高考理科数学小题训练
高考理科数学模拟试题精编(一)

高考理科数学模拟试题精编(一)(考试用时:120分钟试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
3.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集Q={x|2x2-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A.3B.4C.7D.82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则1z=()A.i B.-i C.2i D.-2i3.已知等差数列{a n}的公差为5,前n项和为S n,且a1,a2,a5成等比数列,则S6=()A.80 B.85 C.90 D.954.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( )A.34B.23C.12D.135.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是( )6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.⎝⎛⎭⎪⎫1x 2+4x 2+43展开式的常数项为( )A .120B .160C .200D .2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为( )A .3.119B .3.126C .3.132D .3.1519.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f ⎝ ⎛⎭⎪⎫π6|对x ∈R 恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z) C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z) D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z) 10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,直线PF 与曲线C 相交于M ,N 两点,若PF→=3MF →,则|MN |=( ) A.212B.323C .10D .1111.等比数列{a n }的首项为32,公比为-12,前n 项和为S n ,则当n ∈N *时,S n -1S n的最大值与最小值之和为( )A .-23B .-712C.14D.5612.已知函数f (x )=|2x -m |的图象与函数g (x ) 的图象关于y 轴对称,若函数f (x )与函数g (x )在区间[1,2]上同时单调递增或同时单调递减,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,2 B .[2,4] C.⎝ ⎛⎦⎥⎤-∞,12∪[4,+∞)D .[4,+∞)第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知|a |=2,|b |=1,(a -2b )·(2a +b )=9,则|a +b |=________. 14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -3y +5≥02x +y -4≤0y +2≥0,则z =x +y的最小值为________.15.已知F 为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,过原点的直线l 与双曲线交于M ,N 两点,且MF →·NF →=0,△MNF 的面积为ab ,则该双曲线的离心率为________.16.我国古代数学家祖暅提出原理:“幂势既同,则积不容异”.其中“幂”是截面积,“势”是几何体的高.原理的意思是:夹在两个平行平面间的两个几何体,被任一平行于这两个平行平面的平面所截,若所截的两个截面的面积恒相等,则这两个几何体的体积相等.如图所示,在空间直角坐标系xOy 平面内,若函数f (x )=⎩⎨⎧1-x 2,x ∈[-1,0)cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的图象与x 轴围成一个封闭区域A ,将区域A 沿z 轴的正方向上移4个单位,得到几何体如图一,现有一个与之等高的圆柱如图二,其底面积与区域A 相等,则此圆柱的体积为________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值.18.(本小题满分12分)如图,在底面为直角梯形的四棱锥P ABCD 中,AD ∥BC ,∠ABC =90°,AC 与BD 相交于点E ,PA ⊥平面ABCD ,PA =4,AD =2,AB =23,BC =6.(1)求证:BD ⊥平面PAC ; (2)求二面角A PC D 的余弦值.19.(本小题满分12分)某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为13. (1)若出现故障的机器台数为X ,求X 的分布列;(2)该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=43,A ⎝ ⎛⎭⎪⎫3,-132是椭圆上一点. (1)求椭圆C 的标准方程和离心率e 的值;(2)若T 为椭圆C 上异于顶点的任一点,M ,N 分别为椭圆的右顶点和上顶点,直线TM 与y 轴交于点P ,直线TN 与x 轴交于点Q ,求证:|PN |·|QM |为定值.21.(本小题满分12分)已知函数f (x )=12x 2-a ln x (a ∈R).(1)若函数f (x )在x =2处的切线方程为y =x +b ,求a 和b 的值; (2)讨论方程f (x )=0的解的个数,并说明理由.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos αy =t sin α(t 为参数),直线l 与曲线C :⎩⎨⎧x =1cos θy =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x-3|+|x+m|(x∈R).(1)当m=1时,求不等式f(x)≥6的解集;(2)若不等式f(x)≤5的解集不是空集,求参数m的取值范围.高考理科数学模拟试题精编(一)班级:___________姓名:__________得分:___________请在答题区域内答题18.(本小题满分12分)19.(本小题满分12分)详 解 答 案高考理科数学模拟试题精编(一)1.解析:选D.∵Q ={x |0≤x ≤52,x ∈N}={0,1,2},∴满足条件的集合P 有23=8个.2.解析:选A.由题意,得m (m -1)=0且(m -1)≠0,得m =0,所以z =-i ,1z =1-i=i ,故选A.3.解析:选C.由题意,得(a 1+5)2=a 1(a 1+4×5),解得a 1=52,所以S 6=6×52+6×52×5=90,故选C.4.解析:选D.解法一:设“小明上学时到十字路口需要等待的时间不少于20秒”为事件A ,则P (A )=45+5-2040+5+45=13,选D.解法二:设“小明上学时到十字路口需要等待的时间不少于20秒”为事件A ,其对立事件为“小明上学时到十字路口需要等待的时间少于20秒”,则P (A )=1-40+2040+5+45=13,选D.5.解析:选D.由三视图知识可知,选项A ,B ,C 表示同一个三棱锥,选项D 不是该三棱锥的三视图.6.解析:选C.f (x )=ln(x +a 2+x 2)为奇函数⇔f (-x )+f (x )=0⇔ln(x +x 2+a 2)+ln(-x +x 2+a 2)=0⇔ln a 2=0⇔a =±1.7.解析:选B.⎝ ⎛⎭⎪⎫1x 2+4x 2+43=⎝ ⎛⎭⎪⎫1x +2x 6,展开式的通项为T r +1=C r 6·⎝ ⎛⎭⎪⎫1x 6-r ·(2x )r =C r 62r x 2r -6,令2r -6=0,可得r =3,故展开式的常数项为C 3623=160.8.解析:选B.在空间直角坐标系O xyz 中,不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1表示的区域是棱长为1的正方体区域,相应区域的体积为13=1;不等式组⎩⎪⎨⎪⎧0<x <10<y <10<z <1x 2+y 2+z 2<1表示的区域是棱长为1的正方体区域内的18球形区域,相应区域的体积为18×43π×13=π6,因此π6≈5211 000,即π≈3.126,选B.9.