第26讲 锐角三角函数

合集下载

解读锐角三角函数

解读锐角三角函数

解读锐角三角函数锐角三角函数是介于0到90度之间的角的三角函数。

它们包括正弦函数(sin)、余弦函数(cos)和正切函数(tan),在数学和物理学等领域中有广泛的应用。

锐角三角函数的定义如下:- 正弦函数(sin):在直角三角形中,其中一锐角的对边除以斜边得到的比值。

- 余弦函数(cos):在直角三角形中,其中一锐角的邻边除以斜边得到的比值。

- 正切函数(tan):在直角三角形中,其中一锐角的对边除以邻边得到的比值。

正弦函数的值在0到1之间变化,其中sin(0) = 0,sin(90) = 1、余弦函数的值也在0到1之间变化,其中cos(0) = 1,cos(90) = 0。

正切函数的值在负无穷到正无穷之间变化,其中tan(0) = 0,tan(90) = 无穷。

锐角三角函数在几何学中的应用非常广泛。

它们可以用来计算三角形的边长和角度,求解直角三角形以及一般三角形的问题。

例如,知道一个直角三角形的一条边和一个锐角,可以利用锐角三角函数来计算其他边的长度。

此外,锐角三角函数还可以用来计算三角形的面积和高度等问题。

锐角三角函数在物理学中也有重要的应用。

例如,在力学中,可以利用正弦函数和余弦函数来分解复杂的力或速度矢量,并求解它们的分量。

在电工学中,正弦函数和余弦函数可以用来表示交流电的电压和电流。

在波动学中,正弦函数可以描述声波和光波的传播过程。

此外,锐角三角函数还出现在信号处理、图像处理和计算机图形学中。

它们可以用来模拟和处理信号、图像和曲线,从而实现音频和视频的压缩、滤波和变换等技术。

总之,锐角三角函数在数学和物理学等领域中是非常重要的。

它们的应用范围广泛,不仅可以用来解决数学和几何学问题,还可以用来研究自然科学和工程领域的现象和问题。

熟练掌握和理解锐角三角函数的特性和应用,对于学习和研究这些领域都具有重要意义。

《锐角三角函数》 讲义

《锐角三角函数》 讲义

《锐角三角函数》讲义一、锐角三角函数的定义在直角三角形中,我们把锐角的对边与斜边的比值叫做正弦(sin),锐角的邻边与斜边的比值叫做余弦(cos),锐角的对边与邻边的比值叫做正切(tan)。

以一个锐角为 A 的直角三角形为例,假设其对边为 a,邻边为 b,斜边为 c。

那么,sin A = a / c,cos A = b / c,tan A = a / b 。

需要注意的是,锐角三角函数的值只与角的大小有关,而与三角形的大小无关。

二、特殊角的三角函数值我们要牢记一些特殊角的三角函数值,这在解题中会经常用到。

30°角:sin 30°= 1 / 2,cos 30°=√3 / 2,tan 30°=√3 / 3 。

45°角:sin 45°=√2 / 2,cos 45°=√2 / 2,tan 45°= 1 。

60°角:sin 60°=√3 / 2,cos 60°= 1 / 2,tan 60°=√3 。

三、锐角三角函数的应用锐角三角函数在实际生活中有广泛的应用。

比如,测量物体的高度。

如果我们知道一个物体与我们的水平距离,以及我们观测物体顶部的仰角,就可以通过三角函数来计算物体的高度。

假设我们站在水平地面上,距离一个建筑物为 d 米,观测建筑物顶部的仰角为α,那么建筑物的高度 h 就可以通过tanα = h / d 来计算,即 h =d × tanα 。

