二次函数图像及一元二次方程与二次函数关系

合集下载

22.2.1二次函数与一元二次方程

22.2.1二次函数与一元二次方程
(2)请求出球飞行的最大 水平距离.
(3)若王强再一次从此处击球,要想让球飞行的最大 高度不变且球刚好进洞,则球飞行路线应满足怎样的抛 物线,求出其解析式.
解:(1) y 1 x2 8 x 1 (x 4)2 16
55
5
5
⸫抛物线开口向下,顶点为
4,16 5
,对称轴为x=4
(2)令y=0 ,得: 1 x2 8 x 0 55
(3)指出(2)的图像中,使y<0时, x的取值范围及使y >0时, x的取值范围
例2:王强在一次高尔夫球的练习中,在某处击球,其
飞行路线满足抛物线 y 1 x2 8 x ,其中y(m)是 55
球的飞行高度,x(m)是球飞出的水平距离,结果球离
球洞的水平距离还有2m.
(1)请写出抛物线的开口方 向、顶点坐标、对称轴.
的值永远为正的条件是__a_>_ 0,△<0 __
3.求抛物线 y=−2(x+1)2+8 ①与y轴的交点坐标; ②与x轴的两个交点间的距离.③何时y>0?
(1)抛物线y=x2+2x−3与x轴的交点有( C)
A.0个 B.1个
C.2个
D.3个
(2)抛物线y=mx2−3x+3m+m2经过原点,则其顶点坐标
图象:是一条抛物线。
图象的特点:(1)开口方向,开口大小; (2)对称轴; (3)顶点(最低点或最高点)。
y
y
o
x
o
x
二次函数y=ax2的图象与y=ax2+k的图象的关系
二次函数y=ax2+k的图象可由二次函数y=ax2 的图象向上(或向下)平移得到:
当k>0时,抛物线 y=ax2向上平移|k|个单 位,得y=ax2+k

二次函数与一元二次方程二次函数优秀ppt课件

二次函数与一元二次方程二次函数优秀ppt课件
7.一元二次方程 3 x2+x-10=0的两个根是x1=-
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .

九年级二次函数与一元二次方程的联系和区别

九年级二次函数与一元二次方程的联系和区别

二次函数与一元二次方程的联系和区别一、二次函数1、自变量x 和因变量y 之间存在如下关系:y=ax 2+bx+c (a ,b ,c 为常数,a≠0,且a 决定函数的开口方向)①a>0时,开口方向向上 ②a<0时,开口方向向下③|a|还可以决定开口大小a 绝对值越大开口就越小,|a|越小开口就越大④一次项系数b 和二次项系数a 共同决定对称轴的位置。

当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右。

⑤常数项c 决定抛物线与y 轴交点。

抛物线与y 轴交于(0,c )⑥抛物线是轴对称图形。

对称轴为直线 x =2ab-,。

对称轴与抛物线唯一的交点为抛物线的顶点P 。

特别地,当b=0时,抛物线的对称轴是y 轴(即直线x=0)⑦抛物线有一个顶点P ,坐标为 P [2a b -,a b 4ac 42- ]。

当2ab -=0时,P 在y 轴上;当Δ= b 2-4ac=0时,P 在x 轴上。

2、二次函数的两种表达式①一般式:y=ax 2+bx+c (a ,b ,c 为常数,a≠0) ②顶点式:y=a(x-h)2+k [抛物线的顶点P (h ,k )] 3、抛物线与x 轴交点个数 Δ= b2-4ac >0时,抛物线与x 轴有2个交点。

Δ= b2-4ac=0时,抛物线与x 轴有1个交点。

Δ= b 2-4ac <0时,抛物线与x 轴没有交点。

二、一元二次方程y= ax 2+bx+c ,当y=0时,二次函数为关于x 的一元二次方程,即ax 2+bx+c=0 三、两者之间的联系①ax 2+bx+c=0,即为y= ax 2+bx+c ,y=0时 ②方程的根x 1,x 2是使ax 2+bx+c 为零的x 的取值③x 1,x 2对应图像上是y =ax 2+bx+c 函数与x 轴交点的横坐标。