解析:选 C.因为f (x )≤|f ⎝ ⎛⎭⎪⎫π6|对x ∈R 恒成立,即⎪⎪⎪⎪⎪⎪f ⎝ ⎛⎭⎪⎫π6=|sin ⎝ ⎛⎭⎪⎫π3+φ|=1,所以φ=k π+π6(k ∈Z).因为f ⎝ ⎛⎭⎪⎫π2>f (π),所以sin(π+φ)>sin(2π+φ)∴-sin φ>sin φ,即sin φ<0,所以φ=-56π+2k π(k∈Z),所以f (x )=sin ⎝ ⎛⎭⎪⎫2x -56π,所以由三角函数的单调性知2x -5π6∈⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z),得x ∈⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z),故选C.10.解析:选B.设M (x M ,y M ),∵PF→=3MF →,∴2-(-2)=3(2-x M ),则2-x M 4=13,∴x M =23,代入抛物线C :y 2=8x ,可得y M =±433,不妨设M ⎝ ⎛⎭⎪⎫23,433,则直线MF 的方程为y =-3(x -2),代入抛物线C :y 2=8x ,可得3x 2-20x +12=0,∴N 的横坐标为6,∴|MN |=23+2+6+2=323.11.解析:选C.依题意得,S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=1-⎝ ⎛⎭⎪⎫-12n .当n 为奇数时,S n =1+12n 随着n 的增大而减小,1<S n =1+12n ≤S 1=32,S n -1S n 随着S n 的增大而减小,0<S n -1S n ≤56;当n 为偶数时,S n =1-12n 随着n 的增大而增大,34=S 2≤S n =1-12n <1,S n -1S n 随着S n 的增大而增大,-712≤S n -1S n <0.因此S n -1S n 的最大值与最小值分别为56、-712,其最大值与最小值之和为56-712=312=14,选C. 12.解析:选A.由题易知当m ≤0时不符合题意,当m >0时,g (x )=|2-x -m |,即g (x )=|⎝ ⎛⎭⎪⎫12x -m |.当f (x )与g (x )在区间[1,2]上同时单调递增时,f (x )=|2x -m |与g (x )=|⎝ ⎛⎭⎪⎫12x -m |的图象如图1或图2所示,易知⎩⎪⎨⎪⎧log 2m ≤1,-log 2m ≤1,解得12≤m ≤2;当f (x )在[1,2]上单调递减时,f (x )=|2x -m |与g (x )=|⎝ ⎛⎭⎪⎫12x -m |的图象如图3所示,由图象知此时g (x )在[1,2]上不可能单调递减.综上所述,12≤m ≤2,即实数m 的取值范围为⎣⎢⎡⎦⎥⎤12,2.13.解析:由|a |=2,|b |=1可得a 2=4,b 2=1,由(a -2b )·(2a +b )=9可得2a 2-3a ·b -2b 2=9,即2×4-3a ·b -2×1=9,得a·b =-1,故|a +b |=a 2+2a ·b +b 2=4-2+1= 3.答案:314.解析:依题意,在坐标平面内画出不等式组表示的平面区域(如图中阴影部分)及直线x +y =0,平移该直线,当平移到经过该平面区域内的点A (-11,-2)时,相应直线在y 轴上的截距达到最小,此时z =x +y 取得最小值,最小值为z min =-11-2=-13.答案:-1315.解析:因为MF→·NF →=0,所以MF →⊥NF →.设双曲线的左焦点为F ′,则由双曲线的对称性知四边形F ′MFN 为矩形,则有|MF |=|NF ′|,|MN |=2c .不妨设点N 在双曲线右支上,由双曲线的定义知,|NF ′|-|NF |=2a ,所以|MF |-|NF |=2a .因为S △MNF =12|MF |·|NF |=ab ,所以|MF ||NF |=2ab .在Rt △MNF 中,|MF |2+|NF |2=|MN |2,即(|MF |-|NF |)2+2|MF ||NF |=|MN |2,所以(2a )2+2·2ab =(2c )2,把c 2=a 2+b 2代入,并整理,得b a =1,所以e =ca =1+⎝ ⎛⎭⎪⎫b a 2= 2.答案:216.解析:区域A 的面积为S =π4+∫π20cos x d x =π4+1,所得图一中的几何体的体积为V =4⎝⎛⎭⎪⎫π4+1=π+4,即圆柱的体积为V 柱=π+4.答案:π+417.解:(1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab ,∵△ABC 的面积等于3,∴12ab sin C =3,∴ab =4,(4分)联立⎩⎪⎨⎪⎧a 2+b 2-ab =4ab =4,解得a =2,b =2.(6分)(2)∵sin C +sin (B -A)=2sin 2A ,∴sin (B +A)+sin (B -A)=4sin A cos A ,∴sin B cos A =2sin A cos A ,(8分) ①当cos A =0时,A =π2;(9分)②当cos A ≠0时,sin B =2sin A ,由正弦定理b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4b =2a,解得a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.(12分)18.解:(1)∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴BD ⊥PA. 又tan ∠ABD =AD AB =33,tan ∠BAC =BCAB = 3.(2分)∴∠ABD =30°,∠BAC =60°,(4分) ∴∠AEB =90°,即BD ⊥AC.又PA ∩AC =A ,∴BD ⊥平面PAC.(6分) (2)建立如图所示的空间直角坐标系Axyz , 则A(0,0,0),B(23,0,0),C(23,6,0),D(0,2,0),P(0,0,4),CD →=(-23,-4,0),PD →=(0,2,-4),BD →=(-23,2,0),设平面PCD 的法向量为n =(x ,y,1),则CD→·n =0,PD →·n =0, ∴⎩⎪⎨⎪⎧-23x -4y =02y -4=0,解得⎩⎨⎧x =-433y =2,∴n =⎝ ⎛⎭⎪⎫-433,2,1.(8分)由(1)知平面PAC 的一个法向量为m =BD →=(-23,2,0),(10分)∴cos 〈m ,n 〉=m·n|m |·|n |=8+4933×4=39331,由题意可知二面角A PC D 为锐二面角, ∴二面角A PC D 的余弦值为39331.(12分)19.解:(1)一台机器运行是否出现故障可看作一次实验,在一次试验中,机器出现故障设为A ,则事件A 的概率为13,该厂有4台机器就相当于4次独立重复试验,因出现故障的机器台数为X ,故X ~B ⎝ ⎛⎭⎪⎫4,13,P (X =0)=C 04⎝ ⎛⎭⎪⎫234=1681,P (X =1)=C 14·13·⎝ ⎛⎭⎪⎫233=3281,P (X =2)=C 24·⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=2481,P (X =3)=C 34·⎝ ⎛⎭⎪⎫133·23=881,P (X =4)=C 44⎝ ⎛⎭⎪⎫134=181.即X 的分布列为:(4分)(5分)(2)设该厂有n 名工人,则“每台机器在任何时刻同时出现故障能及时进行维修”为x ≤n ,即x =0,x =1,…,x =n ,这n +1个互斥事件的和事件,则(6分)∵7281≤90%≤8081, ∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障能及时进行维修的概率不少于90%.(8分)(3)设该厂获利为Y 万元,则Y 的所有可能取值为:18,13,8 P (Y =18)=P (X =0)+P (X =1)+P (X =2)=7281,P (Y =13)=P (X =3)=881,P (Y =8)=P (X =4)=181,(10分)即Y 的分布列为:(11分) 则E (Y )=18×7281+13×881+8×181=1 40881, 故该厂获利的均值为1 40881.(12分) 20.解:(1)解法一:∵|F 1F 2|=43,∴c =23,F 1(-23,0), F 2(23,0).(1分)由椭圆的定义可得2a =(3+23)2+⎝ ⎛⎭⎪⎫-1322+(3-23)2+⎝⎛⎭⎪⎫-1322=1214+254=112+52=8, 解得a =4,∴e =234=32,b 2=16-12=4,(3分) ∴椭圆C 的标准方程为x 216+y 24=1.