题分析:根据直径所对的圆周角是直角可得∠C=90°,然后求出OD ∥AC ,从而判断出OD 是△ABC 的中位线,再根据 解:∵AB 是⊙O 的直径, ∴∠C=90°, ∵OD ⊥BC 于点D , ∴OD ∥AC , 又∵AO=BO ,∴OD 是△ABC 的中位线, ∴OD=AC=×6=3. 故答案为:3.考点:三角形中位线定理;垂径定理;圆周角定理.试卷第10页,共23页14、(2015秋•市中区期末)如图,AB 是⊙O 的弦,AO 的延长线交过点B 的⊙O 的切线于点C ,如果∠ABO=28°,则∠C 的度数是 .【答案】34°. 【解析】试题分析:首先利用等腰三角形的性质以及三角形外角的性质求得∠COB 的度数,然后根据切线的性质可得△OBC 是直角三角形,然后根据三角形的内角和定理求解即可. 解:∵OA=OB , ∴∠A=∠ABO=28°, ∴∠COB=∠A+∠ABO=56°, 又∵BC 是切线,∴OB ⊥BC ,则∠OBC=90°, ∴∠C=90°﹣∠COB=90°﹣56°=34°. 故答案为34°. 考点:切线的性质.15、(2015•盐城校级模拟)已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为 .【答案】3π. 【解析】试题分析:根据弧长公式L=求解.解:L===3π.故答案为:3π. 考点:弧长的计算.16、(2015秋•市中区期末)把抛物线y=(x ﹣1)2+2先向下平移2个单位,再向左平移1个单位后得到的抛物线是 .【答案】y=x 2.试卷第11页,共23页【解析】试题分析:求出原抛物线的顶点坐标,再根据向左平移横坐标间,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可. 解:∵抛物线y=(x ﹣1)2+2的顶点坐标为(1,2),∴向下平移2个单位,再向左平移1个单位后的抛物线的顶点坐标为(0,0), ∴所得抛物线解析式是y=x 2. 故答案为:y=x 2.考点:二次函数图象与几何变换.17、(2015•苏州)如图,转盘中8个扇形的面积都相等,任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 .【答案】. 【解析】试题分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 解:∵共8个数,大于6的有2个, ∴P (大于6)==, 故答案为:. 考点:概率公式.18、(2015秋•市中区期末)二次函数y=x 2+bx+1的图象的对称轴是过点(1,0)且平行于y 轴的一条直线,则b= .【答案】﹣2. 【解析】试题分析:首先根据题意确定对称轴,然后根据对称轴方程﹣=1,直接求得b 值即可.解:∵二次函数y=x 2+bx+1的图象的对称轴是过点(1,0)且平行于y 轴的一条直线,试卷第12页,共23页∴﹣=1,∵a=1, ∴b=﹣2. 故答案为﹣2.考点:二次函数的性质.三、解答题(题型注释)19、(2015•盐城一模)如图,在平面直角坐标系中,抛物线y=ax 2﹣3ax ﹣4a 的图象经过点C (0,2),交x 轴于点A 、B (A 点在B 点左侧),顶点为D .(1)求抛物线的解析式及点A 、B 的坐标;(2)将△ABC 沿直线BC 对折,点A 的对称点为A′,试求A′的坐标;(3)抛物线的对称轴上是否存在点P ,使∠BPC=∠BAC ?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)A (﹣1,0),B (4,0).(2)A'(1,4);(3)P 的坐标为(,)或(,2+).【解析】试题分析:(1)将(0,2)代入抛物线解析式求得a 的值,从而得出抛物线的解析式,再令y=0,得出x 的值,即可求得点A 、B 的坐标;(2)如图2,作A'H ⊥x 轴于H ,可证明△AOC ∽△COB ,得出∠ACO=∠CBO ,由A'H ∥OC ,即可得出A′H 的长,即可求得A′的坐标;(3)分两种情况:①如图3,以AB 为直径作⊙M ,⊙M 交抛物线的对称轴于P (BC 的下方),由圆周角定理得出点P 坐标;②如图4,类比第(2)小题的背景将△ABC 沿直线BC 对折,点A 的对称点为A',以A'B 为直径作⊙M',⊙M'交抛物线的对称轴试卷第13页,共23页于P'(BC 的上方),作M'E ⊥A'H 于E ,交对称轴于F ,求得M'F ,在Rt △M'P'F 中,由勾股定理得出P'F 得的长,从而得出点P 的坐标即可. 解:(1)把C (0,2)代入y=ax 2﹣3ax ﹣4a 得﹣4a=2, 解得.所以抛物线的解析式为.令,可得:x 1=﹣1,x 2=4.所以A (﹣1,0),B (4,0). (2)如图2,作A'H ⊥x 轴于H , 因为,且∠AOC=∠COB=90°,所以△AOC ∽△COB ,所以∠ACO=∠CBO ,可得∠ACB=∠OBC+∠BCO=90°, 由A'H ∥OC ,AC=A'C 得OH=OA=1,A'H=2OC=4;所以A'(1,4); (3)分两种情况:①如图3,以AB 为直径作⊙M ,⊙M 交抛物线的对称轴于P (BC 的下方), 由圆周角定理得∠CPB=∠CAB , 易得:MP=AB .所以P (,).②如图4,类比第(2)小题的背景将△ABC 沿直线BC 对折,试卷第14页,共23页点A 的对称点为A',以A'B 为直径作⊙M',⊙M'交抛物线的对称轴于P'(BC 的上方), 则∠CP 2B=∠CA'B=∠CAB . 作M'E ⊥A'H 于E ,交对称轴于F . 则M'E=BH=,EF==.所以M'F==1.在Rt △M'P'F 中,P'F=,所以P'M=2+.所以P'(,2+).综上所述,P 的坐标为(,)或(,2+).考点:二次函数综合题.20、(2012•南平)如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,连接AD 、DE ,且∠1=∠B=∠C .(1)由题设条件,请写出三个正确结论:(要求不再添加其他字母和辅助线,找结论过程中添加的字母和辅助线不能出现在结论中,不必证明) 答:结论一: ; 结论二: ; 结论三: .(2)若∠B=45°,BC=2,当点D 在BC 上运动时(点D 不与B 、C 重合), ①求CE 的最大值;试卷第15页,共23页②若△ADE 是等腰三角形,求此时BD 的长.(注意:在第(2)的求解过程中,若有运用(1)中得出的结论,须加以证明)【答案】(1)AB=AC ;∠AED=∠ADC ;△ADE ∽△ACD ;(2)①;②当△ADE是等腰三角形时,BD 的长为1或2﹣.【解析】试题分析:(1)由∠B=∠C ,根据等腰三角形的性质可得AB=AC ;由∠1=∠C ,∠AED=∠EDC+∠C 得到∠AED=∠ADC ;又由∠DAE=∠CAD ,根据相似三角形的判定可得到△ADE ∽△ACD ;(2)①由∠B=∠C ,∠B=45°可得△ACB 为等腰直角三角形,则AC=BC=×2=,由∠1=∠C ,∠DAE=∠CAD ,根据相似三角形的判定可得△ADE ∽△ACD ,则有AD :AC=AE :AD ,即AD 2=AE•AC ,AE===•AD 2,当AD ⊥BC ,AD 最小,且AD=BC=1,此时AE 最小为,利用CE=AC ﹣AE 得到CE 的最大值;②讨论:当AD=AE 时,则∠1=∠AED=45°,得到∠DAE=90°,则点D 与B 重合,不合题意舍去;当EA=ED 时,如图1,则∠EAD=∠1=45°,所以有AD 平分∠BAC ,得到AD 垂直平分BC ,则BD=1;当DA=DE 时,如图2,由△ADE ∽△ACD ,易得△CAD 为等腰三角形,则DC=CA=,于是有BD=BC ﹣DC=2﹣.解:(1)AB=AC ;∠AED=∠ADC ;△ADE ∽△ACD ; (2)①∵∠B=∠C ,∠B=45°, ∴△ACB 为等腰直角三角形, ∴AC=BC=×2=,∵∠1=∠C ,∠DAE=∠CAD , ∴△ADE ∽△ACD ,∴AD :AC=AE :AD ,即AD 2=AE•AC ,∴AE===•AD 2,当AD 最小时,AE 最小,此时AD ⊥BC ,AD=BC=1,试卷第16页,共23页∴AE 的最小值为×12=, ∴CE 的最大值=﹣=;②当AD=AE 时,∴∠1=∠AED=45°, ∴∠DAE=90°,∴点D 与B 重合,不合题意舍去; 当EA=ED 时,如图1, ∴∠EAD=∠1=45°, ∴AD 平分∠BAC , ∴AD 垂直平分BC , ∴BD=1;当DA=DE 时,如图2, ∵△ADE ∽△ACD , ∴DA :AC=DE :DC , ∴DC=CA=,∴BD=BC ﹣DC=2﹣,∴综上所述,当△ADE 是等腰三角形时,BD 的长为1或2﹣.考点:相似形综合题.21、(2015秋•市中区期末)盐阜人民商场经营某种品牌的服装,购进时的单价是40元,根据市场调查:在一段时间内,销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装.(1)设该种品牌服装的销售单价为x 元(x >50),销售量为y 件,请写出y 与x 之间的函数关系式;(2)若商场获得了6000元销售利润,该服装销售单价x 应定为多少元?(3)在(1)问条件下,若该商场要完成不少于350件的销售任务,求商场销售该品牌服装获得的最大利润是多少?试卷第17页,共23页【答案】(1)y=900﹣10x ;(2)服装销售单价x 应定为60元或70元时,商场可获得6000元销售利润;(3)商场销售该品牌服装获得的最大利润是5250元. 【解析】试题分析:(1)直接利用销售单价是50元时,销售量是400件,而销售单价每涨1元,就会少售出10件服装得出y 与x 值间的关系; (2)利用销量×每件利润=6000,进而求出答案;(3)利用销量×每件利润=总利润,再利用该商场要完成不少于350件的销售任务得出x 的取值范围,进而得出二次函数最值.解:(1)由题意可得:y=400﹣10(x ﹣50)=900﹣10x ; (2)由题意可得:(900﹣10x )(x ﹣40)=6000, 整理得:﹣10x 2+1300x ﹣3600=6000, 解得:x 1=60,x 2=70,答:服装销售单价x 应定为60元或70元时,商场可获得6000元销售利润; (3)设利润为W ,则 W=﹣10x 2+1300x ﹣3600 =﹣10(x ﹣65)2+6250,∵a=﹣10<0,对称轴是直线x=65, 900﹣10x≥350, 解得:x≤55,∴当50<x≤55时,W 随x 增大而增大, ∴当x=55时,W 最大值=5250(元),答:商场销售该品牌服装获得的最大利润是5250元. 考点:二次函数的应用.22、(2015秋•市中区期末)如图,在Rt △ABC 中,∠ACB=90°,以斜边AB 上一点O 为圆心,OB 为半径作⊙O ,交AC 于点E ,交AB 于点D ,且∠BEC=∠BDE .试卷第18页,共23页(1)求证:AC 是⊙O 的切线; (2)连接OC 交BE 于点F ,若,求的值.【答案】(1)见解析;(2).【解析】试题分析:(1)连接OE ,证得OE ⊥AC 即可确定AC 是切线;(2)根据OE ∥BC ,分别得到△AOE ∽△ACB 和△OEF ∽△CBF ,利用相似三角形对应边的比相等找到中间比即可求解. 解:(1)证明:连接OE , ∵OB=OE , ∴∠OBE=∠OEB , ∵∠ACB=90°, ∴∠CBE+∠BEC=90°, ∵BD 为⊙O 的直径, ∴∠BED=90°, ∴∠DBE+∠BDE=90°, ∴∠CBE=∠DBE , ∴∠CBE=∠OEB , ∴OE ∥BC ,∴∠OEA=∠ACB=90°, 即OE ⊥AC , ∴AC 为⊙O 的切线;(2)∵OE ∥BC ,∴△AOE ∽△ABC , ∴, ∵, ∴, ∴,∵OE ∥BC , ∴△OEF ∽△CBF , ∴.