④方程根的个数即是使ax 2+bx+c=0的x 的个数即是y= ax 2+bx+c y=0,为y= ax 2+bx+c 图像与x 轴的交点个数。

关于一元二次函数,一元二次方程,一元二次不等式及其关系

关于一元二次函数,一元二次方程,一元二次不等式及其关系

1. 一元二次函数函数 2y ax bx c =++ (0)a ¹叫做一元二次函数,其中,,a b c 是常数 一般式2y ax bx c =++ ( 0a ¹)顶点式 ()2y a x h k =-+ (0a ¹),其中(),h k 为抛物线顶点坐标两点式()()12y a x x x x =-- ( 0a ¹), 其中12,x x 是抛物线与x 轴交点的横坐标。

1.1一元二次函数的基本性质1.1.1一元二次函数的定义域和值域 一元二次函数2y ax bx c =++ ,(0)a ¹的R一元二次函数2y ax bx c =++ ,(0)a ¹ 的值域是0a >时一元二次函数的值域是24,4ac ba 轹-÷ê÷+ ÷ê÷øë 0a <时一元二次函数的值域是24,4acb a 纟-çú- ççúèû1.1.2一元二次函数的单调性1. 2y ax bx c =++ , ()0a > 在区间,2ba 纟çú-?ççúèû上为单调减函数 ,在区间,2ba 轹÷ê-+ ÷÷êøë上为单调增函数 。

当2b x a=-时 2min 44ac b y a-=, m ax y =无2. 2y ax bx c =++ ()0a <在区间,2ba 纟çú-?ççúèû上为单调增加函数,在区间,2ba轹÷ê-+ ÷÷êøë上为单调减函数 。

二次函数与一元二次方程的联系

二次函数与一元二次方程的联系

二次函数与一元二次方程的联系二次函数和一元二次方程是高中数学中的重要概念,它们之间存在着密切的联系。

本文将从几何关系和代数关系两个方面来探讨二次函数与一元二次方程之间的联系。

一、几何关系1. 二次函数的几何意义:二次函数是形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

它的图像是一条开口向上或向下的抛物线。

对称轴为x = -b/2a,顶点的纵坐标为c - b^2/4a。

抛物线在对称轴上下方呈现关于对称轴对称的特点。

2. 一元二次方程的几何意义:一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为常数且a ≠ 0。

它表示抛物线与x轴的交点位置,也就是方程的解。

如果方程有两个不相等的实数根,则抛物线与x 轴有两个交点;如果方程有一个实数根,则抛物线与x轴有一个切点;如果方程没有实数根,则抛物线与x轴没有交点。

3. 二次函数与一元二次方程的联系:二次函数的图像与一元二次方程的解之间存在着密切的联系。

通过解一元二次方程可以确定二次函数的图像与x轴的交点位置,而通过分析二次函数的图像可以得到一元二次方程的解的情况。

二次函数与一元二次方程的解是一一对应的关系。

二、代数关系1. 二次函数的表达式与一元二次方程:已知二次函数f(x) = ax^2 + bx + c,将其与y = f(x)进行等价转化,可以得到一元二次方程ax^2 + bx + c = y。

这意味着,我们可以通过二次函数的表达式来推导出一元二次方程。

反过来,已知一元二次方程ax^2 + bx + c = 0,将其与y = 0进行等价转化,可以得到二次函数f(x) = ax^2 + bx + c。

这意味着,我们可以通过一元二次方程来确定二次函数的表达式。

2. 二次函数的性质与一元二次方程的解:二次函数的性质可以帮助我们判断一元二次方程的解的情况。

比如,当二次函数开口向上且顶点在x轴上方时,一元二次方程有两个不相等的实数根;当二次函数开口向下且顶点在x轴下方时,一元二次方程无实数根;当二次函数开口向上且顶点在x轴上时,一元二次方程有一个实数根。

