电力电子晶闸管(精)

合集下载

电力电子晶闸管习题

电力电子晶闸管习题

习题习题1、2问题综合晶闸管导通的条件是什么,导通后流过晶闸管的电流由什么决定,负载上的电压由什么决定?晶闸管关断的条件是什么,如何实现/晶闸管处于阻断状态时,其两端的电压由什么决定?分析解答:晶闸管的导通条件是对晶闸管加上正向阳极电压的同时加以适量的正向门极电压。

导通后,流过晶闸管的电流决定于电源电压,回路阻抗和电路的 接线形式。

晶闸管导通后相当于开关已接通,负载上的电压等于电源电压。

晶闸管的关断条件是阳极电流小于维持电流,实现的方法有:1)增加主回路阻抗或减小电源电压;2)使晶闸管承受反压。

处于阻断状态的晶闸管承受电压的大小亦取决于电源电压和电路的形式。

习题3、4问题综合图中阴影部分表示晶闸管导电区间。

波形的电流最大值为Im ,试计算波形的电流平均值Id ,电流有效值I T 和它的波形系数Kf 。

如果不考虑安全裕量,问100安的晶闸管能送出平均电流为多少?这时,相应的电流最大值为多少?分析解答:根据定义 ⎰=21)(1θθωt d i T Id d⎰=212)(1θθωt d i T I d T 式中T ——周期,1θ和2θ分别为开始导通角和终止导通角。

第1问:m m 3m I 48.0I 23)(sin I 22===⎰πωωπππt td Id m m T I t d t I I 63.0)()sin (2232==⎰ππωωπ31.1I 48.0I 63.0mm ===d Tf I I K 第2问:I=100安的晶闸管,其允许的电流有效值为I T =1.57×100=157安根据发热容量相等即在不同波形系数下,其有效值只有一个即1,故8.11931.1157===f T d K I I 安。

说明:1.57为允许流过晶闸管电流的有效值与允许流过晶闸管的最大工频正弦半波电流的平均值的比值,从第1问已解出有效值与最大值之间的关系,可直接求出电流最大值。

由于I=I T =0.63Im即实际电流有效值=额定电流有效值 所以2.24915763.01I m =⨯=安结论:根据晶闸管流过电流不同波形分析,从第1问可知:导通角愈小,波形系数就愈大;从第2问可知:同一元件,流过电流的波形不同,导通角不同,允许通过的电流平均值及其峰值均不同。

电力电子(晶闸管整流)

电力电子(晶闸管整流)

一、概述二、课程设计方案本次课程设计的要紧内容是利用晶闸管整流来设计直流电机操纵系统,要紧设计内容有1、电路功能:〔1〕、用晶闸管缺角整流实现直流调压,操纵直流电动机的转速。

〔2〕、电路由主电路与操纵电路组成,主电路要紧环节:整流电路及保卫电路。

操纵电路要紧环节:触发电路、电压电流检测单元、驱动电路、检测与故障保卫电路。

〔3〕、主电路电力电子开关器件采纳晶闸管、IGBT或MOSFET。

〔4〕、系统具有完善的保卫2、系统总体方案确定3、主电路设计与分析〔1〕、确定主电路方案〔2〕、主电路元器件的计算及选型〔3〕、主电路保卫环节设计4、操纵电路设计与分析〔1〕、检测电路设计〔2〕、功能单元电路设计〔3〕、触发电路设计〔4〕、操纵电路参数确定设计要求有一下四点:1、设计思路清晰,给出整体设计框图;2、单元电路设计,给出具体设计思路和电路;3、分析所有单元电路与总电路的工作原理,并给出必要的波形分析。

4、绘制总电路图5、写出设计报告;要紧的设计条件有:1、设计依据要紧参数〔1〕、输进输出电压:〔AC〕220〔1+15%〕、〔2〕、最大输出电压、电流依据电机功率予以选择〔3〕、要求电机能实现单向无级调速〔4〕、电机型号布置任务时给定2、可提供实验与仿真条件三、系统电路设计1、主电路的设计〔1〕、主电路设计方案主电路的要紧功能是实现整流,将三相交流电变为直流电。