(5分) 解法二:∵|F 1F 2|=43,∴c =23,椭圆C 的左焦点为F 1(-23,0),故a 2-b 2=12,(2分) 又点A (3,-132)在椭圆x 2a 2+y 2b 2=1上,则3b 2+12+134b 2=1,化简得4b 4+23b 2-156=0,得b 2=4,故a 2=16,∴e =234=32,椭圆C 的标准方程为x 216+y 24=1.(5分) (2)由(1)知M (4,0),N (0,2),设椭圆上任一点T (x 0,y 0)(x 0≠±4且x 0≠0),则x 2016+y 204=1.直线TM :y =y 0x 0-4(x -4),令x =0,得y P =-4y 0x 0-4,(7分)∴|PN |=⎪⎪⎪⎪⎪⎪2+4y 0x 0-4.(8分) 直线TN :y =y 0-2x 0x +2,令y =0,得x Q =-2x 0y 0-2,∴|QM |=⎪⎪⎪⎪⎪⎪4+2x 0y 0-2.(10分)|PN |·|QM |=⎪⎪⎪⎪⎪⎪2+4y 0x 0-4·⎪⎪⎪⎪⎪⎪4+2x 0y 0-2 =⎪⎪⎪⎪⎪⎪2x 0+4y 0-8x 0-4·⎪⎪⎪⎪⎪⎪2x 0+4y 0-8y 0-2 =4⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-8x 0-16y 0+16x 0y 0-2x 0-4y 0+8,由x 2016+y 204=1可得x 20+4y 20=16,代入上式得|PN |·|QM |=16,故|PN |·|QM |为定值.(12分)21.解:(1)因为f ′(x )=x -ax (x >0),又f (x )在x =2处的切线方程为y =x +b ,所以f (2)=2-a ln 2=2+b ,f ′(2)=2-a2=1,解得a=2,b =-2ln 2.(2分)(2)当a =0时,f (x )在定义域(0,+∞)内恒大于0,此时方程无解.(4分)当a <0时,f ′(x )=x -ax >0在区间(0,+∞)内恒成立,所以f (x )在定义域内为增函数.因为f (1)=12>0,f ⎝ ⎛⎭⎪⎫e 1a =12e 2a -1<0,所以方程有唯一解.(6分)当a >0时,f ′(x )=x 2-ax .当x ∈(0,a )时,f ′(x )<0,f (x )在区间(0,a )内为减函数,当x ∈(a ,+∞)时,f ′(x )>0,f (x )在区间(a ,+∞)内为增函数,所以当x =a 时,取得最小值f (a )=12a (1-ln a ).(8分)当a ∈(0,e)时,f (a )=12a (1-ln a )>0,方程无解;(9分) 当a =e 时,f (a )=12a (1-ln a )=0,方程有唯一解;(10分) 当a ∈(e ,+∞)时,f (a )=12a (1-ln a )<0,因为f (1)=12>0,且a >1,所以方程f (x )=0在区间(0,a )内有唯一解,当x >1时,设g (x )=x -ln x ,g ′(x )=1-1x >0,所以g (x )在区间(1,+∞)内为增函数,又g (1)=1,所以x -ln x >0,即ln x <x ,故f (x )=12x 2-a ln x >12x 2-ax .因为2a >a >1,所以f (2a )>12(2a )2-2a 2=0. 所以方程f (x )=0在区间(a ,+∞)内有唯一解,所以方程f (x )=0在区间(0,+∞)内有两解,综上所述,当a ∈[0,e)时,方程无解,当a <0或a =e 时,方程有唯一解,当a >e 时,方程有两解.(12分)22.解:(1)由曲线C :⎩⎨⎧ x =1cos θy =tan θ(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.(2分) 当α=π3时,直线l 的参数方程为⎩⎨⎧ x =3+12t y =32t (t 为参数),代入曲线C 的普通方程,得t 2-6t -16=0,(3分)得t 1+t 2=6,所以线段AB 的中点对应的t =t 1+t 22=3,故线段AB 的中点的直角坐标为⎝ ⎛⎭⎪⎫92,332.(5分)(2)将直线l 的参数方程代入曲线C 的普通方程,化简得 (cos 2α-sin 2α)t 2+6cos αt +8=0,(7分)则|PA |·|PB |=|t 1t 2|=⎪⎪⎪⎪⎪⎪8cos 2α-sin 2α=⎪⎪⎪⎪⎪⎪8(1+tan 2α)1-tan 2α,(9分)由已知得tan α=2,故|PA |·|PB |=403.(10分)23.解:(1)当m =1时,f (x )≥6等价于⎩⎪⎨⎪⎧x ≤-1-(x +1)-(x -3)≥6,或⎩⎪⎨⎪⎧ -1<x <3(x +1)-(x -3)≥6,或⎩⎪⎨⎪⎧ x ≥3(x +1)+(x -3)≥6,(3分)解得x ≤-2或x ≥4,所以不等式f (x )≥6的解集为{x |x ≤-2或x ≥4}.(5分)(2)解法一:化简f (x )得,当-m ≤3时,f (x )=⎩⎪⎨⎪⎧ -2x +3-m ,x ≤-mm +3,-m <x <32x +m -3,x ≥3,(6分)当-m >3时,f (x )=⎩⎪⎨⎪⎧-2x +3-m ,x ≤3-3-m ,3<x <-m ,2x +m -3,x ≥-m (7分)根据题意得:⎩⎪⎨⎪⎧ -m ≤3m +3≤5,即-3≤m ≤2,(8分)或⎩⎪⎨⎪⎧ -m >3-m -3≤5,即-8≤m <-3,(9分)∴参数m的取值范围为{m|-8≤m≤2}.(10分)解法二:∵|x-3|+|x+m|≥|(x-3)-(x+m)|=|m+3|,∴f(x)min =|3+m|,(7分)∴|m+3|≤5,(8分)∴-8≤m≤2,∴参数m的取值范围为{m|-8≤m≤2}.(10分)。
高考数学理科模拟试卷及答案

高考数学理科模拟试卷及答案迎战高考,十年寒窗,今日出招。
早睡早起休息好,餐餐养分搭配好,生冷零食远离好,考试用具预备好,有备而战发挥好。
祝高考顺当,金榜题名!下面就是我给大家带来的高考数学理科模拟试卷及答案,盼望大家喜爱!第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项符合题目要求。
1.设全集,集合,则()A.{2,4}B.{2,4,6}C.{0,2,4}D.{0,2,4,6}2.若复数是纯虚数,则实数()A.±1B.C.0D.13.已知为等比数列,若,则()A.10B.20C.60D.1004.设点是线段BC的中点,点A在直线BC外,,则()A.2B.4C.6D.85.右图的算法中,若输入A=192,B=22,输出的是()A.0B.2C.4D.66.给出命题p:直线相互平行的充要条件是;命题q:若平面内不共线的三点到平面的距离相等,则∥。
对以上两个命题,下列结论中正确的是()A.命题“p且q”为真B.命题“p或q”为假C.命题“p且┓q”为假D.命题“p且┓q”为真7.若关于的不等式组表示的区域为三角形,则实数的取值范围是()A.(-∞,1)B.(0,1)C.(-1,1)D.(1,+∞)8.把五个标号为1到5的小球全部放入标号为1到4的四个盒子中,不许有空盒且任意一个小球都不能放入标有相同标号的盒子中,则不同的(方法)有()A.36种B.45种C.54种D.84种9.设偶函数的部分图像如图所示,为等腰直角三角形,∠=90°,||=1,则的值为()A.B.C.D.10.已知点,动圆C与直线切于点B,过与圆C相切的两直线相交于点P,则P点的轨迹方程为()A.B.C.D.11.函数有且只有两个不同的零点,则b的值为()A.B.C.D.不确定12.已知三边长分别为4、5、6的△ABC的外接圆恰好是球的一个大圆,P为球面上一点,若点P到△ABC的三个顶点的距离相等,则三棱锥P-ABC的体积为()A.5B.10C.20D.30第Ⅱ卷二、填空题:本大题共4小题,每小题5分。
高考理科数学专题练习十四《计数原理》