一元二次不等式与二次函数、一元二次方程的关系

一元二次不等式与二次函数、一元二次方程的关系

bds04_2.2(3) 一元二次不等式与二次函数、一元二次方程的关系课题名称 2.2(3) 一元二次不等式与二次函数、一元二次方程的关系课时 2 课型新授一教学目标知识与技能:1. 通过二次函数的图像了解一元二次不等式与相应的二次函数、一元二次方程的内在联系.2. 能通过二次函数的图像与对应的一元二次方程,直观地求出一元二次不等式的解集.3. 理解转化的思想,即理解一元二次不等式是如何转化为用相应的二次函数图像与一元二次方程的根来进行求解的.过程与方法:1. 教学过程中注重知识的形成过程,把握学生的认知规律.2. 强调数形结合的解题方法.情感态度与价值观:1.借助图像来求解抽象的问题,提高学生学习的兴趣和解题的正确率.2.通过学习使学生学会分析和归纳复杂事物的能力,结合工学交替等途径,为日后进入职场奠定基础.二教学重点与难点教学重点:1.一元二次函数的图像.2. 通过二次函数的图像与对应的一元二次方程,解一元二次不等式. 教学难点:1. 数形结合的方法.三教学方法启发式教学. 类比的方法,归纳的方法. 四教学手段利用多媒体课件bds04、黑板等.五教学过程【新课导入】一元二次不等式与二次函数、一元二次方程的关系:解一元二次不等式是否一定要转化为一元一次不等式组来解呢? 其实不然!因为一元二次不等式与二次函数、一元二次方程三者之间存在着密不可分的“亲缘”关系, 你可以借助二次函数的图像及相应一元二次方程的根,解决一元二次不等式的解的问题. 【示范例题】 例4 已知二次函数223y x x =--(1) 画出此二次函数的图像; (2) 求当x 取何值时,y =0;(3) 求当x 在何范围内取值时,y <0; (4) 求当x 在何范围内取值时,y >0. 解 (1) 图像如下图所示:(2) 由y =0,得 2-2-30xx =解此一元二次方程,得11x =-,23x = ∴当1x =-或3x =时,y =0.(3) 由图可知,当-1<x <3时,二次函数图像在x 轴的下方. ∴当-1<x <3时,y <0.(此时,2230xx --<)(4) 由图可知,当x <-1或x >3时,二次函数图像在x 轴的上方. ∴当 x <-1或x >3时,y>0.(此时,2-2-30x x >)提问:不等式2230x x --<的解集是? 不等式2230xx -->的解集是?例5 利用在例题4学到的知识,解不等式:28230x x -->解 不等式对应的二次函数为2823y x x =--令y=0,对应方程28230x x --=的根为: 121324x x =-=, 当12x <-或 34x >时,y >0. ∴不等式28230x x -->的解集为13,,24⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭.例6 解不等式:22-20x x -+>解二次项系数为负,∴原不等式两边同乘以-1,得:2220x x -+<对应方程: 2220xx -+=的判别式()2241240∆=--⨯⨯=-<对应二次函数:222y x x =-+的图像如图所示:a >0开口向上,0∆<,图像位于x 轴上方;∴不等式222<0x x -+的解集为φ.即原不等式22-20x x -+>的解集为φ.例7 解不等式:2440x x -+>解 对应方程: 244=0xx -+的判别式()244140∆=--⨯⨯=对应二次函数:244y x x =-+的图像如图所示:a >0开口向上,0∆=,图像与x 轴有一个交点;∴不等式2440x x -+>的解集为()(),22,-∞+∞.【双基讲解】一元二次不等式的解法:解一元二次不等式的关键是看不等式对应的二次函数图像.这种方法解一元二次不等式:20ax bx c ++>或()200ax bx c a ++<>的步骤是:(1)计算判别式24b ac ∆=-;(2)根据判别式的值的情况分别求解. 这里涉及的情况如下表所示:例8 解不等式:(1) 22520x x -+≤;(2) ()()841x x x +>-;(3)()()2124x x +-<-.解 (1) 解不等式: 22520x x -+≤()254229∆=--⨯⨯=方程22520xx -+=的两个根为:12122x x ==,∴不等式的解集为1,22⎡⎤⎢⎥⎣⎦. (2) 解不等式: ()()841xx x +>-解 原不等式化简得:2440x x ++>244140∆=-⨯⨯=方程2440x x ++=有两个相等的实数根:122x x ==-∴不等式的解集为()(),22,-∞--+∞.(3) 解不等式:()()2124x x +-<-解 原不等式化简得: 22320x x -+<()2342270∆=--⨯⨯=-< ∴方程22320x x -+=没有实数根,∴原不等式的解集为φ.【巩固练习】 课堂练习2.2(3)1. 写出下列一元二次不等式对应的二次函数和一元二次方程. (1) 23100xx -->; (2) ()()2130x x -+<;(3)251360x x -+-≥; (4) ()24221x x x +-<-.2. 已知二次函数2-3-10y x x =(1) 画出此二次函数的图像; (2) 求当x 取何值时,y = 0; (3) 求当x 在何范围内取值时,y < 0; (4) 求当x 在何范围内取值时,y > 0. 3. 解下列不等式: (1) 27120xx -+>; (2) 22530x x +-<;(3)22150x x --+≥; (4) ()24421x x x +-<-.六 课堂小结1. 利用二次函数的图像、一元二次方程和一元二次不等式之间的关系求解一元二次不等式;2. 利用上述关系给出了一个一般性的求解方法.七 布置作业由老师根据学生的具体情况灵活布置八 教学后记根据上课的具体情况,由老师书写教案编制人:周芸辉。