试卷第19页,共23页考点:切线的判定;相似三角形的判定与性质.23、(2015秋•市中区期末)2013年,盐城市某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米4860元. (1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,王刚准备在2016年购买一套100平方米的住房,他持有现金25万元,可以在银行贷款20万元,王刚的愿望能否实现?(房价每平方米按照均价计算,不考虑其他因素)【答案】(1)10%.(2)王刚的愿望能够实现. 【解析】试题分析:(1)设平均每年下调的百分率为x ,根据题意得到6000(1﹣x )2=4860,然后可求得下调的百分比;(2)计算出2016年下调后每平方米的价格,然后求得住房的总价,然后与45元进行比较可得到答案.解:(1)设平均每年下调的百分率为x , 依题意得:6000(1﹣x )2=4860,解得:x 1=0.1=10%,x 2=1.9=190%(不合题意,应舍去). 答:平均每年下调的百分率为10%. (2)王刚的愿望能够实现.理由如下:购买的住房费用:4860×(1﹣10%)×100=437400(元) 现金及贷款为:20+25=45(万元). ∵45万元>437400元, ∴王刚的愿望能够实现. 考点:一元二次方程的应用.24、(2015秋•市中区期末)如图,在由边长为1的小正方形组成的网格图中有△ABC ,建立平面直角坐标系后,点O 的坐标是(0,0).试卷第20页,共23页(1)以O 为位似中心,作△A′B′C′∽△ABC ,相似比为1:2,且保证△A′B′C′在第三象限;(2)点B′的坐标为( , );(3)若线段BC 上有一点D ,它的坐标为(a ,b ),那么它的对应点D′的坐标为( ).【答案】(1)见解析;(2)﹣2,﹣1.(3)﹣,﹣. 【解析】试题分析:(1)利用位似图形的性质进而得出△A′B′C′各顶点的位置,进而得出答案; (2)利用所画图形,得出点B′的坐标;(3)利用位似图形的性质得出点的坐标变化规律即可. 解:(1)如图所示:△A′B′C′即为所求;(2)点B′的坐标为:(﹣2,﹣1); 故答案为:﹣2,﹣1.(3)若线段BC 上有一点D ,它的坐标为(a ,b ),那么它的对应点D′的坐标为:(﹣,﹣).故答案为:﹣,﹣. 考点:作图-位似变换.试卷第21页,共23页25、(2015秋•市中区期末)一个不透明袋子中有1个红球和n 个白球,这些球除颜色外无其他差别.(1)当n=l 时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性是否相同? (填“相同”或“不相同”)(2)从袋中随机摸出1个球,记录其颜色,然后放回,大量重复该实验,发现摸到红球的频率稳定于0.25,则n 的值是 ;(3)当n=2时,请用列表或画树状图的方法求两次摸出的球颜色不同的概率(摸出一个球,不放回,然后再摸一个球).【答案】(1)相同;(2)3;(3). 【解析】试题分析:(1)n=1,袋子中有1个红球和1个白球,则从袋中随机摸出1个球,摸到红球与摸到白球的概率都为;(2)利用频率估计概率得到摸到红球的概率为0.25,则根据概率公式得到=0.25,然后解方程即可;(3)当n=2时,即不透明袋子中有1个红球和2个白球,画树状图展示所有6种等可能的结果数,找出两次摸出的球颜色不同的结果数,然后根据概率公式求解. 解:(1)当n=l 时,从袋中随机摸出1个球,摸到红球与摸到白球的可能性相同; (2)根据题意,估计摸到红球的概率为0.25, 所以=0.25,解得n=3;故答案为:相同,3;(3)当n=2时,即不透明袋子中有1个红球和2个白球, 画树状图为:共有6种等可能的结果数,其中两次摸出的球颜色不同的结果数为4, 所以两次摸出的球颜色不同的概率==. 考点:列表法与树状图法;利用频率估计概率.26、(2015秋•市中区期末)在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图,试卷第22页,共23页(1)这50名同学捐款的众数为 元,中位数为 元; (2)求这50名同学捐款的平均数;(3)该校共有800名学生参与捐款,请估计该校学生的捐款总数.【答案】(1)15,15;(2)13(元);(3)10400(元). 【解析】试题分析:(1)根据众数的定义即出现次数最多的数据进而得出即可,再利用中位数的定义得出即可;(2)利用条形统计图得出各组频数,再根据加权平均数的公式计算即可; (3)利用样本估计总体的思想,用总数乘以捐款平均数即可得到捐款总数. 解:(1)数据15元出现了20次,出现次数最多,所以众数是15元;数据总数为50,所以中位数是第25、26位数的平均数,即(15+15)÷2=15(元). 故答案为15,15;(2)50名同学捐款的平均数=(5×8+10×14+15×20+20×6+25×2)÷50=13(元); (3)估计这个中学的捐款总数=800×13=10400(元).考点:条形统计图;用样本估计总体;加权平均数;中位数;众数. 27、(2015秋•市中区期末)(1)计算:﹣23+﹣|2﹣3|(2)解方程:x 2﹣4x ﹣2=0.【答案】(1)﹣6;(2)x 1=2+,x 2=2﹣.【解析】试题分析:(1)先进行乘方、二次根式的化简、绝对值的化简等运算,然后合并; (2)利用配方法求解. 解:(1)原式=﹣8+3+2﹣3=﹣6;(2)整理得:(x ﹣2)2=6, 开方得:x ﹣2=±,试卷第23页,共23页解得:x 1=2+,x 2=2﹣.考点:实数的运算;解一元二次方程-配方法.28、(2015秋•市中区期末)已知关于x 的一元二次方程mx 2﹣(m+2)x+2=0 (1)若方程的一个根为3,求m 的值及另一个根; (2)若该方程根的判别式的值等于1,求m 的值.【答案】(1)x 2=1,即原方程的另一根是1;(2)m=1,m=3. 【解析】试题分析:(1)根据一元二次方程的解的定义,将x=3代入一元二次方程mx 2﹣(m+2)x+2=0,求得m 值,然后将m 值代入原方程,利用根与系数的关系求另一根; (2)只要让根的判别式△=b 2﹣4ac=1,求得m 的值即可. 解:(1)设方程的另一根是x 2.∵一元二次方程mx 2﹣(m+2)x+2=0的一个根为3, ∴x=3是原方程的解, ∴9m ﹣(m+2)×3+2=0, 解得m=;又由韦达定理,得3×x 2=, ∴x 2=1,即原方程的另一根是1; (2)∵△=(m+2)2﹣4×m×2=1 ∴m=1,m=3.考点:根的判别式;一元二次方程的解.。

【5套打包】济南市初三九年级数学上期末考试检测试题(含答案解析)

【5套打包】济南市初三九年级数学上期末考试检测试题(含答案解析)

人教版九年级第一学期期末模拟数学试卷及答案一.选择题(满分30分,每小题3分)1.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5B.k≤5,且k≠1C.k<5,且k≠1D.k<52.下列图形中,是中心对称图形的是()A.B.C.D.3.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 4.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定5.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小6.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m B.<m<C.0<m<D.m<或m<7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab <0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④8.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)9.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元10.如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个二.填空题(满分24分,每小题4分)11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为;12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△CO D的位置,则旋转角为.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是.16.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是:.三.解答题(共3小题,满分18分,每小题6分)17.(6分)解一元二次方程:3x2﹣1=2x+5.18.(6分)如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.19.(6分)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?四.解答题(共3小题,满分21分,每小题7分)20.(7分)某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?21.(7分)截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.22.(7分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.五.解答题(共3小题,满分27分,每小题9分)23.(9分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC ⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.24.(9分)如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.25.(9分)如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.(1)求线段DO的长;(2)设运动过程中△POQ两直角边的和为y,请求出y关于x的函数解析式;(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.参考答案一.选择题1.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5B.k≤5,且k≠1C.k<5,且k≠1D.k<5【分析】根据一元二次方程的定义结合根的判别式,即可得出关于k的一元一次不等式组,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,∴,解得:k≤5且k≠1.故选:B.【点评】本题考查了一元二次方程的定义以及根的判别式,根据一元二次方程的定义结合根的判别式,找出关于k的一元一次不等式组是解题的关键.2.下列图形中,是中心对称图形的是()A.B.C.D.【分析】根据旋转180°后与原图重合的图形是中心对称图形,进而分析即可.解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点评】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4【分析】根据圆内接四边形的对角互补得到∠A和∠C的份数和等于∠B和∠D的份数的和,由此分别进行判断即可.解:A、1+2≠3+4,所以A选项不正确;B、7+10≠5+8,所以B选项不正确;C、13+5=1+17,所以C选项正确;D、1+3≠2+4,所以D选项不正确.故选:C.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.4.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定【分析】根据点到圆心的距离和圆的半径之间的数量关系,即可判断点和圆的位置关系.