再比如,测量河流的宽度。

我们可以在河的一岸选择一个点,然后测出对岸一个目标点与这个点的连线和河岸的夹角,以及这个点到河岸的垂直距离,从而计算出河流的宽度。

四、锐角三角函数的性质1、取值范围正弦和余弦的值域都在-1, 1之间,而正切的值域是全体实数。

2、增减性在锐角范围内,正弦函数值随着角度的增大而增大,余弦函数值随着角度的增大而减小,正切函数值随着角度的增大而增大。

锐角三角函数

锐角三角函数

锐角三角函数作为数学中的一个重要概念,锐角三角函数是我们学习三角函数的关键部分之一。

在几何学和三角学中,锐角指的是小于90度的角。

而锐角三角函数是以锐角作为自变量的三角函数。

一、正弦函数(sine function)在锐角三角函数中,正弦函数是最常见也是最重要的一个函数。

正弦函数可以表示为:sin(θ) = 对边/斜边其中,θ代表锐角的度数,对边代表锐角的对边长度,斜边代表锐角的斜边长度。

二、余弦函数(cosine function)余弦函数是锐角三角函数中的另一个核心函数,表示为:cos(θ) = 临边/斜边同样,θ代表锐角的度数,临边代表锐角的临边长度,斜边代表锐角的斜边长度。

三、正切函数(tangent function)正切函数是另一个重要的锐角三角函数,表达式为:tan(θ) = 对边/临边在这个公式中,θ代表锐角的度数,对边代表锐角的对边长度,临边代表锐角的临边长度。

四、余切函数(cotangent function)余切函数是正切函数的倒数,可以表示为:cot(θ) = 临边/对边θ代表锐角的度数,临边代表锐角的临边长度,对边代表锐角的对边长度。

五、正割函数(secant function)正割函数是余弦函数的倒数,可以表示为:sec(θ) = 斜边/临边θ代表锐角的度数,斜边代表锐角的斜边长度,临边代表锐角的临边长度。

六、余割函数(cosecant function)余割函数是正弦函数的倒数,可以表示为:csc(θ) = 斜边/对边在这个公式中,θ代表锐角的度数,斜边代表锐角的斜边长度,对边代表锐角的对边长度。

锐角三角函数在数学和实际应用中具有广泛的重要性。

无论是在几何学、物理学还是工程学中,锐角三角函数都扮演着重要的角色。

它们可以帮助我们计算和解决各种三角形和锐角相关问题。

在实际应用中,锐角三角函数还广泛应用于测量和建模等领域。

总结起来,锐角三角函数是数学中不可或缺的一部分。

通过掌握和理解正弦函数、余弦函数、正切函数、余切函数、正割函数和余割函数,我们可以更好地理解和解决与锐角有关的各种数学和实际问题。

锐角三角函数

锐角三角函数

锐角三角函数锐角三角函数指的是在单位圆上,与单位圆心的射线所夹角度小于90°的三角函数。

常见的锐角三角函数包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)以及它们的倒数函数(csc、sec、cot)。

锐角三角函数在数学、物理、工程等领域具有重要的应用。

正弦函数 (sin)正弦函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标。

可以用以下公式表示:sin(θ) = 对边 / 斜边正弦函数图示正弦函数图示在三角函数中,正弦函数具有以下特点: - 值域在[-1,1]之间; - 奇函数,即sin(-θ) = -sin(θ); - 周期为2π,即sin(θ + 2π) = sin(θ)。

余弦函数 (cos)余弦函数是指在单位圆上,与x轴正方向的夹角所对应的横坐标。

可以用以下公式表示:cos(θ) = 邻边 / 斜边余弦函数图示余弦函数图示在三角函数中,余弦函数具有以下特点: - 值域在[-1,1]之间; - 偶函数,即cos(-θ) = cos(θ); - 周期为2π,即cos(θ + 2π) = cos(θ)。

正切函数 (tan)正切函数是指在单位圆上,与x轴正方向的夹角所对应的纵坐标与横坐标的比值。

可以用以下公式表示:tan(θ) = 对边 / 邻边正切函数图示正切函数图示在三角函数中,正切函数具有以下特点: - 值域为全体实数; - 周期为π,即tan(θ + π) = tan(θ)。