《二次函数与一元二次方程》二次函数PPT教学课件

《二次函数与一元二次方程》二次函数PPT教学课件

情境引入
下列二次函数的图象与x轴有公共点吗?如果有,公共的
横坐标是多少?当x轴取公共点的横坐标,函数值是多少?
由此,你能得出相应的一元二次方程的根吗?
(1)y=x2+x-2
(2)y=x2-6x+9
(3)y=x2-x+1

(1)抛物线y=x2+x-2与x轴有___个公共点,
-2,1
它们的横坐标是_____。当x取公共点的横坐
第二十二章 二次函数
二次函数与一元二次方程
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(1)球的飞行高度能否达到15m?如能,需要多少飞行时间?
关系h=20t-5t2.考虑以下问题:
(2)球的飞行高度能否达到20m?如能,需要多少飞行时间?
解:(2)解方程20=20t-5t2。t2-4t+4=0。
t1=t2=2。当球飞行2s时,它的高度为20m。
情境引入
如图所示,以40m/s的速度将小球沿与地面成30°角的方向击出
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
时,小球的飞行路线将是一条抛物线。如果不考虑空气阻力,
球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有
关系h=20t-5t2.考虑以下问题:
(4)球从飞出到落地要用多少时间?
解:(1)解方程0=20t-5t2。t2-4t=0。t1=0,
t2=4。当球飞行0s和4s时,它的高度为0m,

二次函数与方程的关系

二次函数与方程的关系

二次函数与方程的关系二次函数和二次方程是数学中常见的概念,它们之间存在着密切的关系。

本文将从定义、图像、性质以及解析式等角度,探讨二次函数与方程之间的关系。

一、二次函数的定义二次函数是指一个自变量为x的函数,其一般形式为f(x)=ax^2+bx+c,其中a、b、c是实数且a≠0。

其中x是自变量,f(x)是因变量。

二次函数的图像为抛物线。

二、二次方程的定义二次方程是指形式为ax^2+bx+c=0的方程,其中a、b、c是实数且a≠0。

其中x是未知数。

三、二次函数的图像二次函数的图像是抛物线,其开口的方向由二次项系数a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

抛物线的顶点坐标为(xv, yv),其中xv=-b/2a,yv=f(xv)。

四、二次方程的解对于二次方程ax^2+bx+c=0,可以通过求解得到其根的解。

根的个数和判别式Δ有关,Δ=b^2-4ac。

1. 当Δ>0时,方程有两个不相等的实根。

根的公式为x1=(-b+√Δ)/2a,x2=(-b-√Δ)/2a。

2. 当Δ=0时,方程有两个相等的实根。

根的公式为x=-b/2a。

3. 当Δ<0时,方程没有实根,有两个共轭复根。

根的公式为x1=(-b+i√|Δ|)/2a,x2=(-b-i√|Δ|)/2a。

五、二次函数与二次方程的联系1. 抛物线的顶点坐标:二次函数的解析式中,顶点的横坐标xv=-b/2a对应着二次方程的根的公式中x1和x2的值。

2. 方程的解与函数的零点:二次方程的实根对应着二次函数与x轴(y=0)的交点,也就是函数的零点。

可以通过求解方程获得函数的零点。

3. 方程求解问题:通过建立二次方程解题可以推导出二次函数的性质和特点,例如最值点、单调性等。

六、结论通过上述分析可以看出,二次函数和方程之间存在着密切的关联。

二次函数的图像为抛物线,方程的解对应着函数的零点。

掌握了二次函数和方程的关系,可以更好地理解和应用二次函数和方程在实际问题中的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五讲 二次函数的图像与性质
二次函数2y ax bx c =++图象的画法 1、二次函数的表示方法:
1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,
c bx ax y ++=2
=a b ac a b x a a c a b a b x a b
x a a c x a b x a 44)2()2()2()(222222
-+
+=⎥⎦⎤⎢⎣
⎡+-++=++ 由此可见函数c bx ax y ++=2的图像与函数2
ax y =的图像的形状、开口方向均相同, 只是位置不同,可以通过平移得到。