点到圆心的距离小于圆的半径,则点在圆内;点到圆心的距离等于圆的半径,则点在圆上;点到圆心的距离大于圆的半径,则点在圆外.解:根据点到圆心的距离8cm大于圆的半径6cm,则该点在圆外.故选:A.【点评】本题考查了点和圆的位置关系与数量之间的联系:当点到圆心的距离大于圆的半径时,则点在圆外.5.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小【分析】根据反比例函数的性质进行选择即可.解:A、图象必经过点(﹣3,2),故A正确;B、图象位于第二、四象限,故B正确;C、若x<﹣2,则y<3,故C正确;D、在每一个象限内,y随x值的增大而增大,故D正确;故选:D.【点评】本题考查了反比例函数的选择,掌握反比例函数的性质是解题的关键.6.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m B.<m<C.0<m<D.m<或m<【分析】首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过原点时m的值,结合图形即可得到答案.解:令y=﹣2x2+4x=0,解得:x=0或x=2,则点A(2,0),B(﹣2,0),∵C1与C2关于y铀对称,C1:y=﹣2x2+4x=﹣2(x﹣1)2+2,∴C2解析式为y=﹣2(x+1)2+2=﹣2x2﹣4x(﹣2≤x≤0),当y=x+m与C2相切时,如图所示:令y=x+m=y=﹣2x2+4x,即2x2﹣3x+m=0,△=﹣8m+9=0,解得:m=,当y=x+m过原点时,m=0,∴当0<m<时直线y=x+m与C1、C2共有3个不同的交点,故选:A.【点评】本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab <0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④【分析】根据二次函数的图象与性质即可求出答案.解:①由图象可知:>0,∴ab<0,故①正确;②由抛物线与x轴的图象可知:△>0,∴b2>4ac,故②正确;③由图象可知:x=1,y<0,∴a+b+c<0,故③正确;④∵=1,∴b=﹣2a,令x=﹣1,y>0,∴2a+b+c=c<0,故④错误故选:C.【点评】本题考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想,本题属于中等题型.8.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()A.(5,2)B.(1,0)C.(3,﹣1)D.(5,﹣2)【分析】根据平移变换,旋转变换的性质画出图象即可解决问题;解:如图,△A2B2C1即为所求.观察图象可知:A2(5,2)故选:A.【点评】本题考查旋转变换,平移变换等知识,解题的关键是熟练掌握基本知识,正确作出图形是解决问题的关键.9.某商店现在的售价为每件60元,每星期可卖出300件,市场调查反映:每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元利润,应将销售单价定为()A.56元B.57元C.59元D.57元或59元【分析】将销售单价定为x元/件,则每星期可卖出[20(60﹣x)+300]件,根据总利润=每件的利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.解:将销售单价定为x元/件,则每星期可卖出[20(60﹣x)+300]件,根据题意得:(x﹣40)[20(60﹣x)+300]=6080,整理得:x2﹣115x+3304=0,解得:x1=56,x2=59.∵要使顾客获得实惠,∴x=56.故选:A.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.10.如图所示双曲线y=与y=﹣分别位于第三象限和第二象限,A是y轴上任意一点,B是y=﹣上的点,C是y=上的点,线段BC⊥x轴于D,且4BD=3CD,则下列说法:①双曲线y=在每个象限内,y随x的增大而减小;②若点B的横坐标为﹣3,则C点的坐标为(﹣3,);③k=4;④△ABC的面积为定值7,正确的有()A.1个B.2个C.3个D.4个【分析】①根据函数图象所在象限可得k>0,根据反比例函数的性质可得①正确;②再根据函数解析式结合点B的横坐标为﹣3,可得纵坐标,然后再根据4BD=3CD可得C点坐标;③设点B的横坐标为a,则B(a,﹣),表示点C的坐标,可得k的值;④首先表示出B,C点坐标,进而得出BC的长,即可得出△ABC的面积.解:①y=的图象在一、三象限,故在每个象限内,y随x的增大而减小,故①正确;②点B的横坐标为﹣3,则B(﹣3,1),由4BD=3CD,可得CD=,故C(﹣3,﹣),故②错误;③设点B的横坐标为a,则B(a,﹣),由4BD=3CD,可得CD=﹣,故C(a,),由C(a,)可得:k=a×=4,故③正确;④BC=﹣﹣=﹣,S==﹣×(﹣a)×=,故④错误;△ABC所以本题正确的有两个:①③;故选:B.【点评】此题主要考查了反比例函数的性质以及三角形面积等知识,根据题意得出BC的长是解题关键.二.填空题(共6小题,满分24分,每小题4分)11.设α,β是方程x2﹣x﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为2018;【分析】根据一元二次方程跟与系数的关系,结合“α,β是方程x2﹣x﹣2019=0的两个实数根”,得到α+β的值,代入α3﹣2021α﹣β,再把α代入方程x2﹣x﹣2019=0,经过整理变化,即可得到答案.解:根据题意得:α+β=1,α3﹣2021α﹣β=α(α2﹣2020)﹣(α+β)=α(α2﹣2020)﹣1,∵α2﹣α﹣2019=0,∴α2﹣2020=α﹣1,把α2﹣2020=α﹣1代入原式得:原式=α(α﹣1)﹣1=α2﹣α﹣1=2019﹣1=2018.【点评】本题考查了根与系数的关系,正确掌握一元二次方程根与系数的关系是解题的关键.12.抛物线y=x2﹣6x+5向上平移3个单位长度,再向左平移2个单位长度后,得到的抛物线解析式是y=(x﹣1)2﹣1.【分析】先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为(3,﹣4),再把点(3,﹣4)向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为(4,﹣2),然后根据顶点式写出平移后的抛物线解析式.解:y=x2﹣6x+5=(x﹣3)2﹣4,即抛物线的顶点坐标为(3,﹣4),把点(3,﹣4)向上平移3个单位长度,再向左平移2个单位长度后得到点的坐标为(1,﹣1),所以平移后得到的抛物线解析式为y=(x﹣1)2﹣1.故答案是:y=(x﹣1)2﹣1.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.13.如图,点A、B、C、D都在方格纸的格点上,若△AOB绕点O按逆时针方向旋转到△COD的位置,则旋转角为90°.【分析】根据旋转的性质,对应边的夹角∠BOD即为旋转角.解:∵△AOB绕点O按逆时针方向旋转到△COD的位置,∴对应边OB、OD的夹角∠BOD即为旋转角,∴旋转的角度为90°.故答案为:90°.【点评】本题考查了旋转的性质,熟记性质以及旋转角的确定是解题的关键.14.某鱼塘养了200条鲤鱼、若干条草鱼和150条鲢鱼,该鱼塘主通过多次捕捞试验后发现,捕捞到草鱼的频率稳定在0.5左右.若该鱼塘主随机在鱼塘捕捞一条鱼,则捞到鲤鱼的概率为.【分析】根据捕捞到草鱼的频率可以估计出放入鱼塘中鱼的总数量,从而可以得到捞到鲤鱼的概率.解:设草鱼有x条,根据题意得:=0.5,解得:x=350,由题意可得,捞到鲤鱼的概率为=,故答案为:.【点评】本题考查用样本估计总体,解题的关键是明确题意,由草鱼的数量和出现的频率可以计算出鱼的数量.15.如图,圆锥侧面展开得到扇形,此扇形半径CA=6,圆心角∠ACB=120°,则此圆锥高OC的长度是4.【分析】先根据圆锥的侧面展开图,扇形的弧长等于该圆锥的底面圆的周长,求出OA,最后用勾股定理即可得出结论.解:设圆锥底面圆的半径为r,∵AC=6,∠ACB=120°,∴==2πr,∴r=2,即:OA=2,在Rt△AOC中,OA=2,AC=6,根据勾股定理得,OC==4,故答案为:4.【点评】此题主要考查了扇形的弧长公式,勾股定理,求出OA是解本题的关键.16.建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上.这样做的依据是:两点确定一条直线.【分析】由直线公理可直接得出答案.解:建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条参照线,使垒的每一层砖在一条直线上,沿着这条线就可以砌出直的墙,则其中的道理是:两点确定一条直线.故答案为:两点确定一条直线.【点评】本题主要考查的是直线的性质,掌握直线的性质是解题的关键.三.解答题(共3小题,满分18分,每小题6分)17.(6分)解一元二次方程:3x2﹣1=2x+5.【分析】先把方程化为一般式,然后利用求根公式法解方程.解:3x2﹣1=2x+5,3x2﹣2x﹣6=0∵a=3,b=﹣2,c=﹣6,△=(﹣2)2﹣4×3×(﹣6)=76,∴x==,∴x1=,x2=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.18.(6分)如图,AB是⊙O的直径,AB=12,弦CD⊥AB于点E,∠DAB=30°.(1)求扇形OAC的面积;(2)求弦CD的长.【分析】(1)根据垂径定理得到=,根据圆周角定理求出∠CAB,根据三角形内角和定理求出∠AOC,根据扇形面积公式计算;(2)根据正弦的定义求出CE,根据垂径定理计算即可.解:(1)∵弦CD⊥AB,∴=,∴∠CAB=∠DAB=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=120°,∴扇形OAC的面积==12π;(2)由圆周角定理得,∠COE=2∠CAB=60°,∴CE=OC×sin∠COE=3,∵弦CD⊥AB,∴CD=2CE=6.【点评】本题考查的是扇形面积计算,圆周角定理,垂径定理的应用,掌握扇形面积公式是解题的关键.19.(6分)某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过xmin时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?【分析】(1)首先求出y B函数关系式,进而得出交点坐标,即可得出y A函数关系式;(2)首先将y=120代入求出x的值,进而代入y B求出答案;(3)得出y A﹣y B的函数关系式,进而求出最值即可.解:(1)由题意可得出:y B=(x﹣60)2+m经过(0,1000),则1000=(0﹣60)2+m,解得:m=100,∴y B=(x﹣60)2+100,当x=40时,y B=×(40﹣60)2+100,解得:y B=200,y A=kx+b,经过(0,1000),(40,200),则,解得:,∴y A=﹣20x+1000;(2)当A组材料的温度降至120℃时,120=﹣20x+1000,解得:x=44,当x=44,y B=(44﹣60)2+100=164(℃),∴B组材料的温度是164℃;(3)当0<x<40时,y A﹣y B=﹣20x+1000﹣(x﹣60)2﹣100=﹣x2+10x=﹣(x﹣20)2+100,∴当x=20时,两组材料温差最大为100℃.【点评】此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值求法等知识,得出两种材料的函数关系式是解题关键.四.解答题(共3小题,满分21分,每小题7分)20.(7分)某镇为打造“绿色小镇”,投入资金进行河道治污.