倒数函数 (csc、sec、cot)在锐角三角函数中,除了正弦函数、余弦函数和正切函数,倒数函数也是常见的。

倒数函数分别为余弦函数的倒数 (csc)、正弦函数的倒数 (sec) 以及正切函数的倒数 (cot)。

倒数函数的定义如下:csc(θ) = 1 / sin(θ)sec(θ) = 1 / cos(θ)cot(θ) = 1 / tan(θ)这些倒数函数在数学中常用于简化关系式、求解方程等。

应用领域锐角三角函数在数学、物理、工程等领域有广泛的应用。

《锐角三角函数》课件

《锐角三角函数》课件
锐角三角函数图像与性质
正弦函数图像及性质
周期性
振幅
相位
图像特点
正弦函数具有周期性,周期为2π。
正弦函数的相位表示函数在水平方向上的移动,通过调整相位可以得到不同位置的正弦波。
正弦函数的振幅为1,表示函数在垂直方向上的波动范围。
正弦函数的图像是一条连续的、平滑的曲线,呈现周期性的波动。
余弦函数图像及性质
202X
单击此处添加副标题内容
《锐角三角函数》ppt课件
汇报日期
汇报人姓名
目录
锐角三角函数基本概念
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数图像与性质
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数运算规则
单击此处添加文本具体内容,简明扼要的阐述您的观点。
锐角三角函数在实际问题中应用
乘法运算规则
两个锐角三角函数的除法运算,通常转化为同角三角函数的除法运算,再利用同角三角函数的基本关系式进行化简。
除法运算规则
按照先乘除后加减的运算顺序进行乘除混合运算,注意运算过程中的化简和约分。
乘除混合运算规则
复合运算规则
复合函数的定义域
复合函数的值域
复合函数的单调性
复合函数的周期性
01
02
03
钝角三角函数定义
探讨了钝角三角函数的性质,如取值范围、增减性等,以及与锐角三角函数的异同点。
钝角三角函数的性质
介绍了在直角情况下,一些特殊角的三角函数值,如0°、30°、45°、60°、90°等,以及如何利用这些特殊值进行计算和证明。
直角情况下的特殊值
感谢观看
THANKS
渐近线与间断点
02

冀教版九年级数学 26.1 锐角三角函数(学习、上课课件)

冀教版九年级数学  26.1 锐角三角函数(学习、上课课件)
Rt △ ABC 中, ∠ C=90°, BC=3AC,则 tan B 的值
为(
)
1
3
A. 3
B.
10
C.
10
3 10
D.
10
感悟新知
知1-练
解题秘方:紧扣“正切的定义”求解.
解:在 Rt △ ABC 中, ∠ C=90° ,
AC AC 1
∴ tan B= =
= .
BC 3AC 3
答案:B
感悟新知
感悟新知
特别解读
1 . 正弦与余弦的书写规定同正切的.
2. 正弦、余弦都是一个比值,是没有单位的数值 .
3. 由于直角三角形的斜边大于直角边,且各边长均
为正实数,所以 0<sinA<1,0<cosA<1.
4. sin x, cos x 和 tan x都是以 x 为自变量的函数,
一旦 x 的度数确定,它们的值就唯一确定,即锐
5
12
13
∠ B=90 °, cosA= ,则 sinA=_________
.
13
感悟新知
例4
知2-练
如图 26-1-3,在等腰 三角形 ABC 中, AB=AC,
2,则 tan B 的值为
BC=10
cm,
S
=60
cm

ABC
12
_______
.
5
感悟新知
知2-练
解题秘方:紧扣“锐角三角函数的定义的前提是
当锐角是用一个大写英文字母或一个小
写希腊字母表示时,习惯上省略角的符号“∠”,如
tan A,tan α 等;当锐角是用三个大写英文字母或一个数
字表示时,角的符号“∠”不能省略,如 tan ∠ ABC 不能