2、二次函数c bx ax y ++=2
的图像特征
(1)二次函数 c bx ax y ++=2( a ≠0)的图象是一条抛物线; 3、二次函数2y ax bx c =++的性质
1. 当0a >时,抛物线开口向上,对称轴为2b
x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,.
当2b
x a
<-时,y 随x 的增大而减小; 当2b
x a
>-
时,y 随x 的增大而增大; 当2b
x a
=-时,y 有最小值244ac b a -.
2. 当0a <时,抛物线开口向下,对称轴为2b
x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭
,.
当2b
x a
<-时,y 随x 的增大而增大; 当2b
x a
>-
时,y 随x 的增大而减小; 当2b
x a
=-时,y 有最大值244ac b a -.
3. 常数项c
⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;
⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.
例1 已知函数y= x 2 -2x -3 ,
(1)把它写成k m x a y ++=2
)(的形式;
并说明它是由怎样的抛物线经过怎样平移得到的? (2)写出函数图象的对称轴、顶点坐标、开口方向、最值; (3)求出图象与坐标轴的交点坐标; (4)画出函数图象的草图;
( 5 ) 设图像交x 轴于A 、B 两点,交y 轴于P 点,求△APB 的面积; (6)根据图象草图,说出 x 取哪些值时, ① y=0; ② y<0; ③ y>0.
例2、求抛物线2
5
3212-+-=x x y 的对称轴和顶点坐标。

变式:
2、
例3、已知关于x 的二次函数的图像的顶点坐标为(-1,2),且图像过点(1,-3)。

(1)求这个二次函数的解析式;
(2)求这个二次函数的图像与坐标轴的交点坐标。

变式:
二次函数与一元二次方程:
1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):
一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:
① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12
x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离
2214b ac
AB x x a
-=-=
. ② 当0∆=时,图象与x 轴只有一个交点;
③ 当0∆<时,图象与x 轴没有交点.
1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;
3. 二次函数常用解题方法总结:
⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;
⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式; ⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,
b ,
c 的符号判断图象的位置,要数形结合;
⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的
内在联系:
二次函数解析式的表示方法
1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);
2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);
3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 二次函数解析式的确定:
根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式一般来说,有如下几种情况:
1. 已知抛物线上三点的坐标, 一般选用一般式;
2. 已知抛物线顶点或对称轴或最大(小)值, 一般选用顶点式;
3. 已知抛物线与x 轴的两个交点的横坐标, 一般选用两根式;
4. 已知抛物线上纵坐标相同的两点, 常选用顶点式.
例1、抛物线y=x 2
-8x+c 的顶点在x 轴上,则c 等于( )
A .-16
B .-4 C.8 D.16 例2、已知抛物线2
234
y x kx k =+-(k 为常数,且k >0)
.证明:此抛物线与x 轴总有两个交点;
练习1、已知关于x 的二次函数y=2x 2
-(3m+1)x +m (m>1). 证明使y=0的x 的值有两个;
0∆> 抛物线与x 轴有
两个交点
二次三项式的值可正、可零、可负
一元二次方程有两个不相等实根
0∆= 抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 0∆<
抛物线与x 轴无交点
二次三项式的值恒为正 一元二次方程无实数根.
例3、已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m + 4.
探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.
例4、已知:关于x 的函数772
--=x kx y 的图象与x 轴总有交点,k 的取值范围是( )
A 、k >47
B 、k ≥47且k ≠0
C 、k ≥47-
D 、k >4
7
-且k ≠0
练习1、关于x 的一元二次方程02
=--n x x 没有实数根,则抛物线n x x y --=2
的顶
点在( )。

A .第一象限 B.第二象限 C.第三象限 D.第四象限
例5、抛物线2
y x bx c =-++的部分图象如图所示,则方程02
=++-c bx x 的两根

.
练习:二次函数y=ax 2+bx +c (a ≠0)的图像如图所示,根据图像解答下列问题:
(1) 写出方程ax 2+bx +c =0的两个根; (2) 写出不等式ax 2+bx +c >0的解集;
(3) 写出y 随x 的增大而减小的自变量x 的取值范值;
(4) 若方程ax 2+bx +c =k 有两个不相等的实数根,求k 的取什范围。

例7:抛物线m x y x
++=
-22
与X 轴的一个交点是A(3,0)
,另一个交点是B ,且与y 轴交于点C ,
(1)求m 的值;
(2)求点B 的坐标;
1 3 2
2
练习:
课后练习:。

相关文档
最新文档