要紧通过整流变压器和三相桥式全控整流来实现。

整流变压器是整流设备的电源变压器。

整流设备的特点是原方输进电流,而副方通过整流原件后输出直流。

变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。

作为整流装置电源用的变压器称为整流变压器。

工业用的整流直流电源大局部根基上由交流电网通过整流变压器与整流设备而得到的。

整流变压器是专供整流系统的变压器。

整流变压器的功能:1.是提供整流系统适当的电压,2.是减小因整流系统造成的波形畸变对电网的污染。

晶闸管工作原理

晶闸管工作原理

晶闸管工作原理晶闸管(Thyristor)是一种半导体器件,也被称为双向可控硅。

它具有单向导通和双向控制的特性,广泛应用于电力电子领域。

晶闸管工作原理是通过控制其门极电压来实现对电流的控制。

晶闸管由四个半导体层构成,分别是P型半导体层(阳极)、N型半导体层(阴极)、P型半导体层(门极)和N型半导体层(阴极)。

当晶闸管的阳极电压大于阴极电压时,晶闸管处于正向偏置状态,即晶闸管导通。

反之,当阳极电压小于阴极电压时,晶闸管处于反向偏置状态,即晶闸管截止。

晶闸管的控制是通过控制门极电压来实现的。

当门极施加正向电压时,晶闸管处于导通状态。

此时,即使去掉门极电压,晶闸管仍然保持导通,直到电流降至零点或者施加反向电压。

而当门极施加反向电压时,晶闸管处于截止状态,无法导通。

晶闸管的导通和截止状态是通过控制门极电压的施加和去除来实现的。

当门极电压施加时,晶闸管进入导通状态;当去掉门极电压时,晶闸管进入截止状态。

这种控制方式使得晶闸管具有了单向导通和双向控制的特性。

晶闸管的主要应用是在交流电路中,用于控制交流电的导通时间。

晶闸管在交流电路中的工作原理是通过施加一个触发脉冲来控制晶闸管的导通。

当晶闸管导通后,只有当交流电通过零点时,晶闸管才会自动截止。

这样就实现了对交流电的控制。

晶闸管还可以用于直流电路中的开关控制。

在直流电路中,晶闸管的工作原理是通过施加一个触发脉冲来控制晶闸管的导通,使其在需要的时间内导通,从而实现对直流电的控制。

总结一下,晶闸管的工作原理是通过控制门极电压来实现对电流的控制。

它具有单向导通和双向控制的特性,广泛应用于电力电子领域。

在交流电路中,晶闸管通过施加触发脉冲来控制导通时间;在直流电路中,晶闸管通过施加触发脉冲来控制导通时间,实现对直流电的控制。

晶闸管的工作原理为电力电子的应用提供了重要的基础。

半控型电力电子器件晶闸管

半控型电力电子器件晶闸管

晶闸管在电力系统中的应用场景
电力系统
• 发电 • 输电 • 变电 • 配电
应用场景
• 断路器:用于控制电路的通断 • 变压器:用于调节电压等级 • 电容器:用于无功补偿和平衡电网 • 电动机:用于变频调速和电气传动 • 整流器:用于交流电到直流电的转换
02
半控型晶闸管的特点及性能
半控型晶闸管的结构特点及性能优势
应用