已知2016年投入资金1000万元,2018年投入资金1210万元.(1)求该镇投入资金从2016年至2018年的年平均增长率;(2)若2019年投入资金保持前两年的年平均增长率不变,求该镇2019年预计投入资金多少万元?【分析】(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据该镇2016年及2018年投入的资金金额,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2019年投入资金金额=2018年投入资金金额×(1+增长率),即可求出结论.解:(1)设该镇投入资金从2016年至2018年的年平均增长率为x,根据题意得:1000(1+x)2=1210,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:该镇投入资金从2016年至2018年的年平均增长率为10%.(2)1210×(1+10%)=1331(万元).答:该镇2019年预计投入资金1331万元.【点评】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.21.(7分)截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长就是在长边上截取一条线段与某一短边相等,补短就是通过延长或旋转等方式使两条短边拼合到一起,从而解决问题.(1)如图1,△ABC是等边三角形,点D是边BC下方一点,∠BDC=120°,探索线段DA、DB、DC之间的数量关系.解题思路:延长DC到点E,使CE=BD,根据∠BAC+∠BDC=180°,可证∠ABD=∠ACE,易证△ABD≌△ACE,得出△ADE是等边三角形,所以AD=DE,从而解决问题.根据上述解题思路,三条线段DA、DB、DC之间的等量关系是;(直接写出结果)(2)如图2,Rt△ABC中,∠BAC=90°,AB=AC.点D是边BC下方一点,∠BDC=90°,探索三条线段DA、DB、DC之间的等量关系,并证明你的结论.【分析】(1)结论:DA=DB+DC.由等边三角形知AB=AC,∠BAC=60°,结合∠BDC =120°知∠ABD+∠ACD=180°,由∠ACE+∠ACD=180°知∠ABD=∠ACE,证△ABD ≌△A CE得AD=AE,∠BAD=∠CAE,再证△ADE是等边三角形得DA=DE=DC+CE =DC+DB.(2)结论:DA=DB+DC.延长DC到点E,使CE=BD,连接AE,先证△ABD≌△ACE得AD=AE,∠BAD=∠CAE,据此可得∠DAE=∠BAC=90°,由勾股定理知DA2+AE2=DE2,继而可得2DA2=(DB+DC)2;解:(1)结论:DA=DB+DC.理由:如图1,延长DC到点E,使CE=BD,连接AE,∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠BDC=120°,∴∠ABD+∠ACD=180°,又∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∵∠ABC=60°,即∠BAD+∠DAC=60°,∴∠DAC+∠CAE═60°,即∠DAE=60°,∴△ADE是等边三角形,∴DA=DE=DC+CE=DC+DB,即DA=DC+DB,(2)结论:DA=DB+DC,理由:如图2,延长DC到点E,使CE=BD,连接AE,∵∠BAC=90°,∠BDC=90°,∴∠ABD+∠ACD=180°,∵∠ACE+∠ACD=180°,∴∠ABD=∠ACE,∵AB=AC,CE=BD,∴△ABD≌△ACE(SAS),∴AD=AE,∠BAD=∠CAE,∴∠DAE=∠BAC=90°,∴DA2+AE2=DE2,∴2DA2=(DB+DC)2,∴DA=DB+DC;【点评】此题是三角形的综合题,主要考查了考查的是全等三角形的判定和性质、直角三角形的性质、等边三角形的性质,解题的关键是添加常用辅助线,构造全等三角形解决问题.22.(7分)一个盒中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸取一个小球然后放回,再随机摸出一个小球.(Ⅰ)请用列表法(或画树状图法)列出所有可能的结果;(Ⅱ)求两次取出的小球标号相同的概率;(Ⅲ)求两次取出的小球标号的和大于6的概率.【分析】(Ⅰ)根据题意可画出树状图,由树状图即可求得所有可能的结果.(Ⅱ)根据树状图,即可求得两次取出的小球标号相同的情况,然后利用概率公式求解即可求得答案.(Ⅲ)根据树状图,即可求得两次取出的小球标号的和大于6的情况,然后利用概率公式求解即可求得答案.解:(Ⅰ)画树状图得:(Ⅱ)∵共有16种等可能的结果,两次取出的小球的标号相同的有4种情况,∴两次取出的小球标号相同的概率为=;(Ⅲ)∵共有16种等可能的结果,两次取出的小球标号的和大于6的有3种结果,∴两次取出的小球标号的和大于6的概率为.【点评】此题考查了列表法与树状图法求概率的知识.此题难度不大,解题的关键是注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.五.解答题(共3小题,满分27分,每小题9分)23.(9分)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象经过点A,作AC ⊥x轴于点C.(1)求k的值;(2)直线y=ax+b(a≠0)图象经过点A交x轴于点B,且OB=2AC.求a的值.【分析】(1)将A(2,2)代入y=,即可求出k的值;(2)首先根据OB=2AC求出OB=4.再分两种情况进行讨论:①B(﹣4,0);②B(4,0).将A、B两点的坐标代入y=ax+b,利用待定系数法即可求出a的值.解:(1)∵函数y=(x>0)的图象经过点A(2,2),∴k=2×2=4;(2)∵OB=2AC,AC=2,∴OB=4.分两种情况:①如果B(﹣4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴,解得;②如果B(4,0).∵直线y=ax+b(a≠0)图象经过点A交x轴于点B,∴,解得.综上,所求a的值为或﹣1.【点评】本题考查了反比例函数与一次函数的交点问题,待定系数法求函数的解析式,进行分类讨论是解(2)小题的关键.24.(9分)如图,已知AC是⊙O的直径,B为⊙O上一点,D为的中点,过D作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(Ⅰ)求证:EF为⊙O的切线;(Ⅱ)若AB=2,∠BDC=2∠A,求的长.【分析】(Ⅰ)连接OD,OB,只要证明OD⊥EF即可.(Ⅱ)根据已知结合圆内接四边形的性质得出∠A=60°,即可得出△OAB等边三角形,再利用弧长公式计算得出答案.(Ⅰ)证明:连接OD,OB.∵D为的中点,∴∠BOD=∠COD.∵OB=OC,∴OD⊥BC,∴∠OGC=90°.∵EF∥BC,∴∠ODF=∠OGC=90°,即OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(Ⅱ)解:∵四边形ABDC是⊙O的内接四边形,∴∠A+∠BDC=180°,又∵∠BDC=2∠A,∴∠A+2∠A=180°,∴∠A=60°,∵OA=OB,∴△OAB等边三角形,∵OB=AB=2,又∵∠BOC=2∠A=120°,∴=.【点评】本题考查了切线的判定和性质,圆周角定理,等边三角形的判定与性质等知识点的综合运用,正确得出△OAB等边三角形是解题关键.25.(9分)如图,在菱形ABCD中,AC、BD交于点O,AD=15,AO=12.动点P以每秒2个单位的速度从点A出发,沿AC向点C匀速运动.同时,动点Q以每秒1个单位的速度从点D出发,沿DB向点B匀速运动.当其中有一点列达终点时,另一点也停止运动,设运动的时间为t秒.(1)求线段DO的长;(2)设运动过程中△POQ两直角边的和为y,请求出y关于x的函数解析式;(3)请直接写出点P在线段OC上,点Q在线段DO上运动时,△POQ面积的最大值,并写出此时的t值.【分析】(1)根据菱形的对角线互相垂直平分的性质得到直角△AOD,在该直角三角形中利用勾股定理来求线段DO的长度;(2)需要分类讨论:点P在线段OA上、点Q在线段OD上;点P在线段OC上,点Q在线段OD上;点P在线段OC上,点Q在线段OB上;(3)由6<t≤9时OP=12﹣2t、OQ=9﹣t可得△POQ的面积S=(9﹣t)(12﹣2t)=﹣t2+15t﹣54=﹣(t﹣)2+,利用二次函数的性质求解可得.解:(1)∵四边形ABCD是菱形,∴AC⊥BD.在Rt△AOD中,AD=15,AO=12由勾股定理得:OD==9.(2)①当0≤t≤6时,OP=12﹣2t,OQ=9﹣t,则OP+OQ=12﹣2t+9﹣t=﹣3t+21即:y=﹣3t+21;②当6<t≤9时,OP=2t﹣12,OQ=9﹣t,则OP+OQ=2t﹣12+9﹣t=t﹣3即:y=t﹣3;③当9<t≤12时,OP=2t﹣12,OQ=t﹣9,则OP+OQ=2t﹣12+t﹣9=3t﹣21即:y=3t﹣21;综上所述:y=;(3)如图,当6<t≤9时,∵OP=12﹣2t、OQ=9﹣t,∴△POQ的面积S=(9﹣t)(12﹣2t)=﹣t2+15t﹣54=﹣(t﹣)2+,∴当t=时,△POQ面积的最大值.【点评】本题主要考查四边形的综合问题,解题的关键是熟练掌握菱形的性质、二次函数的应用及分类讨论思想的运用.人教版九年级第一学期期末模拟数学试卷及答案一.选择题(满分30分,每小题3分)1.若关于x的一元二次方程(k﹣1)x2+4x+1=0有实数根,则k的取值范围是()A.k≤5B.k≤5,且k≠1C.k<5,且k≠1D.k<52.下列图形中,是中心对称图形的是()A.B.C.D.3.四边形ABCD内接于圆,∠A、∠B、∠C、∠D的度数比可能是()A.1:3:2:4B.7:5:10:8C.13:1:5:17D.1:2:3:4 4.若⊙O的半径为6cm,PO=8cm,则点P的位置是()A.在⊙O外B.在⊙O上C.在⊙O内D.不能确定5.已知反比例函数y=﹣,下列结论中不正确的是()A.图象必经过点(﹣3,2)B.图象位于第二、四象限C.若x<﹣2,则0<y<3D.在每一个象限内,y随x值的增大而减小6.如图,抛物线y=﹣2x2+4x与x轴交于点O、A,把抛物线在x轴及其上方的部分记为C1,将C1以y铀为对称轴作轴对称得到C2,C2与x轴交于点B,若直线y=x+m与C1,C2共有3个不同的交点,则m的取值范围是()A.0<m B.<m<C.0<m<D.m<或m<7.二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab <0;②b2>4ac③a+b+c<0;④2a+b+c=0,其中正确的是()A.①④B.②④C.①②③D.①②③④8.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再把△A1B1C1绕点C1顺时针旋转90°得到△A2B2C1,则点A的对应点A2的坐标是()。

济南外国语学校华山校区初三数学九年级上册期末试卷

济南外国语学校华山校区初三数学九年级上册期末试卷