专题十四计数原理考点45:排列与组合(1-6题,13,14题,17-19题)考点46:二项式定理(7-12题,15,16题,20-22题)考试时间:120分钟满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1、考点45 中难某校高三年级共有6个班,现在安排6名教师担任某次模拟考试的监考工作,每名教师监考一个班级.在6名教师中,甲为其中2个班的任课教师,乙为剩下4个班中2个班的任课教师,其余4名教师均不是这6个班的任课教师,那么监考教师都不担任自己所教班的监考工作的概率为( )A.715B.815C.115D.4152、考点45 中难某单位周一至周六要安排甲、乙、丙、丁四人值班,每人至少值一天班,则甲至少值两天班的概率为( )A. 11 26B. 9 26C. 11 52D. 9 523、考点45 中难某同学有7本不同的书,其中语文书2本、英语书2本、数学书3本,现在该同学把这7本书放到书架上排成一排,要求2本语文书相邻、2本英语书相邻、3本数学书中任意2本不相邻,则不同的排法种数为( )A.12B.24C.48D.7204、考点45 中难一个停车场有5个排成一排的空车位,现有2辆不同的车停进这个停车场,若停好后恰有2个相邻的停车位空着,则不同的停车方法共有( )种 A.6B.12C.36D.725、考点45 中难某种植基地将编号分别为1,2,3,4,5,6的六个不同品种的马铃薯种在如图所示的这六块实验田上进行对比试验,要求这六块实验田分别种植不同品种的马铃薯,若种植时要求编号1,3,5的三个品种的马铃薯中至少有两个相邻,且2号品种的马铃薯不能种植在A 、F 这两块实验田上,则不同的种植方法有 ( )A.360种B.432种C.456种D.480种 6、考点45 难2017年11月30日至12月2日,来自北京、上海、西安、郑州、青岛及凯里等七所联盟学校(“全国理工联盟”)及凯里当地高中学校教师代表齐聚凯里某校举行联盟教研活动,在数学同课异构活动中,7名数学教师各上一节公开课,教师甲不能上第三节课,教师乙不能上第六节课,则7名教师上课的不同排法有 种( )A.5040B.4800C.3720D.4920 7、考点46 易24)(121()x x ++的展开式中3x 的系数为( )A .12B .16C .20D .248、考点46 易 已知1021001210(1)(1)(1)(1)x a a x a x a x +=+-+-++-L ,则=8a ( )A.-180B.180C.45D.-45 9、考点46 易9(23)x y -的展开式中各项的二项式系数之和为( )A .-1B .1C .-512D .51210、考点46 中难已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( ) A.-4B.-3C.-2D.-111、考点46 中难在二项式1121x x ⎛⎫- ⎪⎝⎭的展开式中,系数最大的项为( )A.第五项B.第六项C.第七项D.第六项或第七项 12、考点46 中难332除以9的余数是( )A.1B.2C.4D.8第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分。
(完整word版)高考理科数学小题训练.docx

高三理科数学选择、填空训练题(1)一.选择题:本大题共12 小题,每小题 5 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
( 1)若复数z 满足iz 1 2i ,其中 i 为虚数单位,则在复平面上复数z 对应的点的坐标为()( A )( 2, 1)(B)(2,1)(C)(2,1)(D)(2, 1)( 2)已知全集U R ,集合A x 0 2x 1 , B x log3 x 0 ,则A I C U B()( A)x x 0(B)x x 0(C)x 0 x 1(D)x x1( 3)如图,在正方形ABCD 中,点 E 是 DC 的中点,点 F 是 BC 的一个三等分点,那么 EF =()( A )1AB1AD( B)23( C)1 uuur1 uuur( D)AB AD321 uuur1 uuurAB AD421 uuur2 uuurAB AD23( 4)已知a n为等比数列, a4a7 2 , a5a68 ,则 a1 a10()( A)7( B)7( C)5( D)5( 5)已知随机变量服从正态分布 N (1,1),若 P(3) 0.977 ,则 P( 13)()( A)0.683( B)0.853( C)0.954( D)0.977( 6)已知双曲线x2y21(a0,b 0) 的一个焦点到一条渐近线的距离为2a2b2c (c为双曲线的半焦3距),则双曲线的离心率为()( A)7( B)3 7(C)3 7( D)3 7 327( 7)设S n是等差数列{ a n}的前n项和,若a69S11=()a5,则S911( A)1( B)1( C)2(D)1 2( 8)如图给出了计算1 1 1 1 24 L L的值的程序框图,660其中①②分别是()( A ) i 30 , n n 2 ( B ) i 30 , n n 2 ( C ) i30 , n n 2( D ) i30 , n n 1( 9 )已知函数 f ( x) sin( x )( 0,0) 的最小正周期是,将函数f (x) 图象向左平移个单位长度后所得的函数图象过点P(0,1) ,则函数3 f ( x) sin( x) ()( A )在区间 [, ] 6 3( C )在区间 [, ]3 6上单调递减 (B )在区间上单调递减 ( D )在区间[, ] 上单调递增 6 3[, ] 上单调递增 3 61 n( 10) 若 x 6的展开式中含有常数项,则 n的最小值等于 ()x x( A ) 3( B ) 4 ( C ) 5 ( D ) 6( 11)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几3何体的()1 13正视图 ( A )外接球的半径为(B )表面积为73 13( C )体积为3( D )外接球的表面积为 4俯视图( 12)已知定义在R 上的函数 y f ( x) 满足:函数 yf (x 1) 的图象关于直线 x 1 对称,且当x (,0),f (x) xf '( x)0 成立 ( f '( x) 是函数 f ( x) 的导函数 ), 若 a(sin 1) f (sin 1) ,22b (ln2) f (ln 2) ,c 2 f (log 211) ,则 a, b, c 的大小关系是()4( A ) a b c( B ) b a c( C ) c a b( D ) a c b二.填空题:本大题共4小题,每小题5分。
高考数学(理科)模拟试题含答案(一)精编版

高考数学(理科)模拟试题含答案(一)精编版高考理科数学模拟试题精编(一)注意事项:1.作答选择题时,在答题卡上涂黑对应选项的答案信息点。
如需改动,先擦干净再涂其他答案。
不得在试卷上作答。
2.非选择题用黑色钢笔或签字笔作答,写在答题卡指定区域内。
如需改动,先划掉原答案再写新答案。
不得用铅笔或涂改液。
不按要求作答无效。
3.答题卡需整洁无误。
考试结束后,交回试卷和答题卡。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
)1.设全集Q={x|2x²-5x≤0,x∈N},且P⊆Q,则满足条件的集合P的个数是()A。
3B。
4C。
7D。
82.若复数z=m(m-1)+(m-1)i是纯虚数,其中m是实数,则z=()A。
iB。
-iC。
2iD。
-2i3.已知等差数列{an}的公差为5,前n项和为Sn,且a1,a2,a5成等比数列,则S6=()A。
80B。
85C。
90D。
954.XXX每天上学都需要经过一个有交通信号灯的十字路口。
已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒。
如果XXX每天到路口的时间是随机的,则XXX上学时到十字路口需要等待的时间不少于20秒的概率是()A。
4/5B。
3/4C。
2/3D。
3/56.已知p:a=±1,q:函数f(x)=ln(x+a²+x²)为奇函数,则p 是q成立的()A。
充分不必要条件B。
必要不充分条件C。
充分必要条件D。
既不充分也不必要条件7.(省略了一个选项) 327.(1+x²+4x)²的常数项为()A。
120B。
160C。
200D。
2408.我们可以用随机模拟的方法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数),若输出的结果为521,则由此可估计π的近似值为()A。
3.119B。
高考考前小题冲刺训练(理科数学)七

,-33'
0-&#
!-#35
1-3'
! " &&!若函数3!$"*:;6$.*$627$%$# +'%' 存在
零点%则实数*的取值范围是 ,-!$%./" 0-!&%./" !-!+/%+&" 1-!+/%$"
&'!如图所示%已知椭圆 -#$*'' .)%'' *&!*')'$"%:>#
$'.%'*)'%点 "$+ 分别是椭圆- 的左顶点和左焦
点%点
(
是:>
上的动点%且"(""为定值%则椭 "(+"
圆
-
的离心率为
&(!如图所示%半径为&的球内切于正三棱锥 (+"#中%则此正三棱锥体积的最小值为!!!!!