• 半控型晶闸管作为变频器的开关元件,实现电机的变频 调速 • 通过PWM技术控制晶闸管的导通和关断,实现电机的精 确控制
半控型晶闸管在无功补偿装置中的应用
无功补偿装置
• 用于补偿电力系统的无功功率,提高功率因数 • 通过调节电容器的投切,实现无功功率的补偿
应用
• 半控型晶闸管作为无功补偿装置的开关元件,实现电容 器的投切 • 通过控制算法控制晶闸管的导通和关断,实现无功功率 的精确补偿
晶闸管驱动与控制技 术的发展趋势
• 发展趋势 • 提高驱动器的性能和可靠性,满足电力系统的需求 • 降低驱动器的成本,提高市场竞争力 • 开发新型驱动器和控制方法,拓展应用领域 • 实现驱动器和控制器的集成,提高系统性能
04
半控型晶闸管在电力电子设备中的应用
半控型晶闸管在变频器中的应用
变频器
• 用于交流电机的变频调速 • 通过改变电机的供电频率,实现电机的转速调节
发展趋势
• 提高晶闸管的容量和性能,满足电力系统的需求 • 降低晶闸管的成本,提高市场竞争力 • 开发新型晶闸管,拓展应用领域
03
半控型晶闸管的驱动与控制技术
晶闸管驱动器的分类及特点
特点
• 直接驱动:驱动器直接与晶闸管栅极连接,驱动速度快,但抗干扰能力较弱 • 间接驱动:驱动器通过隔离器件与晶闸管栅极连接,抗干扰能力强,但驱动速度较慢 • 模拟控制:驱动器采用模拟电路进行控制,控制简单,但精度较低 • 数字控制:驱动器采用数字电路进行控制,控制精度高,但成本较高

电力电子器件晶闸管幻灯片PPT

电力电子器件晶闸管幻灯片PPT
阻断状态:IG=0,1+2很小。流过晶闸管的漏电流
稍大于两个晶体管漏电流之和。
开通状态:注入触发电流使晶体管的发射极电流增大
以致1+2趋近于1的话,流过晶闸管的电流IA,将趋 近于无穷大,实现饱和导通。IA实际由外电路决定。
4.2.2 晶闸管的根本特性
晶闸管正常工作时的特性总结如下:
✓ 承受反向电压时,不管门极是否有触发电流,晶 闸管都不会导通。
trr URRM tgr
关断时间tq以上两者之和 tq=trr+tgr 〔1-7)
图1-9 晶闸管的开通和关断过程波形
4.2.3 晶闸管的主要参数
1〕电压定额
断态重复峰值电压UDRM
—— 在 门 极 断 路 而 结 温 为 额 定值时,允许重复加在器件上的 正向峰值电压。
反向重复峰值电压URRM
使用注意:
电力电子器件晶闸管幻灯 片PPT
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
4.1 电力电子器件的概念
2〕同处理信息的电子器件相比的一般特征:
4.2 半控型器件—晶闸管
4.2.1 晶闸管的构造与工作原理 4.2.2 晶闸管的根本特性 4.2.3 晶闸管的主要参数 4.2.4 晶闸管的派生器件
4.2.1 晶闸管的构造与工作原理
晶闸管〔Thyristor〕:晶体闸流管,可控硅整 流器〔Silicon Controlled Rectifier——SCR〕
G KK
A A G
a)Biblioteka AGP1 N1 P2 N2