济南外国语学校华山校区初三数学九年级上册期末试卷一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人 C .4人 D .8人 2.一组数据0、-1、3、2、1的极差是( )A .4B .3C .2D .13.如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交于点M ,N .则线段BM ,DN 的大小关系是( )A .BM >DNB .BM <DNC .BM=DND .无法确定4.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 5.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则 ①二次函数的最大值为a+b+c ; ②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .46.将函数的图象用下列方法平移后,所得的图象不经过点A (1,4)的方法是( )A .向左平移1个单位B .向右平移3个单位C .向上平移3个单位D .向下平移1个单位7.已知a 是方程x 2+3x ﹣1=0的根,则代数式a 2+3a+2019的值是( ) A .2020B .﹣2020C .2021D .﹣20218.如图,点A 、B 、C 均在⊙O 上,若∠AOC =80°,则∠ABC 的大小是( )A .30°B .35°C .40°D .50°9.一元二次方程x 2﹣3x =0的两个根是( )A .x 1=0,x 2=﹣3B .x 1=0,x 2=3C .x 1=1,x 2=3D .x 1=1,x 2=﹣3 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )A .相交B .相切C .相离D .无法确定11.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位 12.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A .点B .点C .点D .点13.设A (﹣2,y 1),B (1,y 2),C (2,y 3)是抛物线y =﹣(x +1)2+m 上的三点,则y 1,y 2,y 3的大小关系为( )A .y 3>y 2>y 1B .y 1>y 2>y 3C .y 1>y 3>y 2D .y 2>y 1>y 314.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根15.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.已知二次函数222y x x -=-,当-1≤x≤4时,函数的最小值是__________. 17.若53x y x +=,则yx=______. 18.如图,若抛物线2y ax h =+与直线y kx b =+交于()3,A m ,()2,B n -两点,则不等式2ax b kx h -<-的解集是______.19.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.20.如图,在□ABCD 中,AB =5,AD =6,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点C 作⊙O 的切线交AD 于点N ,切点为M .当CN ⊥AD 时,⊙O 的半径为____.21.在△ABC 中,∠C =90°,cosA =35,则tanA 等于 . 22.长度等于62的弦所对的圆心角是90°,则该圆半径为_____.23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.如图,123////l l l ,直线a 、b 与1l 、2l 、3l 分别相交于点A 、B 、C 和点D 、E 、F .若AB=3,BC=5,DE=4,则EF 的长为______.25.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.26.如图,△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,E 、F 分别为AC 、AD 上两动点,连接CF 、EF ,则CF +EF 的最小值为_____.27.将抛物线y =-5x 2先向左平移2个单位长度,再向下平移3个单位长度后,得到新的抛物线的表达式是________.28.如图,正方形ABCD 的边长为5,E 、F 分别是BC 、CD 上的两个动点,AE ⊥EF .则AF 的最小值是_____.29.已知关于x 的一元二次方程ax 2+bx +5a =0有两个正的相等的实数根,则这两个相等实数根的和为_____.30.如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“好玩三角形”,在△ABC 中,AB=AC ,若△ABC 是“好玩三角形”,则tanB____________。

山东省济南市九年级(上)期末数学试卷(含解析)

山东省济南市九年级(上)期末数学试卷(含解析)

山东省济南市九年级(上)期末数学试卷一、选择题(本大题共12个小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.(4分)下列方程中,是一元二次方程的是()A.2x﹣3=0B.x2﹣2y=0C.=﹣3D.x2=02.(4分)如图,是由4个大小相同的正方体组合而成的几何体,其主视图是()A.B.C.D.3.(4分)如果2a=5b,那么下列比例式中正确的是()A.=B.=C.=D.=4.(4分)若反比例函数的图象经过(﹣1,3),则这个函数的图象一定过()A.(﹣3,1)B.(﹣,3)C.(﹣3,﹣1)D.(,3)5.(4分)如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,则sin A的值为()A.B.C.D.6.(4分)将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为()A.y=3(x+1)2+2B.y=3(x+1)2﹣2C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣27.(4分)已知反比例函数y=的图象上有三点A(4,y1),B(2.y2),c(,y3)则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y3>y1>y28.(4分)如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为()A.B.C.D.9.(4分)一元二次方程4x2﹣3x+=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根10.(4分)反比例函数y=与y=﹣kx+1(k≠0)在同一坐标系的图象可能为()A.B.C.D.11.(4分)如图,在△ABC中,点D、B分别是AB、AC的中点,则下列结论:①BC=3DE;②=;③=;④=;其中正确的有()A.4个B.3个C.2个D.1个12.(4分)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y =ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a ≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0B.2≤m<C.2≤m≤4D.<m≤二、填空题(本大题共6个小题,每小题4分,共24分把答案填在答题卡的横线上)13.(4分)若,则锐角α的度数是.14.(4分)在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸出一一球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为.15.(4分)如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,测得AB=2米,BP =3米,PD=15米,那么该古城墙的高度CD是米.16.(4分)如图抛物线y=ax2+bx+c的对称轴是x=﹣1,与x轴的一个交点为(﹣5,0),则不等式ax2+bx+c >0的解集为.17.(4分)如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C 始终在双曲线y=(k<0)上运动,则k的值是.18.(4分)在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP翻折得到△AD'P,PD'的延长线交边AB于点M,过点B作BN∥MP交DC于点N,连接AC,分别交PM,PB于点E,F.现有以下结论:①连接DD',则AP垂直平分DD';②四边形PMBN是菱形;③AD2=DP•PC;④若AD=2DP,则;其中正确的结论是(填写所有正确结论的序号)三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)解方程:x2﹣6x﹣7=0.20.(6分)计算:+2﹣1﹣2cos60°+(π﹣3)021.(6分)如图,在△ABC中,∠ACB=90°,D为AC的中点,DE⊥AB于点E,AC=8,AB=10.求AE 的长.22.(8分)如图,聪聪想在自己家的窗口A处测量对面建筑物CD的高度,他首先量出窗口A到地面的距离(AB)为16m,又测得从A处看建筑物底部C的俯角α为30°,看建筑物顶部D的仰角β为53°,且AB,CD都与地面垂直,点A,B,C,D在同一平面内.(1)求AB与CD之间的距离(结果保留根号).(2)求建筑物CD的高度(结果精确到1m).(参考数据:sin53°≈0.8,cos53°≈0.6,tan53≈1.3,≈1.7)23.(8分)为实现“先富带动后富,从而达到共同富裕”,某县为做好“精准扶贫”,2017年投入资金1000万元用于教育扶贫,以后投入资金逐年增加,2019年投入资金达到1440万元.(1)从2017年到2019年,该县投入用于教育扶贫资金的年平均增长率是多少?(2)假设保持这个年平均增长率不变,请预测一下2020年该县将投入多少资金用于教育扶贫?24.(10分)小红和小丁玩纸牌优戏,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上.(1)小红从4张牌中抽取一张,这张牌的数字为偶数的概率是;(2)小红先从中抽出一张,小丁从剩余的3张牌中也抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树秋图或列表法求出的小红获胜的概率.25.(10分)如图,一次函数y=﹣x+5的图象与坐标轴交于A,B两点,与反比例函数y=的图象交于M,N两点,过点M作MC⊥y轴于点C,且CM=1,过点N作ND⊥x轴于点D,且DN=1.已知点P是x轴(除原点O外)上一点.(1)直接写出M、N的坐标及k的值;(2)将线段CP绕点P按顺时针或逆时针旋转90°得到线段PQ,当点P滑动时,点Q能否在反比例函数的图象上?如果能,求出所有的点Q的坐标;如果不能,请说明理由;(3)当点P滑动时,是否存在反比例函数图象(第一象限的一支)上的点S,使得以P、S、M、N四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点S的坐标;若不存在,请说明理由.26.(12分)(1)【问题发现】如图①,正方形AEFG的两边分别在正方形ABCD的边AB和AD上,连接CF.填空:①线段CF与DG的数量关系为;②直线CF与DG所夹锐角的度数为.(2)【拓展探究】如图②,将正方形AEFG绕点A逆时针旋转,在旋转的过程中,(1)中的结论是否仍然成立,请利用图②进行说明.(3【解决问题】如图③,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC的中点.若点D在直线BC上运动,连接OE,则在点D的运动过程中,线段OE长的最小值为(直接写出结果).27.(12分)如图1,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、C(3,0),点B为抛物线顶点,直线BD为抛物线的对称轴,点D在x轴上,连接AB、BC,∠ABC=90°,AB与y轴交于点E,连接CE.