锐角三角函数

锐角三角函数

关系式
李善兰三角函数展开式 tanα·cotα=1 希腊三角函数公式 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 1+(tanα)^2=(secα)^2 1+(cotα)^2=(cscα)^2 锐角三角函数诱导公式 直角三角形中的锐角三角形函数sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα
三角函数值
取值范围
特殊角
变化情况
特殊角的三角函数值如下 : 注:非特殊角的三角函数值,请查三角函数表
θ是锐角: 0 0 tanθ>0 cotθ>0
1.锐角三角函数值都是正值。 2.当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小),余弦值随着角度的增大(或减小)而减小(或增大) ; 正切值随着角度的增大(或减小)而增大(或减小),余切值随着角度的增大(或减小)而减小(或增大); 正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。 3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 0≤cosA≤1;当角度在0°0。
锐角三角函数
数学函数
01 相关概念
03 关系式
目录
02 三角函数值
锐角三角函数是以锐角为自变量,以比值为函数值的函数。我们把锐角∠A的正弦、余弦、正切和余切都叫做 ∠A的锐角函数。
相关概念
图1直角三角形锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割 (csc)都叫做角A的锐角三角函数。初中学习的锐角三角函数值的定义方法是在直角三角形中定义的,所以在初 中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到如图1所示的直角三角形中,则 锐角三角函数可表示如下:

锐角三角函数课件

锐角三角函数课件

余弦函数
1
定义和公式
余弦函数描述直角三角形中的比例关系,其定义和公式为cos(x) = 邻边/斜边。
2
图像和性质
余弦函数的图像呈现波浪形状,具有周期性、振幅和相位差等性质。
3
应用举例
余弦函数在几何、物理、工程等领域有广泛的应用,如研究周期性现象和计算机 图形学。
正切函数
定义和公式 图像和性质 应用举例
和差化积公式
三角函数的和差化积公式可 以将两个三角函数的和、差 表达为一个三角函数的乘积。
倍角公式
三角函数的倍角公式用于计 算两倍角的三角函数值。
总结
特点和应用
锐角三角函数具有周期性、对称性和广泛的 应用,为解决实际问题提供了重要的数学工 具。
实际生活中的应用举例
锐角三角函数在摄影、测量、物理仿真等实 际生活中有广泛的应用。
ห้องสมุดไป่ตู้
扩展和推广
锐角三角函数的研究和应用正在不断扩展和 推广,涉及到更多领域和复杂情况。
未来发展和研究方向
锐角三角函数的未来发展将涉及到更多领域 的交叉研究和深入探索。
正切函数用来描述直角三角形中的比例关系, 其定义和公式为tan(x) = 对边/邻边。
正切函数的图像呈现周期性、无界和渐近线等 特点,其图像在某些范围内会无限逼近无穷。
正切函数在物理、工程、电子等领域中常用于 信号处理和电路分析等方面。
三角函数的关系式
基本关系式
正弦、余弦和正切函数之间 有一系列关系式,如sin²θ + cos²θ = 1等。
特点
锐角三角函数的值域在特 定区间内,具有周期性和 对称性等特点。
正弦函数
定义和公式
正弦函数用来描述直角三角形 中的比例关系,其定义和公式 为sin(x) = 对边/斜边。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十六讲 锐角三角函数
点击进入相应模块
1.理解锐角三角函数(sin A,cos A,tan A)的概念,知道30°, 45°,60°角的锐角三角函数值;会使用计算器由已知锐角求 它的三角函数值,由已知三角函数值求它对应的锐角. 2.运用三角函数解决与直角三角形有关的简单实际问题.
一、特殊角的三角函数值 三角函数 锐角α 30° sin α
DE 3.5 7 . BD 12.5 25
【对点训练】
5.(2012·衡阳中考)如图,菱形ABCD的周长为20 cm,且 tan ∠ABD= 4 ,则菱形ABCD的面积为_________cm2.
3
【解析】连结AC交BD于点O,则AC⊥BD. ∵菱形的周长为20 cm,
∴菱形的边长为5 cm.
算tan 15°=______.
【解析】设CD=x,因为∠A=30°,所以AC=2x,AD= 3 x,则 AB=2x,BD=2x- 3 x=(2- 3 )x,所以tan
BD (2 3)x 2 3. CD x
15°=
答案:2- 3
解直角三角形 ◆中考指数:★★★☆☆
解直角三角形的四种类型及方法:
【例2】(2012·上海中考)如图,在Rt△ABC中,∠ACB=90°,D 是边AB的中点,BE⊥CD,垂足为点E.已知AC=15,cos A= 3 .
5
(1)求线段CD的长; (2)求sin∠DBE的值. 【思路点拨】(1)据已知→求AB→CD (2)据勾股定理→求BC→求DE→sin∠DBE
【自主解答】(1)因为∠ACB=90°,AC=15,cos A= 3 ,所以
【即时应用】
2 2 2 1 ,则cos α =____,tan α =___. 1.若α 为锐角,且sin α = 3 4 3 4 4 2.在Rt△ABC中,∠C=90°,sin A= ,则cos B=__. 5 5
三、直角三角形中的边角关系
在Rt△ABC中,∠C=90°,a,b,c分别是∠A,∠B,∠C的对边. a2+b2=c2 1.三边之间的关系:________.
AC=2 3 ,求AB的长.
【解析】如图,作CD⊥AB,垂足为D,
在Rt△ACD中,∵AC=2 3 ,∠A=30°,
∴AD=AC·cos 30°=2 3 · 3 3,CD 2 3 3.
2 2
在Rt△BCD中,∵CD= 3 ,∠B=45°,
∴BD= 3 ,∴AB=AD+BD=3+ 3 .
二 、三角函数之间的关系 1.同一个锐角的正弦、余弦和正切的关系: 1 (1)sin2α +cos2α =__;
sin (2)tan α =_______. cos
2.互为余角的正弦、余弦的关系: cos α sin(90°-α )=_______; sin α cos(90°-α )=_______.
BC 1 , ∴AC 3BC 5 3 (米). AC 3
10.(2012·株洲中考)数学实践探究课中,老师布置同学们测 量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米 的地方,用测角仪测得旗杆顶端的仰角为60°,则旗杆的高度 是______米.
知识 点睛
特别 1.坡度是斜坡的倾斜程度,而不是斜坡的角度. 提醒 2.仰角和俯角都是视线和水平线的夹角.
【例3】(2012·邵阳中考)某村为方便村民夜间出行,计划在村 内公路旁安装如图所示的路灯,已知路灯灯臂AB的长为1.2 m,
灯臂AB与灯柱BC所成的角(∠ABC)的大小为105°,要使路灯A与
5
(D) 2 5
5
【解析】选A.如图所示,
∵∠APC=30°,∠BPC=60°,
∴∠APB=90°.
又∵PB=60× =40,
∴tan ∠ABP=
AP 1 . PB 2