&#!/"#- 中%角"$#$- 所对的边分别为*$)$@%下列命
题正确的是!!!!!写出正确命题的编号"!
,-槡''+&
0-槡3'+&
!-&'
小题冲刺训练!七"
!时量##$分钟!!满分#%$分"
班级
!!姓名
!!学号
一$选择题!本题共&'小题%每小题(分%在每小题给出
的四个选项中%只有一项是符合题目要求的!"
&!已知集合 <*&$"$2&'%6*&$"'$'&'%则 <&6*
高考理科数学小题专题练习 (5)

横坐标缩短到原来的
1 2
倍,纵坐标不变,得到函数y=sin
2x+π2
的图象,再把所得函数的图象向左平移
π 12
个单位长度,可得函
数y=sin2x+1π2+π2=sin2x+23π的图象,即曲线C2.故选D.
第13页
6.(2019·广东省韶关市高考模拟)已知函数 f(x)=sinωx+π6
得tanθ=34或43.故选D.
第21页
10.(2019·安徽淮南一模)设α∈ 0,π2 ,β∈ 0,π4 ,且tanα=
1+cossi2nβ2β,则下列结论中正确的是(
)
A.α-β=π4
B.α+β=π4
C.2α-β=π4
D.2α+β=π4
第22页
答案 A
解析
tanα=
1+sin2β cos2β
=
(sinβ+cosβ)2 cos2β-sin2β
=
cosβ+sinβ cosβ-sinβ
=
1+tanβ 1-tanβ
=tan
β+π4
.因为α∈
0,π2
,β+
π 4
∈
π4,π2
,所以α=β+
π4,即α-β=π4.故选A.
第23页
11.(2019·山西晋城一模)已知函数f(x)=2sin ωx+π3 的图象的
一个对称中心为π3,0,其中ω为常数,且ω∈(1,3).若对任意的
实数x,总有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是( )
π
A.1
B.2
C.2
D.π
第24页
答案 B
解析 因为函数f(x)=2sin ωx+π3 的图象的一个对称中心为
高考理科数学模拟试卷测试

高考理科数学模拟试卷测试第1卷一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.23.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.16.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.57.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.7209.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+610.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)第2卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n= .15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的.)1.(5分)(2018•衡中模拟)已知集合A={x|x2<1},B={y|y=|x|},则A∩B=()A.∅B.(0,1)C.[0,1)D.[0,1]【解答】解:A={x|x2<1}={x|﹣1<x<1},B={y|y=|x|≥0},则A∩B=[0,1),故选:C.2.(5分)(2018•衡中模拟)设随机变量ξ~N(3,σ2),若P(ξ>4)=0.2,则P(3<ξ≤4)=()A.0.8 B.0.4 C.0.3 D.0.2【解答】解:∵随机变量X服从正态分布N(3,σ2),∴μ=3,得对称轴是x=3.∵P(ξ>4)=0.2∴P(3<ξ≤4)=0.5﹣0.2=0.3.故选:C3.(5分)(2018•衡中模拟)已知复数z=(i为虚数单位),则3=()A.1 B.﹣1 C.D.【解答】解:复数z=,可得=﹣=cos+isin.则3=cos4π+isin4π=1.故选:A.4.(5分)(2018•衡中模拟)过双曲线﹣=1(a>0,b>0)的一个焦点F作两渐近线的垂线,垂足分别为P、Q,若∠PFQ=π,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:如图若∠PFQ=π,则由对称性得∠QFO=,则∠QOx=,即OQ的斜率k==tan=,则双曲线渐近线的方程为y=±x,故选:B5.(5分)(2018•衡中模拟)将半径为1的圆分割成面积之比为1:2:3的三个扇形作为三个圆锥的侧面,设这三个圆锥底面半径依次为r1,r2,r3,那么r1+r2+r3的值为()A.B.2 C.D.1【解答】解:∵2πr1=,∴r1=,同理,∴r1+r2+r3=1,故选:D.6.(5分)(2018•衡中模拟)如图是某算法的程序框图,则程序运行后输出的结果是()A.2 B.3 C.4 D.5【解答】解:第一次循环,sin>sin0,即1>0成立,a=1,T=1,k=2,k<6成立,第二次循环,sinπ>sin,即0>1不成立,a=0,T=1,k=3,k<6成立,第三次循环,sin>sinπ,即﹣1>0不成立,a=0,T=1,k=4,k<6成立,第四次循环,sin2π>sin,即0>﹣1成立,a=1,T=1+1=2,k=5,k<6成立,第五次循环,sin>sin2π,即1>0成立,a=1,T=2+1=3,k=6,k<6不成立,输出T=3,故选:B7.(5分)(2018•衡中模拟)等差数列{a n}中,a3=7,a5=11,若b n=,则数列{b n}的前8项和为()A.B.C.D.【解答】解:设等差数列{a n}的公差为d,a3=7,a5=11,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1,∴,∴b8=(1﹣+﹣+…+﹣)=(1﹣)=故选B.8.(5分)(2018•衡中模拟)已知(x﹣3)10=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10,则a8=()A.45 B.180 C.﹣180 D.720【解答】解:(x﹣3)10=[(x+1)﹣4]10,∴,故选:D.9.(5分)(2018•衡中模拟)如图为三棱锥S﹣ABC的三视图,其表面积为()A.16 B.8+6C.16D.16+6【解答】解:由三视图可知该三棱锥为边长为2,4,4的长方体切去四个小棱锥得到的几何体.三棱锥的三条边长分别为,∴表面积为4×=16.故选:C.10.(5分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0)的左焦点F(﹣3,0),P 为椭圆上一动点,椭圆内部点M(﹣1,3)满足PF+PM的最大值为17,则椭圆的离心率为()A.B.C.D.【解答】解:设右焦点为Q,由F(﹣3,0),可得Q(3,0),由椭圆的定义可得|PF|+|PQ|=2a,即|PF|=2a﹣|PQ|,则|PM|+|PF|=2a+(|PM|﹣|PQ|)≤2a+|MQ|,当P,M,Q共线时,取得等号,即最大值2a+|MQ|,由|MQ|==5,可得2a+5=17,所以a=6,则e===,故选:A.11.