(1)求项点B的坐标并求出这条抛物线的解析式;(2)点P为第一象限抛物线上一个动点,设△PEC的面积为S,点P的横坐标为m,求S关于m的函数关系武,并求出S的最大值;(3)如图2,连接OB,抛物线上是否存在点Q,使直线QC与直线BC所夹锐角等于∠OBD,若存在请直接写出点Q的坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本大题共12个小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.【解答】解:A、是一元一次方程,故A不合题意;B、是二元二次方程,故B不合题意;C、是分式方程,故C不合题意;D、是一元二次方程,故D符合题意.故选:D.2.【解答】解:根据图形可得主视图为:故选:D.3.【解答】解:∵2a=5b,∴=或=或=.故选:C.4.【解答】解:∵反比例函数的图象经过(﹣1,3),∴k=﹣1×3=﹣3.∵﹣3×1=﹣3,﹣×3=﹣1,﹣3×(﹣1)=3,×3=1,∴反比例函数的图象经过点(﹣3,1).故选:A.5.【解答】解:∵在Rt△ABC中,∠C=90°,BC=3,AC=4,∴AB==5,∴sin A==.故选:A.6.【解答】解:抛物线y=3x2先向左平移一个单位得到解析式:y=3(x+1)2,再向上平移2个单位得到抛物线的解析式为:y=3(x+1)2+2.故选:A.7.【解答】解:把A(4,y1),B(2.y2),c(,y3)分别代入y=得y1==,y2==1,y3==4,所以y1<y2<y3.故选:C.8.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,所以转盘停止后指针指向相同颜色的概率为=,故选:A.9.【解答】解:4x2﹣3x+=0,这里a=4,b=﹣3,c=,b2﹣4ac=(﹣3)2﹣4×=5>0,所以方程有两个不相等的实数根,故选:D.10.【解答】解:A、由反比例函数的图象可知,k>0,一次函数图象呈上升趋势且交与y轴的正半轴,﹣k>0,即k<0,故本选项错误;B、由反比例函数的图象可知,k>0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项正确;C、由反比例函数的图象可知,k<0,一次函数图象呈上升趋势且交与y轴的负半轴(不合题意),故本选项错误;D、由反比例函数的图象可知,k<0,一次函数图象呈下降趋势且交与y轴的正半轴,﹣k<0,即k>0,故本选项错误.故选:B.11.【解答】解:∵△ABC中,点DE分别是AB,AC的中点,∴BC=2DE,DE∥BC,∴△ADE∽△ABC,∴=,即=;∴==,=()2=,故正确的有②.故选:D.12.【解答】解:令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣1,c=﹣,故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,如图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m 时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4,故选:C.二、填空题(本大题共6个小题,每小题4分,共24分把答案填在答题卡的横线上)13.【解答】解:∵,∴α=45°.故答案为:45°.14.【解答】解:根据题意得=0.25,解得:a=24,经检验:a=24是分式方程的解,故答案为:24.15.【解答】解:如图,由题意可得:∠APE=∠CPE,∴∠APB=∠CPD,∵AB⊥BD,CD⊥BD,∴∠ABP=∠CDP=90°,∴△ABP∽△CDP,∴=,∵AB=2米,BP=3米,PD=15米,∴=,解得:CD=10米,故答案为:10.16.【解答】解:根据图示知,抛物线y=ax2+bx+c图象的对称轴是x=﹣1,与x轴的一个交点坐标为(﹣5,0),根据抛物线的对称性知,抛物线y=ax2+bx+c图象与x轴的两个交点关于直线x=﹣1对称,即抛物线y=ax2+bx+c图象与x轴的另一个交点与(﹣5,0)关于直线x=﹣1对称,∴另一个交点的坐标为(3,0),∵不等式ax2+bx+c>0,即y=ax2+bx+c>0,∴抛物线y=ax2+bx+c的图形在x轴上方,∴不等式ax2+bx+c>0的解集是﹣5<x<3.故答案为:﹣5<x<3.17.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DCO=90°,∴∠DCO=∠AOE,在△COD和△OAE中,,∴△COD≌△OAE,∴OD=AE,CD=OE,∴点C的坐标为(,﹣a),×(﹣a)=﹣1,∴k=﹣1.故答案为:﹣1.18.【解答】解:∵将△ADP沿AP翻折得到△AD'P,∴AP垂直平分DD',故①正确;解法一:过点P作PG⊥AB于点G,∴易知四边形DPGA,四边形PCBG是矩形,∴AD=PG,DP=AG,GB=PC∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴,∴PG2=AG•GB,即AD2=DP•PC;解法二:易证:△ADP∽△PCB,∴=,由于AD=CB,∴AD2=DP•PC;故③正确;∵DP∥AB,∴∠DP A=∠P AM,由题意可知:∠DP A=∠APM,∴∠P AM=∠APM,∵∠APB﹣∠P AM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴PM=MB,又易证四边形PMBN是平行四边形,∴四边形PMBN是菱形;故②正确;由于=,可设DP=1,AD=2,由(1)可知:AG=DP=1,PG=AD=2,∵PG2=AG•GB,∴4=1•GB,∴GB=PC=4,AB=AG+GB=5,∵CP∥AB,∴△PCF∽△BAF,∴==,∴,又易证:△PCE∽△MAE,AM=AB=∴===∴,∴EF=AF﹣AE=AC﹣=AC,∴==,故④错误,即:正确的有①②③,故答案为:①②③.三、解答题(本大题共9个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.【解答】解:原方程可化为:(x﹣7)(x+1)=0,x﹣7=0或x+1=0;解得:x1=7,x2=﹣1.20.【解答】解:原式=3+﹣2×+1…………………………..(4分)=……………………………………..(6分)21.【解答】解:∵AC=8,D为AC的中点,∴AD=4,∵DE⊥AB,∴∠AED=90°,∵∠DAE=∠BAC,∴△ADE∽△ABC,∴,∴,∴AE=.22.【解答】解:(1)作AM⊥CD于M,则四边形ABCM为矩形,∴CM=AB=16,AM=BC,在Rt△ACM中,tan∠CAM=,则AM===16(m),答:AB与CD之间的距离16m;(2)在Rt△AMD中,tan∠DAM=,则DM=AM•tan∠DAM≈16×1.7×1.3=35.36,∴DC=DM+CM=35.36+16≈51(m),答:建筑物CD的高度约为51m.23.【解答】解:(1)设该地投入教育扶贫资金的年平均增长率为x,根据题意,得:1000(1+x)2=1440,解得:x=0.2或x=﹣2.2(舍),答:从2017年到2019年,该地投入教育扶贫资金的年平均增长率为20%;(2)2020年投入的教育扶贫资金为1440×(1+20%)=1728万元.24.【解答】解:(1)4张牌中有3张是偶数这张牌的数字为偶数的概率是.故答案为.(2)解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.25.【解答】解:(1)由题意M(1,4),n(4,1),∵点M在y=上,∴k=4;(2)当点P滑动时,点Q能在反比例函数的图象上;如图1,CP=PQ,∠CPQ=90°,过Q作QH⊥x轴于H,易得:△COP≌△PHQ,∴CO=PH,OP=QH,由(2)知:反比例函数的解析式:y=;当x=1时,y=4,∴M(1,4),∴OC=PH=4设P(x,0),∴Q(x+4,x),当点Q落在反比例函数的图象上时,x(x+4)=4,x2+4x+4=8,x=﹣2±2,当x=﹣2+2时,x+4=2+2,如图1,Q(2+2,﹣2+2);当x=﹣2﹣2时,x+4=2﹣2,如图2,Q(2﹣2,﹣2﹣2);如图3,CP=PQ,∠CPQ=90°,设P(x,0)过P作GH∥y轴,过C作CG⊥GH,过Q作QH⊥GH,易得:△CPG≌△PQH,∴PG=QH=4,CG=PH=x,∴Q(x﹣4,﹣x),同理得:﹣x(x﹣4)=4,解得:x1=x2=2,∴Q(﹣2,﹣2),综上所述,点Q的坐标为(2+2,﹣2+2)或(2﹣2,﹣2﹣2)或(﹣2,﹣2).(3)当MN为平行四边形的对角线时,根据MN的中点的纵坐标为,可得点S的纵坐标为5,即S(,5);当MN为平行四边形的边时,易知点S的纵坐标为3,即S(,3);综上所述,满足条件的点S的坐标为(,5)或(,3).26.【解答】解:(1)【问题发现】如图①中,①线段CF与DG的数量关系为CF=DG;②直线CF与DG所夹锐角的度数为45°.理由:如图①中,连接AF.易证A,F,C三点共线.∵AF=AG.AC=AD,∴CF=AC﹣AF=(AD﹣AG)=DG.故答案为CF=DG,45°.(2)【拓展探究】结论不变.理由:连接AC,AF,延长CF交DG的延长线于点K,AG交FK于点O.∵∠CAD=∠F AG=45°,∴∠CAF=∠DAG,∵AC=AD,AF=AG,∴==,∴△CAF∽△DAG,∴==,∠AFC=∠AGD,∴CF=DG,∠AFO=∠OGK,∵∠AOF=∠GOK,∴∠K=∠F AO=45°.(3)【解决问题】如图3中,连接EC.∵AB=AC,AD=AE,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∠B=∠ACB=45°,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABC=45°,∴∠BCE=90°,∴点E的运动轨迹是在射线CE上,当OE⊥CE时,OE的长最短,易知OE的最小值为,故答案为,27.【解答】解:(1)∵A(﹣1,0)、C(3,0),∴AC=4,抛物线对称轴为x==1,∵BD是抛物线的对称轴,∴D(1,0),∵由抛物线的对称性可知BD垂直平分AC,∴BA=BC,又∵∠ABC=90°,∴BD=AC=2,∴顶点B坐标为(1,2),设抛物线的解析式为y=a(x﹣1)2+2,将A(﹣1,0)代入,得0=4a+2,解得,a=﹣,∴抛物线的解析式为:y=﹣(x﹣1)2+2=﹣x2+x+;(2)设直线AB的解析式为y=kx+b,将A(﹣1,0),B(1,2)代入,得,,解得,k=1,b=1,∴y AB=x+1,当x=0时,y=1,∴E(0,1),∵点P的横坐标为m,∴点P的纵坐标为﹣m2+m+,如图1,连接EP,OP,CP,则S△EPC=S△OEP+S△OCP﹣S△OCE=×1×m+×3(﹣m2+m+)﹣×1×3=﹣m2+2m+,=﹣(m﹣)2+,∵﹣<0,根据二次函数和图象及性质知,当m=时,S有最大值;(3)由(2)知E(0,1),又∵A(﹣1,0),∴OA=OE=1,∴△OAE是等腰直角三角形,∴AE=OA=,又∵AB=BC=AB=2,∴BE=AB﹣AE=,∴==,又∵=,∴=,又∵∠ODB=∠EBC=90°,∴△ODB∽△EBC,∴∠OBD=∠ECB,延长CE,交抛物线于点Q,则此时直线QC与直线BC所夹锐角等于∠OBD,设直线CE的解析式为y=mx+1,将点C(3,0)代入,得,3m+1=0,∴m=﹣,∴y CE=﹣x+1,联立,解得,或,∴点Q的坐标为(﹣,).。

山东省济南市历城区2016届九年级上期末数学试卷含答案解析

山东省济南市历城区2016届九年级上期末数学试卷含答案解析

﹣1
1
则该二次函数图象的对称轴为( )
A.y 轴 B.直线 x= C.直线 x=2 D.直线 x=
12.如图,线段 AB 两个端点的坐标分别为 A(6,6),B(8,2),以原点 O 为位似中心,在第一 象限内将线段 AB 缩小为原来的 后得到线段 CD,则端点 C 的坐标为( )
A.(3,3) B.(4,3) C.(3,1) D.(4,1)
与一次函数 y=bx+c 在同一坐标系中
A.