2 3
4.(2012·岳阳中考)如图,在顶角为30°的等腰三角形ABC
中,AB=AC,若过点C作CD⊥AB于点D,则∠BCD=15°.根据图形计
南偏西30° 210° 2.如图,OA的方向角为__________,方位角为_____.
3.某人沿着有一定坡度的坡面前进了10米,此时他与水平地面 1∶2 的垂直距离为2 5 米,则这个坡面的坡度为_____. 4.某水库大坝的横断面是梯形,坝内斜坡的坡度i1=1∶ 3,坝 75° 外斜坡的坡度i2=1∶1,则两个坡角的和为____.
(A)
5 12
)
12 13
(B) 12
5
(C) 5
13(D)Fra bibliotek【解析】选C.设BC=5k,则CA=12k,AB=13k,
∵BC2+CA2=AB2,∴△ABC是直角三角形. ∴在Rt△ABC中,cos B BC 5k 5 .
AB 13k 13
【高手支招】在解答所求的结论与线段的比有关的问题时,都 可以用设参数“k”的方法求解.由此可以将原有的比值,转化
1.已知斜边和一个锐角(如c,∠A),其解法:∠B=90°- ∠A,a=csin A,b=ccos A(或 b c2 a 2 ).
知 2.已知一直角边和一个锐角(如a,∠A),其解法:∠B 识 a a c ,b =90°-∠A, (或 b c2 a 2 ). 点 sin A tan A 3.已知斜边和一直角边(如c,a),其解法: c2 a 2 ,由 b 睛 a sin A= 求出∠A,∠B=90°-∠A.
如图,OD的方位角为120°.
(3)坡度和坡角: 升高的高度h 水平前进的距离l 从点P上坡走到点N时,____________与________________的比
h 叫做坡度,用字母i表示,即i=__.坡面与水平面的夹角叫做 l
坡角 _____,记作α .
【即时应用】 仰 50° 1.如图,从点A看点B的___角为____.
【核心点拨】 1.当∠A为锐角时,0<sin A<1,0<cos A<1,tan A>0.
2.锐角三角函数的值是一个比值,没有单位,它只与角的大小有
关系,而与三角形的三边长无关. 3.研究和运用三角函数的前提是在直角三角形中,若无此前提, 则要设法构造直角三角形. 4.坡度是描述斜坡倾斜程度的量,它等于坡角的正切值.
(A) 1
2
(B) 2
2
(C) 3
2
(D)1
【解析】选C.设BC=k,则AB=2k,由勾股定理得
所以 sin B AC 3k 3 . AC AB BC (2k) k 3k,
2 2 2 2
AB
2k
2
2.(2011·陕西中考)在△ABC中,三边BC,CA,AB满足
BC∶CA∶AB=5∶12∶13,则cos B=(
路面的距离AD为7 m,试确定灯柱BC的高度.(结果保留两位有效
数字)
【教你解题】
【对点训练】 8.(2012·嘉兴中考)如图,A,B两点在河的两岸,要测量这两
点之间的距离,测量者在与A同侧的河岸边选定一点C,测出
AC=a米,∠A=90°,∠C=40°,则AB等于( )
(A)asin 40°米
(C)atan 40°米
1 2
cos α
3 2 2 2
1 2
tan α
3 3
45°
2 2
3 2
1
60°
3
【即时应用】 1 1.在Rt△ABC中,∠C=90°,AC=BC,则tan A=__. 1 2.sin 60°·tan 30°+cos 60°=__. > 3.若α ,β 为锐角,且tan α >tan β ,则α ___β .
(B)acos 40°米
(D)
a tan 40米
AB , AC
【解析】选C.∵在Rt△ABC中,tan C= ∴AB=atan 40°.
9.河堤横断面如图所示,堤坝BC=5米,迎水坡AB的坡比是
1∶ 3 ,则AC的长是(
)
(A)5 3 米 (C)15米 【解析】选A.∵
(B)10米 (D)10 3 米
在Rt△ABO中,tan ∠ABD= 4 .
3
故可设AO=4x,BO=3x,又AB=5 cm,
因此根据勾股定理可得AO=4 cm,BO=3 cm, ∴AC=8 cm,BD=6 cm, ∴菱形ABCD的面积为: 1×8×6=24(cm2).
2
答案:24
6.(2012·安徽中考)如图,在△ABC中,∠A=30°,∠B=45°,
5 1 AB= AC =25.又因为D为边AB的中点,所以CD= AB=12.5. cos A 2
(2)BC AB2 AC2 20, 在Rt△BCE和Rt△DBE中,
BE2=BD2-DE2=BC2-CE2,设DE的长为x,
则12.52-x2=202-(12.5+x)2,解得x=3.5, 所以sin∠DBE=
成为具体的数量,再结合题中的其他条件列出含“k”的等式或
者是间接求得其他的比值.
3.(2012·德阳中考)某时刻海上点P处有一客轮,测得灯塔A位
于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小
时的速度沿北偏西60°方向航行
2 小时到达B处,那么tan ∠ABP 3
=(
(A)
1 2
)
(B)2 (C) 5

特别 锐角的三个三角函数值是在直角三角形中定义的,若无 提醒 直角三角形,则要设法构造直角三角形.
【例1】(2012·内江中考)如图所示,△ABC的顶点是正方形网 格的格点,则sin A的值为( )
(A) 1
2
(B) 5
5
(C) 10
10
(D)
2 5 5
【思路点拨】构造直角三角形→计算sin A→结果
相关文档
最新文档