(5分)(2018•衡中模拟)已知f(x)=,若函数y=f(x)﹣kx恒有一个零点,则k的取值范围为()A.k≤0 B.k≤0或k≥1 C.k≤0或k≥e D.k≤0或k≥【解答】解:由y=f(x)﹣kx=0得f(x)=kx,作出函数f(x)和y=kx的图象如图,由图象知当k≤0时,函数f(x)和y=kx恒有一个交点,当x≥0时,函数f(x)=ln(x+1)的导数f′(x)=,则f′(0)=1,当x<0时,函数f(x)=e x﹣1的导数f′(x)=e x,则f′(0)=e0=1,即当k=1时,y=x是函数f(x)的切线,则当0<k<1时,函数f(x)和y=kx有3个交点,不满足条件.当k≥1时,函数f(x)和y=kx有1个交点,满足条件.综上k的取值范围为k≤0或k≥1,故选:B.12.(5分)(2018•衡中模拟)已知数列{a n}的通项公式为a n=﹣2n+p,数列{b n}的通项公式为b n=2n﹣4,设c n=,若在数列{c n}中c6<c n(n∈N*,n≠6),则p的取值范围()A.(11,25)B.(12,22)C.(12,17)D.(14,20)【解答】解:∵a n﹣b n=﹣2n+p﹣2n﹣4,∴a n﹣b n随着n变大而变小,又∵a n=﹣2n+p随着n变大而变小,b n=2n﹣4随着n变大而变大,∴,(1)当(2)当,综上p∈(14,20),故选D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.(5分)(2018•衡中模拟)若平面向量、满足||=2||=2,|﹣|=,则在上的投影为﹣1 .【解答】解:根据条件,==7;∴;∴在上的投影为.故答案为:﹣1.14.(5分)(2018•衡中模拟)若数列{a n}满足a1=a2=1,a n+2=,则数列{a n}前2n项和S2n= 2n+n2﹣1 .【解答】解:∵数列{a n}满足a1=a2=1,a n+2=,∴n=2k﹣1时,a2k+1﹣a2k﹣1=2,为等差数列;n=2k时,a2k+2=2a2k,为等比数列.∴.故答案为:2n+n2﹣1.15.(5分)(2018•衡中模拟)若直线ax+(a﹣2)y+4﹣a=0把区域分成面积相等的两部分,则的最大值为 2 .【解答】解:由ax+(a﹣2)y+4﹣a=0得a(x+y﹣1)+4﹣2y=0,则得,即直线恒过C(﹣1,2),若将区域分成面积相等的两部分,则直线过AB的中点D,由得,即A(1,6),∵B(3,0),∴中点D(2,3),代入a(x+y﹣1)+4﹣2y=0,得4a﹣2=0,则,则的几何意义是区域内的点到点(﹣2,0)的斜率,由图象过AC的斜率最大,此时最大值为2.故答案为:2.16.(5分)(2018•衡中模拟)已知函数f(x)=(a+1)lnx+x2(a<﹣1)对任意的x1、x2>0,恒有|f(x1)﹣f(x2)|≥4|x1﹣x2|,则a的取值范围为(﹣∞,﹣2] .【解答】解:由f′(x)=+x,得f′(1)=3a+1,所以f(x)=(a+1)lnx+ax2,(a<﹣1)在(0,+∞)单调递减,不妨设0<x1<x2,则f(x1)﹣f(x2)≥4x2﹣4x1,即f(x1)+4x1≥f(x2)+4x2,令F(x)=f(x)+4x,F′(x)=f′(x)+4=+2ax+4,等价于F(x)在(0,+∞)上单调递减,故F'(x)≤0恒成立,即+2ax+4≤0,所以恒成立,得a≤﹣2.故答案为:(﹣∞,﹣2].三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2018•衡中模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0(1)求C的大小;(2)求a2+b2的最大值,并求取得最大值时角A,B的值.【解答】解:(1)cosBsinC+(a﹣sinB)cos(A+B)=0可得:cosBsinC﹣(a﹣sinB)cosC=0即:sinA﹣acosC=0.由正弦定理可知:,∴,c=1,∴asinC﹣acosC=0,sinC﹣cosC=0,可得sin(C﹣)=0,C是三角形内角,∴C=.(2)由余弦定理可知:c2=a2+b2﹣2abcosC,得1=a2+b2﹣ab又,∴,即:.当时,a2+b2取到最大值为2+.18.(12分)(2018•衡中模拟)如图,在四棱锥P﹣ABCD中,侧棱PA⊥底面ABCD,AD∥BC,∠ABC=90°,PA=AB=BC=2,AD=1,M是棱PB中点.(Ⅰ)求证:平面PBC⊥平面PCD;(Ⅱ)设点N是线段CD上一动点,且=λ,当直线MN与平面PAB所成的角最大时,求λ的值.【解答】证明:(1)取PC的中点E,则连接DE,∵ME是△PBC的中位线,∴ME,又AD,∴ME AD,∴四边形AMED是平行四边形,∴AM∥DE.∵PA=AB,M是PB的中点,∴AM⊥PB,∵PA⊥平面ABCD,BC⊂平面ABCD,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,∵AM⊂平面PAB,∴BC⊥AM,又PB⊂平面PBC,BC⊂平面PBC,PB∩BC=B,∴AM⊥平面PBC,∵AM∥DE,∴DE⊥平面PBC,又DE⊂平面PCD,∴平面PBC⊥平面PCD.(2)以A为原点,以AD,AB,AP为坐标轴建立空间直角坐标系,如图所示:则A(0,0,0),B(0,2,0),M(0,1,1),P(0,0,2),C(2,2,0),D(1,0,0).∴=(1,2,0),=(0,1,1),=(1,0,0),∴=λ=(λ,2λ,0),=(λ+1,2λ,0),==(λ+1,2λ﹣1,﹣1).∵AD⊥平面PAB,∴为平面PAB的一个法向量,∴cos<>=====设MN与平面PAB所成的角为θ,则sinθ=.∴当即时,sinθ取得最大值,∴MN与平面PAB所成的角最大时.19.(12分)(2018•衡中模拟)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ.(Ⅰ)求x<2且y>1的概率;(Ⅱ)求随机变量ξ的分布列与数学期望.【解答】解:(1)记转盘A指针指向1,2,3区域的事件为A1,A2,A3,同理转盘B指针指向1,2,3区域的事件为B1,B2,B3,∴P(A1)=,P(A2)=,P(A3)=,P(B1)=,P(B2)=,P(B3)=,P=P(A1)P(1﹣P(B1))=×(1﹣)==.…(5分)(2)由已知得ξ的可能取值为2,3,4,5,6,P(ξ=2)=P(A1)P(B1)===,P(ξ=3)=P(A1)P(B2)+P(A2)P(B1)==,P(ξ=4)=P(A1)P(B3)+P(A2)P(B2)+P(A3)P(B1)==,P(ξ=5)=P(A2)P(B3)+P(A3)P(B2)=+=,P(ξ=6)=P(A3)P(B3)==,∴ξ的分布列为:ξ 2 3 4 5 6PEξ==.…(12分)20.(12分)(2018•衡中模拟)已知椭圆E:+=1(a>b>0),倾斜角为45°的直线与椭圆相交于M、N两点,且线段MN的中点为(﹣1,).过椭圆E内一点P(1,)的两条直线分别与椭圆交于点A、C和B、D,且满足=λ,=λ,其中λ为实数.当直线AP平行于x轴时,对应的λ=.(Ⅰ)求椭圆E的方程;(Ⅱ)当λ变化时,k AB是否为定值?若是,请求出此定值;若不是,请说明理由.【解答】解:(Ⅰ)设M(m1,n1)、N(m2,n2),则,两式相减,故a2=3b2…(2分)当直线AP平行于x轴时,设|AC|=2d,∵,,则,解得,故点A(或C)的坐标为.