比例解决问题
六年级数学 用比例解决问题

03
解:设王大爷家上个月用水x吨, 19.2:x=12.8:8 x=19.2×8÷12.8 x=12 答:王大爷家上个月用水12吨。
04
2.一批书如果每包20本,要捆18 包。如果每包30本,要捆多少包?
因为书的总数一定,所以包数和每包的本数成反 比例.也就是说,每包的本数和包数的乘积相等。
解:设要捆x包, 30x=20×18 x=360÷30 x=12 答:要捆12包。
用比例 解决问题
Template
WINTER
01
02
1.张大妈上个月用了8吨水,水费12.8元, 李奶奶家用了10吨水,李奶奶家上个月 的水费是多少钱?
因为每吨水的价钱一定,所以水费和用水的吨数成正比 例,也就是说,两家的水费和用水吨数的的比值相等。
解:设李奶奶家上个月的水费是x元, 12.8:8=x:10 王大爷家上个月的 8x=12.8×10 水费是19.2元,他 x=128÷8 们家上个月用了多 x=16 少吨水? 答:李奶奶家上个月的水费是16元。
05
1.500千克的海水中含盐25千克, 6800吨的海水含盐几吨?
2.服装厂2天加工西装120套, 照这样计算,加工540套西装 需要多少天?
谢谢观赏Biblioteka
用比例尺解决实际问题

1.一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。
2.甲乙两地实际距离是500米,画在一张图纸上的距离为1厘米,这幅图纸的比例尺是。
3.甲乙两地相距1600千米,画在比例尺是1 :5000000的地图上,应画多少厘米?4.在一幅比例尺是1 :3000000的地图上,甲乙两地的距离是7.5厘米,甲乙两地的实际距离是多少千米?5.英华小学有一块长120米、宽80米的长方形操场,画在比例尺为1 :4000的平面图上,长和宽各应画多少厘米?6.某建筑工地挖一个长方形的地基,把它画在比例尺是1 :100000的平面图上,长是6厘米,宽是4厘米,这块地基的面积是多少?7.从井冈山到韶山的实际距离是475千米,在一幅1 :2500000的地图上应画多少厘米?8.学校操场上有一条长200米的跑道,在一张图纸上用4厘米表示,这张图纸的比例尺是多少?9.在比例尺是1:200000的地图上,量得两地距离是30厘米,这两地的实际距离是多少千米?10.南京到上海约320千米,画在1:4000000的地图上,两地间的图上距离是多少厘米?11.在一一幅地图上,量得甲地到乙地的距离是4厘米,而甲地到乙地的实际距离是160千米,这幅地图的比例尺是多少?12.在一幅比例尺是1:4500000的地图上,量得甲地到乙地的距离是20厘米,甲地到乙地的实际距离是多少千米?13.地图的比例尺是,北京到天津某地的距离画在该地图上是4.8厘米,求两地的实际距离多少?14.兰州到乌鲁木齐的铁路线大约长1900km。
在比例尺是1:40000000的地图上,它的长是多少? 15. 在一幅比例尺是80000001的地图,量得甲、乙两城之间的路长12.5cm。
一辆汽车以平均每小时80km的速度从甲城开往乙城,需多少个小时才能到达?16.在一幅比例尺是1:5000的平面图上,量得一段公两个修路队,路长16.8厘米。
把修筑这段公路任务按3:5分配给甲、乙两个修路,这两个队各要修多少米?17.在比例尺是1/5000的地图上,量得一所学校的平面图长6厘米,宽4厘米。
用比例解决实际问题