电力电子技术第3章 晶闸管的触发驱动电路

电力电子技术第3章  晶闸管的触发驱动电路
15
3.3.1 锯齿波形成和脉冲移相控制环节 锯齿波同步触发电路的移相原理,是将锯齿波 电压与直流控制电压 UC叠加,使锯齿波可以垂直 上下移动,锯齿波形斜面对应的电压值能控制形成 脉冲的晶体管开通时刻,即改变对应控制角 α的大 小。
16
3.3.2 脉冲形成、整形和放大输出环节 当锯齿波电压ue3与控制电压Uc、偏置电压Ub 叠加在V4管基极进行并联叠加的电压ub4<0.7V时, V4管截止,电源分别经及R13与R14向V6管与V5管供 给足够大的基极电流,使V6,V5管饱和导通。
8
3.2 单结晶体管触发电路 单结晶体管(Unijuncting Transistor)的结构 及图形符号、等效电路如图3.3所示。单结晶体管 是在一块高电阻率的N型硅片两端,用欧姆接触方 式引出第一基极b1和第二基极b2,b1和b2之间的 电阻为N硅片的体电阻,约为3~12kΩ,在硅片靠 近b2极渗入P型杂质,形成PN结,由P区引出发射 极 e。
6
3.1.3 移相触发器的主要技术指标 (1)同步信号波形 同步信号有正弦波,方波和锯齿波,三者各有 特点,但集成模拟触发器多用锯齿波;数字式触发 器同步信号多用方波。 (2)同步信号幅值 同步信号的幅值随所应用触发器外接元件的不 同而有差别,一般为 6 ~ 30 V。 (3)移相范围 移相范围指当移相控制电压 UC,从零至最大 变化时,输出触发脉冲对于同步信号相位的变化量 。
7
(4)脉冲幅值 脉冲幅值一般指电压幅值与电流幅值。当脉 冲触发器输出的脉冲电压幅值在不接晶闸管时可以 为 12 ~25 V。而电流幅值随被触发晶闸管容量的 不同有差异。 (5)脉冲宽度 为了保证触发的可靠性,触发脉冲常采用宽 脉冲、双窄脉冲,或宽脉冲列、双窄脉列。宽脉冲 宽度应大于 60°小于 120°,双窄脉冲每个脉冲 的宽度应大于 18°小于 30°。

电力电子技术第4章 晶闸管有源逆变电路

电力电子技术第4章 晶闸管有源逆变电路
17
第三节
三相桥式逆变电路
三相桥式逆变电路必须采用三相全控桥。其主 电路的结构与三相全控桥式整流电路完全相同,它 相当于共阴极三相半波与共阳极三相半波逆变电路 的串联,其逆变工作原理的分析方法与三相半波逆 变电路基本相同。因其变压器不存在直流磁势,利 用率高;而且输出电压脉动较小,主回路所需电抗 器的电感量较三相半波小,故应用较广泛。
24
二、晶闸管出现故障 如果晶闸管参数选择不当,例如额定电压选择 裕量不足;或者晶闸管质量本身的问题,使晶闸管 在应该阻断的时候丧失了阻断能力,而应该导通的 时候却无法导通。读者不难从有关波形图上进行分 析,从而将会发现,由于晶闸管出现故障,也将导 致电路的逆变失败.
25
三、交流电源出现异常 从逆变电路电流公式 可看出当电路在有源逆变状态下,如果交流电 源突然断电,或者电源电压过低,上述公式中的 Ud 都将为零或减小,从而使电流 Id 增大以至发生 电路逆变失败
21
输出电流的有效值为 晶闸管流过电流平均值为 晶闸管流过电流有效值为
22
第四节
逆变失败原因分析及逆变角的限制
电路在逆变状态运行时,如果出现晶闸管换流 失败,则变流器输出电压与直流电压将顺向串联并 相互加强,由于回路电阻很小,必将产生很大的短 路电流,以致可能将晶闸管和变压器烧毁,上述事 故称之为逆变失败,或叫做逆变颠覆。 造成逆变失败的原因很多,大致可归纳为下列 几个方面:
18
一、逆变工作原理及波形分析 三相桥式逆变电路结构如图 4.6(a)所示。 如果变流器输出电压 Ud 与直流电机电势 ED的极 性如图所标示(均为上负下正),当电势 ED 略大 于平均电压 Ud,则回路中产生电流 Id 为
19
图 4.6 三相桥式有源逆变电路

晶闸管主要产品类型分析 (一)

晶闸管主要产品类型分析 (一)