B.
C.
D.
15.如图,平行四边形 ABCD 中,对角线 AC、BD 相交于点 O,BD=2AD,E、F、G 分别是 OC、 OD,AB 的中点.下列结论:①EG=EF; ②△EFG≌△GBE; ③FB 平分∠EFG; ④EA 平分∠GEF;⑤四边形 BEFG 是菱形.其中正确的是( )
6.在一个不透明的纸箱中放入 m 个除颜色外其他都完全相同的球,这些球中有 4 个红球,每次将 球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频 率稳定在 ,因此可以估算出 m 的值大约是( ) A.8 B.12 C.16 D.20
7.如图,在离地面高度 5m 处引拉线固定电线杆,拉线和地面成 60°角,则拉线 AC 的长是 ()
A.3 B.4 C. D.2
10.如图,⊙O 与正六边形 OABCDE 的边 OA、OE 分别交于点 F.G,则弧 FG 对的圆周角∠FPG 的大小为( )
A.45° B.60° C.75° D.30°
11.已知二次函数 y=ax2+bx+c 的 x、y 的部分对应值如下表:
x
﹣1
0
1
2
3
y
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年山东省济南外国语学校初三上学期期末数学试卷一、选择题1.(3分)若关于x的方程x2﹣3x﹣a=0有一个根为1,则a的值为()A.﹣2B.2C.4D.﹣32.(3分)如图所示,该几何体的俯视图是()A.B.C.D.3.(3分)在Rt△ABC中,∠C=90°,若sinA=,则∠A的度数是()A.30°B.45°C.60°D.90°4.(3分)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4B.4C.﹣2D.25.(3分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:166.(3分)抛物线y=﹣2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴7.(3分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.8.(3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°9.(3分)在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.(60+x)(40+2x)=2816B.(60+x)(40+x)=2816C.(60+2x)(40+x)=2816D.(60+2x)(40+2x)=281610.(3分)如图,已知二次函数y=a(x﹣h)2+k在坐标平面上的图象经过(0,5)、(10,8)两点.若a<0,0<h<10,则h的值可能为()A.1B.3C.5D.711.(3分)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.12.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.8﹣πB.C.3+πD.π13.(3分)已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()A.a+b B.a﹣2b C.a﹣b D.3a14.(3分)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y 轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函=4,tan∠BAO=2,则k的值为数的图象恰好经过斜边A′B的中点C,S△ABO()A.3B.4C.6D.815.(3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()=2S△BGE.①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFGA.4B.3C.2D.1二、填空题16.(3分)若2a=3b,则a:b=.17.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k 的取值范围是.18.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=.19.(3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为.20.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.21.(3分)如图,已知抛物线y=x2+4x+3与x轴的交点为A,B.点D是抛物线与y轴的交点,点C是抛物线上的另一点,且CD∥AB.点P是抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E沿对称轴向上运动,设点P运动的时间为t秒,当t为秒时,△PAD是以AD为腰的等腰三角形.三、简答题22.(1)解方程x2﹣2x﹣3=0(2)计算|﹣3|+•tan30°﹣﹣(2016﹣π)0+()﹣123.(1)如图1,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF:FC的值.(2)如图2,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O 的切线,交AB的延长线于点D,求∠D的度数.24.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)25.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).26.如图,在平面直角坐标系xOy中,已知点A的坐标为(a,3)(其中a>4),射线OA与反比例函数y=的图象交于点P,点B、C分别在函数y=的图象上,且AB∥x轴,AC∥y轴;(1)当点P横坐标为6,求直线AO的表达式;(2)联结BO,当AB=BO时,求点A坐标;(3)联结BP、CP,试猜想:的值是否随a的变化而变化?如果不变,求出的值;如果变化,请说明理由.27.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP 沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连结MA.(1)求证:△CMP∽△BPA;(2)求四边形AMCB的面积最大值;(3)你能求出线段AM的最小值吗?28.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标.(Ⅲ)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N 四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.2016-2017学年山东省济南外国语学校初三上学期期末数学试卷参考答案与试题解析一、选择题1.(3分)若关于x的方程x2﹣3x﹣a=0有一个根为1,则a的值为()A.﹣2B.2C.4D.﹣3【解答】解:把x=1代入x2﹣3x﹣a=0得1﹣3﹣a=0,解得a=﹣2.故选:A.2.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.3.(3分)在Rt△ABC中,∠C=90°,若sinA=,则∠A的度数是()A.30°B.45°C.60°D.90°【解答】解:∵sin30°=,∴∠A=30°,故选:A.4.(3分)如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为()A.﹣4B.4C.﹣2D.2【解答】解:△ABO的面积为:×|﹣4|=2,故选:D.5.(3分)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.6.(3分)抛物线y=﹣2x2+1的对称轴是()A.直线x=B.直线x=﹣C.直线x=2D.y轴【解答】解:∵y=﹣2x2+1,∴b=0,∴其图象关于y轴对称,故选:D.7.(3分)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.【解答】解:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.故选:C.8.(3分)如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°【解答】解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.9.(3分)在一幅长60cm,宽40cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是2816cm2,设金色纸边的宽为xcm,那么x满足的方程是()A.(60+x)(40+2x)=2816B.(60+x)(40+x)=2816C.(60+2x)(40+x)=2816D.(60+2x)(40+2x)=2816【解答】解:挂图长为(60+2x)cm,宽为(40+2x)cm,所以根据矩形的面积公式可得:(60+2x)(40+2x)=2816.故选:D.10.(3分)如图,已知二次函数y=a(x﹣h)2+k在坐标平面上的图象经过(0,5)、(10,8)两点.若a<0,0<h<10,则h的值可能为()A.1B.3C.5D.7【解答】解:∵抛物线的对称轴为直线x=h,而(0,5)、(10,8)两点在抛物线上,∴h﹣0>10﹣h,解得h>5.故选:D.11.(3分)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,根号下为负数,无意义,故此选项错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.12.(3分)如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是()A.8﹣πB.C.3+πD.π【解答】解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,∵∠OFE+∠FEO=∠OED+∠FEO=90°,∴∠OFE=∠OED∴△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故选:A.13.(3分)已知抛物线y=ax2+bx+c的图象如图所示,则|a﹣b+c|+|2a+b|=()A.a+b B.a﹣2b C.a﹣b D.3a【解答】解:观察函数图象,发现:图象过原点,c=0;抛物线开口向上,a>0;抛物线的对称轴0<﹣<1,﹣2a<b<0.∴|a﹣b+c|=a﹣b,|2a+b|=2a+b,∴|a﹣b+c|+|2a+b|=a﹣b+2a+b=3a.故选:D.14.(3分)如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y 轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S=4,tan∠BAO=2,则k的值为△ABO()A.3B.4C.6D.8【解答】解:解法一:∵tan∠BAO==2,∴设OA=x,则OB=2x,=OA•OB=x•2x=4,则S△ABO∴x=2,∴B(0,4),A'(4,2),∵点C为斜边A′B的中点,∴C(2,3),∴k=2×3=6;解法二:设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,=•AO•BO=4,∵S△ABO∴AO=2,BO=4,∵△ABO≌△A'O'B,∴AO=A′O′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′O′=1,BD=BO′=2,∴y=BO﹣CD=4﹣1=3,x=BD=2,∴k=x•y=3×2=6.