代入椭圆方程,得…4分a2=3,b2=1,所以方程为…(6分)(Ⅱ)设A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4)由于,可得A(x1,y1)、B(x2,y2)、C(x3,y3)、D(x4,y4),…①同理可得…②…(8分)由①②得:…③将点A、B的坐标代入椭圆方程得,两式相减得(x1+x2)(x1﹣x2)+3(y1+y2)(y1﹣y2)=0,于是3(y1+y2)k AB=﹣(x1+x2)…④同理可得:3(y3+y4)k CD=﹣(x3+x4),…(10分)于是3(y3+y4)k AB=﹣(x3+x4)(∵AB∥CD,∴k AB=k CD)所以3λ(y3+y4)k AB=﹣λ(x3+x4)…⑤由④⑤两式相加得到:3[y1+y2+λ(y3+y4)]k AB=﹣[(x1+x2)+λ(x3+x4)]把③代入上式得3(1+λ)k AB=﹣2(1+λ),解得:,当λ变化时,k AB为定值,.…(12分)21.(12分)(2018•衡中模拟)已知函数f(x)=,曲线y=f(x)在点x=e2处的切线与直线x﹣2y+e=0平行.(Ⅰ)若函数g(x)=f(x)﹣ax在(1,+∞)上是减函数,求实数a的最小值;(Ⅱ)若函数F(x)=f(x)﹣无零点,求k的取值范围.【解答】解:(Ⅰ)由,得,解得m=2,故,则,函数g(x)的定义域为(0,1)∪(1,+∞),而,又函数g(x)在(1,+∞)上是减函数,∴在(1,+∞)上恒成立,∴当x∈(1,+∞)时,的最大值.而,即右边的最大值为,∴,故实数a的最小值;(Ⅱ)由题可得,且定义域为(0,1)∪(1,+∞),要使函数F(x)无零点,即在(0,1)∪(1,+∞)内无解,亦即在(0,1)∪(1,+∞)内无解.构造函数,则,(1)当k≤0时,h'(x)<0在(0,1)∪(1,+∞)内恒成立,∴函数h(x)在(0,1)内单调递减,在(1,+∞)内也单调递减.又h(1)=0,∴当x∈(0,1)时,h(x)>0,即函数h(x)在(0,1)内无零点,同理,当x∈(1,+∞)时,h(x)<0,即函数h(x)在(1,+∞)内无零点,故k≤0满足条件;(2)当k>0时,.①若0<k<2,则函数h(x)在(0,1)内单调递减,在内也单调递减,在内单调递增.又h(1)=0,∴h(x)在(0,1)内无零点;又,而,故在内有一个零点,∴0<k<2不满足条件;②若k=2,则函数h(x)在(0,1)内单调递减,在(1,+∞)内单调递增.又h(1)=0,∴当x∈(0,1)∪(1,+∞)时,h(x)>0恒成立,故无零点.∴k=2满足条件;③若k>2,则函数h(x)在内单调递减,在内单调递增,在(1,+∞)内也单调递增.又h(1)=0,∴在及(1,+∞)内均无零点.易知,又h(e﹣k)=k×(﹣k)﹣2+2e k=2e k﹣k2﹣2=ϕ(k),则ϕ'(k)=2(e k﹣k)>0,则ϕ(k)在k>2为增函数,∴ϕ(k)>ϕ(2)=2e2﹣6>0.故函数h(x)在内有一零点,k>2不满足.综上:k≤0或k=2.[选修4-1:几何证明选讲]22.(10分)(2018•衡中模拟)如图所示,AC为⊙O的直径,D为的中点,E为BC的中点.(Ⅰ)求证:DE∥AB;(Ⅱ)求证:AC•BC=2AD•CD.【解答】证明:(Ⅰ)连接BD,因为D为的中点,所以BD=DC.因为E为BC的中点,所以DE⊥BC.因为AC为圆的直径,所以∠ABC=90°,所以AB∥DE.…(5分)(Ⅱ)因为D为的中点,所以∠BAD=∠DAC,又∠BAD=∠DCB,则∠DAC=∠DCB.又因为AD⊥DC,DE⊥CE,所以△DAC∽△ECD.所以=,AD•CD=AC•CE,2AD•CD=AC•2CE,因此2AD•CD=AC•BC.…(10分)[选修4-4:坐标系与参数方程]23.(2018•衡中模拟)在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.【解答】解:(1)由曲线C的极坐标方程为ρ=得ρ2sin2θ=2ρcosθ.∴由曲线C的直角坐标方程是:y2=2x.由直线l的参数方程为(t为参数),得t=3+y代入x=1+t中消去t得:x﹣y﹣4=0,所以直线l的普通方程为:x﹣y﹣4=0…(5分)(2)将直线l的参数方程代入曲线C的普通方程y2=2x,得t2﹣8t+7=0,设A,B两点对应的参数分别为t1,t2,所以|AB|===,因为原点到直线x﹣y﹣4=0的距离d=,所以△AOB的面积是|AB|d==12.…(10分)[选修4-5:不等式选讲]24.(2018•衡中模拟)已知函数f(x)=|x﹣l|+|x﹣3|.(I)解不等式f(x)≤6;(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,求实数a的取值范围.【解答】解:函数f(x)=|x﹣l|+|x﹣3|=的图象如图所示,(I)不等式f(x)≤6,即①或②,或③.解①求得x∈∅,解②求得3<x≤5,解③求得﹣1≤x≤3.综上可得,原不等式的解集为[﹣1,5].(Ⅱ)若不等式f(x)≥ax﹣1对任意x∈R恒成立,则函数f(x)的图象不能在y=ax﹣1的图象的下方.如图所示:由于图中两题射线的斜率分别为﹣2,2,点B(3,2),∴3a﹣1≤2,且 a≥﹣2,求得﹣2≤a≤1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三理科数学选择、填空训练题(1)一.选择题:本大题共12小题,每小题5分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
(1)若复数z 满足i iz 21+=,其中i 为虚数单位,则在复平面上复数z 对应的点的坐标为( ) (A ))1,2(-- (B ))1,2(- (C ))1,2( (D ))1,2(- (2)已知全集U R =,集合{}021xA x =<<,{}3log 0B x x =>,则()UAC B =( )(A ){}0x x < (B ){}0x x > (C ){}01x x << (D ){}1x x > (3)如图,在正方形ABCD 中,点E 是DC 的中点,点F 是BC 的一个三等分点,那么EF =( ) (A )AD AB 3121- (B )1142AB AD + (C )1132AB AD + (D )1223AB AD - (4)已知{}n a 为等比数列,472a a +=,568a a ⋅=-,则110a a +=( ) (A )7 (B )7- (C )5- (D )5 (5)已知随机变量ξ服从正态分布(1,1)N ,若(3)0.977P ξ<=,则(13)P ξ-<<=( )(A )0.683 (B )0.853 (C )0.954 (D )0.977(6)已知双曲线22221(0,0)x y a b a b-=>>的一个焦点到一条渐近线的距离为2c (c 为双曲线的半焦距),则双曲线的离心率为( ) (A )37 (B )273 (C )73 (D )773 (7)设n S 是等差数列{}n a 的前n 项和,若65911a a =,则119SS =( ) (A )1 (B )1- (C )2(D )123111正视图侧视图俯视图(8)如图给出了计算111124660++++的值的程序框图, 