晶闸管主要产品类型分析 (一)晶闸管是一种高性能的电子器件,主要用于变频控制、电磁启动、直流调速、电能贮存等领域,因其高效、高稳定性、高可靠性等特点被广泛应用。

晶闸管主要产品类型有以下几种:1.单相晶闸管:单相晶闸管是一种晶闸管,通常由一个晶体管和一个控制电极组成。

单相晶闸管可以实现电源的单相变频控制,广泛应用于家庭电器、交通信号灯等领域。

2. 三相晶闸管:三相晶闸管是一种高性能电子器件,主要用于高功率变频控制系统。

三相晶闸管可实现三相电源的电压变换,有较高的性能和可靠性,被广泛应用于电力电子行业中。

3. GTO晶闸管:GTO晶闸管是一种先进的高功率晶闸管,具有高效、快速、可靠等特点。

GTO晶闸管能够实现高功率电源的变频调速、电流控制等功能,成为现代高科技领域的重要器件之一。

4. IGBT晶闸管:IGBT晶闸管是一种晶闸管,具有高效、快速、可靠等特点。

IGBT晶闸管可以实现电源的高效变频控制,被广泛应用于变频调速、电力传动、电动机控制等领域。

5. 反向导通晶闸管:反向导通晶闸管是一种高性能电子器件,主要用于变频控制、电动机控制、电力驱动等领域。

反向导通晶闸管由一个晶体管和一个反向两极管组成,具有高电流密度、高速度、高功率等特点。

6. 模块化晶闸管:模块化晶闸管是一种晶闸管模块,由多个晶闸管、二极管、散热器等组成,具有高效、快速、可靠等特点。

模块化晶闸管广泛应用于电力电子行业中,能够实现高功率电源的变频调速、电流控制等功能。

以上就是晶闸管的主要产品类型分析,不同类型的晶闸管有着不同的应用场景和优缺点,选用时需要根据具体的需求及领域来进行选择。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