故选:C.15.(3分)如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是()①AE=BF;②AE⊥BF;③sin∠BQP=;④S=2S△BGE.四边形ECFGA.4B.3C.2D.1【解答】解:∵E,F分别是正方形ABCD边BC,CD的中点,∴CF=BE,在△ABE和△BCF中,,∴Rt△ABE≌Rt△BCF(SAS),∴∠BAE=∠CBF,AE=BF,故①正确;又∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠BGE=90°,∴AE⊥BF,故②正确;根据题意得,FP=FC,∠PFB=∠BFC,∠FPB=90°∵CD∥AB,∴∠CFB=∠ABF,∴∠ABF=∠PFB,∴QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,∴x2=(x﹣k)2+4k2,∴x=,∴sin∠BQP==,故③正确;∵∠BGE=∠BCF,∠GBE=∠CBF,∴△BGE∽△BCF,∵BE=BC,BF=BC,∴BE:BF=1:,∴△BGE的面积:△BCF的面积=1:5,=4S△BGE,故④错误.∴S四边形ECFG故选:B.二、填空题16.(3分)若2a=3b,则a:b=3:2.【解答】解:∵2a=3b,∴a:b=3:2.故答案为:3:2.17.(3分)若关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,则k的取值范围是k>﹣.【解答】解:∵关于x的一元二次方程x2+3x﹣k=0有两个不相等的实数根,∴△=32﹣4×1×(﹣k)=9+4k>0,解得:k>﹣.故答案为:k>﹣.18.(3分)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= 4﹣.【解答】解:如图,连接OC.∵弦CD⊥AB于点E,CD=6,∴CE=ED=CD=3.∵在Rt△OEC中,∠OEC=90°,CE=3,OC=4,∴OE==,∴BE=OB﹣OE=4﹣.故答案为4﹣.19.(3分)如图,A、B、C、D依次为一直线上4个点,BC=2,△BCE为等边三角形,⊙O过A、D、E3点,且∠AOD=120°.设AB=x,CD=y,则y与x的函数关系式为y=(x>0).【解答】解:连接AE,DE,∵∠AOD=120°,∴为240°,∴∠AED=120°,∵△BCE为等边三角形,∴∠BEC=60°;∴∠AEB+∠CED=60°;又∵∠EAB+∠AEB=∠EBC=60°,∴∠EAB=∠CED,∵∠ABE=∠ECD=120°;∴△ABE∽△ECD,∴=,即=,∴y=(x>0).故答案为:y=(x>0).20.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.21.(3分)如图,已知抛物线y=x2+4x+3与x轴的交点为A,B.点D是抛物线与y轴的交点,点C是抛物线上的另一点,且CD∥AB.点P是抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E沿对称轴向上运动,设点P运动的时间为t秒,当t为4﹣或t=4+或4秒时,△PAD是以AD为腰的等腰三角形.【解答】解:当y=0时,x2+4x+3=0,解得x1=﹣3,x2=﹣1,则B(﹣3,0),A(﹣1,0),当x=0时,y=x2+4x+3,则D(0,3),∵y=x2+4x+3=(x+2)2﹣1,∴抛物线的对称轴为直线x=﹣2,顶点E的坐标为(﹣2,﹣1),在Rt△OAD中,AD==,直线x=﹣2交CD于F点,交x轴于G点,如图,以D点为圆心,DA为半径画弧交直线x=﹣2于P1、P2两点,如图,则DP1=DP2=DA=,在Rt△P1DF中,FP1==,同理可得FP2=,∴EP1=3﹣+1=4﹣,EP2=4+,∴t=4﹣或t=4+时,△PAD是以AD为腰的等腰三角形;以A点为圆心,AD为半径画弧交直线x=﹣2于P3点,如图,则AP3=DA=,在Rt△P3GAF中,GP3==3,∴EP3=4∴t=4时,△PAD是以AD为腰的等腰三角形;综上所述,t的值为4﹣或t=4+或4秒.故答案为4﹣或t=4+或4秒.三、简答题22.(1)解方程x2﹣2x﹣3=0(2)计算|﹣3|+•tan30°﹣﹣(2016﹣π)0+()﹣1【解答】解:(1)∵x2﹣2x﹣3=0,∴(x+1)(x﹣3)=0,则x+1=0或x﹣3=0,解得:x=﹣1或x=3;(2)原式=3+×﹣2﹣1+2=3+1﹣2﹣1+2=3.23.(1)如图1,在平行四边形ABCD中,若AB=6,AD=10,∠ABC的平分线交AD于点E,交CD的延长线于点F,求DF:FC的值.(2)如图2,圆O是Rt△ABC的外接圆,∠ACB=90°,∠A=25°,过点C作圆O 的切线,交AB的延长线于点D,求∠D的度数.【解答】解:(1):∵四边形ABCD为平行四边形,∴AB=DC=6,AD=BC=10,AB∥DC.∵AB∥DC,∴∠ABE=∠F,又∵BF平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠F,∴BC=CF=10,∴DF=CF﹣DC=10﹣6=4.∴DF:FC=4:6=2:3;(2)连接OC,∵圆O是Rt△ABC的外接圆,∠ACB=90°,∴AB是直径,∵∠A=25°,∴∠BOC=2∠A=50°,∵CD是圆O的切线,∴OC⊥CD,∴∠D=90°﹣∠BOC=40°.24.济南市纬十二路的一座过街天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方7米处(PB的长)有一文化墙PM,若新坡面下A处与文化墙之间需留下至少3米宽的人行道,问文化墙是否需要拆除?请说明理由.(约为1.732)【解答】解:(1)作CH⊥AB于H,如图,在Rt△ACH中,∵tan∠CAH===,∴∠CAH=30°,即新坡面的坡角a为30°;(2)文化墙需要拆除.理由如下:∵tan∠CBH==,∴BH=CH=6,∵=,∴AH=CH=6≈10.392,∴AB=AH﹣BH=6﹣6=4.392,∵3+4.392>7,∴文化墙需要拆除.25.某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【解答】解:(1)56÷20%=280(名),答:这次调查的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中调查结果知:学生关注最多的两个主题为“进取”和“感恩”用列表法为:A B C D EA(A,B)(A,C)(A,D)(A,E)B(B,A)(B,C)(B,D)(B,E)C(C,A)(C,B)(C,D)(C,E)D(D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是.26.如图,在平面直角坐标系xOy中,已知点A的坐标为(a,3)(其中a>4),射线OA与反比例函数y=的图象交于点P,点B、C分别在函数y=的图象上,且AB∥x轴,AC∥y轴;(1)当点P横坐标为6,求直线AO的表达式;(2)联结BO,当AB=BO时,求点A坐标;(3)联结BP、CP,试猜想:的值是否随a的变化而变化?如果不变,求出的值;如果变化,请说明理由.【解答】解:(1)当x=6时,y=2,∴P(6,2),设直线AO的解析式为y=kx,代入P(6,2)得k=,∴直线AO的解析式为y=x;(2)由AB∥x轴,得B点横坐标为4.当y=3时,x=4,∴B(4,3).OB==5,∵AB=OB,∴5=a﹣4,即a=9,∴A(9,3);(3)直线AO的解析式为y=x,联立y=,得,解得.∴P(2,),作PM⊥AB,PN⊥AC.当x=a时,y=,即C(a,),当y=3时,x=4,即B(4,3).AC=3﹣,PN=a﹣2,AB=a﹣4,PM=3﹣,=(a﹣4)(3﹣),S△ACP=(a﹣2)(3﹣),∴S△ABP∴==1.27.如图,在边长为4的正方形ABCD中,P是BC边上一动点(不含B、C两点),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP 沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连结MA.(1)求证:△CMP∽△BPA;(2)求四边形AMCB的面积最大值;(3)你能求出线段AM的最小值吗?【解答】证明:(1)∵∠APB=∠APE,∠MPC=∠MPN,∵∠CPN+∠NPB=180°,∴2∠NPM+2∠APE=180°,∴∠MPN+∠APE=90°,∴∠APM=90°,∵∠CPM+∠APB=90°,∠APB+∠PAB=90°,∴∠CPM=∠PAB,∵四边形ABCD是正方形,∴AB=CB=DC=AD=4,∠C=∠B=90°,∴△CMP∽△BPA.(2)设PB=x,则CP=4﹣x,∵△CMP∽△BPA,∴,∴CM=x(4﹣x),=[4+x(4﹣x)]×4=﹣x2+2x+8=﹣(x﹣2)2+10,∴S四边形AMCB∴x=2时,四边形AMCB面积最大值为10;(3)作MG⊥AB于G,∵AM=,∴AG最小时AM最小,∵AG=AB﹣BG=AB﹣CM=4﹣x(4﹣x)=(x﹣2)2+3,∴x=2时,AG最小值=3,∴AM的最小值==5,28.如图,抛物线经过A(﹣1,0),B(5,0),C(0,﹣)三点.(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线的对称轴上有一点P,使PA+PC的值最小,求点P的坐标.(Ⅲ)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N 四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【解答】解:(Ⅰ)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,﹣)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(Ⅱ)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(Ⅲ)存在点N,使以A,C,M,N四点构成的四边形为平行四边形.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为(4,﹣),(2+,)或(2﹣,).附加:初中数学几何模型【模型一】“一线三等角”模型:图形特征:60°60°60° 45°45°45°运用举例: 1.如图,若点B 在x 轴正半轴上,点A (4,4)、C (1,-1),且AB =BC ,AB ⊥BC ,求点B 的坐标; x yB C AO2.如图,在直线l 上依次摆放着七个正方形(如图所示),已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是1S 、2S 、3S 、4S ,则14S S += .l s 4s 3s 2s 13213. 如图,Rt △ABC 中,∠BAC =90°,AB =AC =2,点D 在BC 上运动(不与点B ,C 重合),过D作∠ADE =45°,DE 交AC 于E .(1)求证:△ABD ∽△DCE ;(2)设BD =x ,AE =y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;(3)当△ADE 是等腰三角形时,求AE 的长.EB4.如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。

相关文档
最新文档