其中①②分别是( )(A )30i <,2n n =+ (B )30i =,2n n =+ (C )30i >,2n n =+ (D )30i >,1n n =+(9)已知函数()sin()(0,0)f x x ωϕωπϕ=+>-<<的最小正周期是π,将函数()f x 图象向左平移3π个单位长度后所得的函数图象过点(0,1)P ,则函数()sin()f x x ωϕ=+( )(A )在区间[,]63ππ-上单调递减 (B )在区间[,]63ππ-上单调递增 (C )在区间[,]36ππ-上单调递减 (D )在区间[,]36ππ-上单调递增 (10)若6nx x x ⎛+ ⎪⎝⎭的展开式中含有常数项,则n 的最小值等于( )(A )3 (B )4 (C )5 (D )6(11)一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的( )(A )外接球的半径为3(B )表面积为731++(C )体积为3 (D )外接球的表面积为4π(12)已知定义在R 上的函数)(x f y =满足:函数(1)y f x =-的图象关于直线1x =对称,且当(,0),()'()0x f x xf x ∈-∞+<成立('()f x 是函数()f x 的导函数), 若11(sin )(sin )22a f =,(2)(2)b ln f ln =,1212()4c f log =, 则,,a b c 的大小关系是( )(A )a b c >> (B )b a c >> (C )c a b >> (D )a c b >> 二.填空题:本大题共4小题,每小题5分。
(13)若直线220ax by -+=(0a >,0b >)经过圆222410x y x y ++-+=的圆心,则11a b+的最小值为___________.(14)已知直线1y x =+与曲线()ln y x a =+相切,则a 的值为___________.(15)已知x 、y 满足不等式组 2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩,则2z x y =+的最大值是 .(16)在正四棱锥ABCD P -中,2=PA ,直线PA 与平面ABCD 所成角为︒60,E 为PC 的中点,则异面直线PA 与BE 所成角的大小为___________.数 学(理科)答案与评分标准一.选择题:本大题共12小题,每小题5分。
二.填空题:本大题共4小题,每小题5分。
(13)4, (14)2, (15) 6, (16)0454π或(1)解析:z=212(12)()2i i i i i i ++-==--,故选D. (2)【解析】{}210|0xx A x x <⇒<⇒=< ,{}3log 01|1x x B x x >⇒>⇒=>⇒{}|1U C B x x =≤ 所以(){}|0U A C B x x =< ,故选A .(3)【解析】解析:在△CEF 中,EF →=EC →+CF →.因为点E 为DC 的中点,所以EC →=12DC →.因为点F 为BC 的一个三等分点,所以CF →=23CB →.所以EF →=12DC →+23CB →=12AB →+23DA →=12AB →-23AD →,故选D.(4)【解析】由47564728a a a a a a +=⎧⎨⋅=⋅=-⎩得44772442a a a a =-=⎧⎧⎨⎨==-⎩⎩或,所以113381122a a q q =-⎧=⎧⎪⎨⎨=-=-⎩⎪⎩或,所以1110101881a a a a ==-⎧⎧⎨⎨=-=⎩⎩或,所以1107a a +=-,故选B. (5)【解析】因为已知随机变量ξ服从正态分布(1,1)N ,所以正态曲线关于直线1x =对称,又(3)0.977P ξ<=,所以(3)10.9770.023P ξ>=-=,(13)P ξ-<<所以1(1)(3)P P ξξ=-<-->12(3)10.0460.954P ξ=->=-=,故选C(6)【解析】任取一焦点)0,(c F 到一条渐近线x aby =的距离为b ,则c b 32=,有⇒=c b 23⇒=2229c b 77379972)(92222222=⇒=⇒=⇒=-e a c a c c a c ,故选D .(7)【解析】因为65911a a =,由等差数列前n 项和公式得,111611199511()11219()92a a a S a a S a +===+,故选A .(8)【解析】因为2,4,6,8,…,60构成等差数列,首项为2,公差为2,所以2+2(n -1)=60,解得n =30,所以该程序循环了30次,即i >30,n =n +2,故选C .(9)【解析】依题 2ω=, ()sin(2)f x x ϕ=+,平移后得到的函数是2sin(2)3y x πϕ=++,其图象过(0,1),∴2sin()=13πϕ+,因为0πϕ-<<,∴ 6πϕ=-,()sin(2)6f x x π=-,故选B(10)【解析】由展开式的通项公式156621()(),(0,1,,)r n rn rrr r nnT C x C xr n x x--+===,得15602n r -=即54n r =有符合条件0,1,,n Z r n∈⎧⎨=⎩的解,∴ 当4r =时,n 的最小值等于5,故选(11)【解析】观察三视图可知,该几何体是一三棱锥底面等腰三角形底边长为2,高为1,有一侧面是正三角形且垂直于底面,该几何体高为3,根据图中数据,另两侧面为腰长为2,底边长为2的等腰三角形,所以其表面积为2211212122(2)()237312222⨯⨯+⨯⨯⨯-+⨯⨯=++,故选B. (12)【解析】∵函数(1)y f x =-的图象关于直线1x =对称,∴()y f x =关于y 轴对称, ∴函数()y xf x =为奇函数. 因为[()]'()'()xf x f x xf x =+,∴当(,0)x ∈-∞时,[()]'()'()0xf x f x xf x =+<,函数()y xf x =单调递减, 当(0,)x ∈+∞时,函数()y xf x =单调递减.110sin22<<,11ln 2ln 2e >>=,121log 24= 12110sin ln 2log 24<<<,∴a b c >>,故选A.二.填空题:本大题共4小题,每小题5分。
(13)4, (14)2, (15) 6, (16)0454π或(13)圆心坐标为 ()1,2-,22201a b a b ⇒-+=⇒+=()1111a b a b a b ⎛⎫⇒+=++ ⎪⎝⎭2224b aa b =++≥+=(14)【解析】根据题意1'1y x a ==+,求得1x a =-,从而求得切点为(1,0)a -,该点在切线上,从而求得011a =-+,即2a =.(15)【解析】先根据约束条件画出可行域,再利用z 的几何意义求最大值x , y 满足不等式组2303301x y x y y +-≤⎧⎪+-≥⎨⎪≤⎩表示的可行域如图:目标函数为2z x y =+当3,0x y ==时,2z x y =+取得最大值是6.(16)【解析】如图,由题意易知︒=∠60PAC ,因为PA EO //,所以BEO ∠为异面直线PA 与BE 所成角,又2=PA ,BEO Rt ∆中,1=EO ,1==AO BO ,得BEO ∆为等腰直角三角形,故异面直线PA 与BE 所成角为45.。