晶闸管的伏安特性
第I象限的是正向特性 第III象限的是反向特性
URS M URRM -UA
IH O
IG 2
IG 1
IG=0
UD RM Ub o +UA UD SM
雪崩 击穿
-IA
图1-8 晶闸管的伏安特性 IG2>IG1>IG
1.3.2
晶闸管的基本特性
IG=0 时,器件两端施加正向电压,正向阻断状态,
IA
2 I G I CBO1 I CBO2
1 ( 1 2 )
(1-5)
晶体管的特性是:在低发射极电流下 是很小的,而 当发射极电流建立起来之后, 迅速增大。
1.3.1
晶闸管的结构与工作原理
阻断状态:IG=0,1+2很小。流过晶闸管的漏电
流稍大于两个晶体管漏电流之和
G
J1 J2 J3
G
A
图1-6 晶闸管的外形、结构和电气图形符号 a) 外形 b) 结构 c) 电气图形符号
1.3.1
晶闸管的结构与工作原理
A A P1 N1 G P2 N2 K a) b) N1 P2 IA V1 G IG S EG Ic1 NPN PNP Ic2 V2 IK K R EA
图1-7 晶闸管的双晶体管模型及其工作原理
1.3.2
晶闸管的基本特性
晶闸管上施加反向电压时,伏安特性类似二极管的 反向特性 晶闸管的门极触发电流从门极流入晶闸管,从阴极 流出
阴极是晶闸管主电路与控制电路的公共端
门极触发电流也往往是通过触发电路在门极和阴极 之间施加触发电压而产生的
晶闸管的门极和阴极之间是PN结J3,其伏安特性称 为门极伏安特性。为保证可靠、安全的触发,触发 电路所提供的触发电压、电流和功率应限制在可靠 触发区。(伏安特性图)
上升时间 tr :阳极电流从 10% 上升到稳态值的 90%所需的时间
开通时间tgt以上两者之和,
tgt=td+ tr
(1-6)
普 通 晶 闸 管 延 迟 时 间 为 0.5~1.5s , 上 升 时 间 为 0.5~3s
1.3.2
2) 关断过程
晶闸管的基本特性
反向阻断恢复时间trr:正向电流降为零到反向恢复电 流衰减至接近于零的时间 正向阻断恢复时间tgr:晶闸管要恢复其对正向电压的 阻断能力还需要一段时间 在正向阻断恢复时间内如果重新对晶闸管施加正 向电压,晶闸管会重新正向导通 实际应用中,应对晶闸管施加足够长时间的反向 电压,使晶闸管充分恢复其对正向电压的阻断能 力,电路才能可靠工作 关断时间tq:trr与tgr之和,即 tq=trr+tgr (1-7)) 普通晶闸管的关断时间约几百微秒。
1.3.2
1. 静态特性
晶闸管的基本特性
承受反向电压时,不论门极是否有触发电 流,晶闸管都不会导通
承受正向电压时,仅在门极有触发电流的 情况下晶闸管才能开通
晶闸管一旦导通,门极就失去控制作用 要使晶闸管关断,只能使晶闸管的电流降 到接近于零的某一数值以下
1.3.2
晶闸管的基本特性
IA 正向 导通
只有很小的正向漏电流流过,正向电压超过临界极限 即正向转折电压Ubo,则漏电流急剧增大,器件开通
随着门极电流幅值的增大,正向转折电压降低 导通后的晶闸管特性和二极管的正向特性相仿 晶闸管本身的压降很小,在1V左右
导通期间,如果门极电流为零,并且阳极电流降至接 近于零的某一数值IH以下,则晶闸管又回到正向阻断 状态。IH称为维持电流。(伏安特性图)
1.3.1
晶闸管的结构与工作原理
外形有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(控制端)G三个联接端 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧 密联接且安装方便 平板型封装的晶闸管可由两个散热器将其夹在中间
A K K G A A G a) P1 N1 P2 N2 K b) c) K
1.3.2
2. 动态特性
iA 100% 90%
晶闸管的基本特性
10% 0 td uA K
tr IRM
t
O
t
tr r
URRM t gr
图1-9 晶闸管的开通和关断过程波形
1.3.2
晶闸管的基本特性
1) 开通过程(特性图) 延迟时间 td :门极电流阶跃时刻开始,到阳极 电流上升Байду номын сангаас稳态值的10%的时间
a) 双晶体管模型 b) 工作原理
Ic1=1 IA + ICBO1 Ic2=2 IK + ICBO2
(1-1) (1-2)
1.3.1
晶闸管的结构与工作原理
IK=IA+IG
IA=Ic1+Ic2
(1-3)
(1-4)
式中 1 和 2 分别是晶体管 V1 和 V2 的共基极电流增益; ICBO1 和 ICBO2 分别是 V1 和 V2 的共基极漏电流。合并以 上式可得
1.3 半控器件—晶闸管
1.3 半控型器件——晶闸管
1.3.1 1.3.2 1.3.3 1.3.4 晶闸管的结构与工作原理 晶闸管的基本特性 晶闸管的主要参数 晶闸管的派生器件
1.3
半控型器件——晶闸管
晶 闸 管 ( Thyristor ) : 晶 体 闸 流 管 , 可 控 硅 整 流 器 (Silicon Controlled Rectifier——SCR) 1956年美国贝尔实验室(Bell Lab)发明了晶闸管 1957年美国通用电气公司(GE)开发出第一只晶闸管 产品 1958年商业化 开辟了电力电子技术迅速发展和广泛应用的崭新时代 20世纪80年代以来,开始被性能更好的全控型器件取代 能承受的电压和电流容量最高,工作可靠,在大容量的 场合具有重要地位 晶闸管往往专指晶闸管的一种基本类型 —— 普通晶闸管广 义上讲,晶闸管还包括其许多类型的派生器件
开通(门极触发): 注入触发电流使晶体管的发 射极电流增大以致 1+2 趋近于 1 的话,流过晶闸管
的电流IA(阳极电流)将趋近于无穷大,实现饱和导 通。IA实际由外电路决定。
1.3.1
晶闸管的结构与工作原理
其他几种可能导通的情况: 阳极电压升高至相当高的数值造成雪崩效应 阳极电压上升率du/dt过高 结温较高 光直接照射硅片,即光触发 光触发可以保证控制电路与主电路之间的良好绝 缘而应用于高压电力设备中之外,其它都因不易 控制而难以应用于实践,称为光控晶闸管(Light Triggered Thyristor——LTT) 只有门极触发(包括光触发)是最精确、迅速而可靠 的控制手段
相关文档
最新文档