用比例解决实际问题比例是数学中的一个重要概念,它可以用来解决各种实际问题。
比例的应用广泛,包括经济、财务、商业等领域。
本文将通过几个实际问题的例子,来说明如何用比例解决实际问题。
例一:货币兑换问题小明在出国旅游时,需要将他的人民币兑换成目的地的货币。
假设1美元兑换成6.5人民币,1欧元兑换成7.8人民币,小明想知道他手中的1000人民币可以兑换成多少美元和欧元。
解决这个问题需要用到比例。
我们可以建立以下比例关系:1美元 / 6.5人民币 = x美元 / 1000人民币1欧元 / 7.8人民币 = y欧元 / 1000人民币通过交叉乘法得到:x = (1美元 / 6.5人民币) * 1000人民币y = (1欧元 / 7.8人民币) * 1000人民币计算得:x ≈ 153.85美元,y ≈ 128.21欧元因此,小明手中的1000人民币可以兑换成约153.85美元和128.21欧元。
例二:图形的放缩问题某张地图的比例尺为1:50000,现在需要将这张地图上的一段道路放大到真实尺寸进行测量。
已知实际测量的道路长度为5千米,求放大后的道路长度。
解决这个问题同样需要用到比例。
我们可以建立以下比例关系:1厘米 / 50000厘米 = x千米 / 5千米通过交叉乘法得到:x = (1厘米 / 50000厘米) * 5千米计算得:x ≈ 0.0001千米因此,放大后的道路长度为0.0001千米。
例三:物品的混合问题某商店在制作某种特殊颜色的颜料时,需要将一种红色颜料和一种黄色颜料按照2:3的比例混合在一起。
如果需要制作5升这种特殊颜料,分别需要多少升红色颜料和黄色颜料?解决这个问题同样需要用到比例。
我们可以建立以下比例关系:2 /3 = x / 5通过交叉乘法得到:x = (2 / 3) * 5计算得:x ≈ 3.33升因此,需要3.33升红色颜料和1.67升黄色颜料来制作5升特殊颜料。
通过以上几个实际问题的例子,我们可以看到比例在解决实际问题中的重要性。
六年级数学下册用比例解决问题

用比例解决问题班级姓名1、在比例尺是1:30000000的地图上量得甲乙两面地相距12厘米,一架飞机从早上的8:30以每小时800千米的速度从甲地飞往乙地。
到达乙地的时间是几时几分?2、甲乙两地相距300千米,在比例尺是的地图上应画多少厘米?如果画在比例尺是1:6000000的地图上应画多少厘米?3、在比例尺是1:4000的图纸上量得一个圆形运动场的直径是8厘米,这个圆形运动场的实际面积是多少平方米?4、在比例尺是1:2000的图纸上量得一块长方形菜地的周长是25厘米,且长与宽的比是3:2,这块长方形菜地的实际面积是多少平方米?5、一个篮球场的长是28米,宽是15米。
请选择一个合适的比例尺画出这个篮球场的平面图?6、一辆汽车5小时行驶140千米,照这样的速度,从甲地到乙地行了8小时,甲乙两地相距多少千米?(用比例解)7、用一批纸装订同样的练习本,每本40页,可装订90本,现在要装订100本,每本多少页?(用比例解)8、一个自来水龙头3天要浪费600升水,照这样计算六月份要浪费多少升水?(用比例解)9、一本书3天看了51,照这样计算剩下的还要多少天看完?(用比例解)10、一辆汽车从甲地到乙地去时每小行40千米,10小时到达,返回时,速度提高41,可节约几小时?(用比例解)11、给教室铺方砖,用面积是4平方分米的方砖需要200块,若改用面积是5平方分米的方砖需要多少块?(用比例解)0 40 80km12、给教室铺方砖,用边长是4分米的方砖需要200块,若改用面积是8平方分米的方砖需要多少块?(用比例解)13、给教室铺方砖,用边长是4分米的方砖需要200块,若改用边长是5分米的方砖需要多少块?(用比例解)14、一件商品原价80元,现打七五折出售,原来买12件商品的钱,现在可以买多少件?(用比例解)15、两个圆柱体积相等,一个圆柱的底面积是30平方米,高6米,另一个圆柱的底面积是45平方米,它的高是多少米?(用比例解)16、一段木料锯成3段要12分钟,照这样,锯成8段要多少分钟?(用比例解)17、一个服装店的所有服装都打同样的折扣销售①、李阿姨买了一件上衣,原价250元,现价150元,李阿姨还想买一条裤子,原价180元,现价多少钱?(用比例解)②、张伯伯有一笔钱,如果买现价90元一件的衬衫,正好买4件,如果想买原价200元一件的夹克衫,能买多少件?(用比例解)18、一个长方形长8厘米,宽6厘米,按3:1放大后,它的面积是多少平方厘米?19、在一幅比例尺是1:2000000的地图上,量得甲乙两地的距离是厘米,如果画在比例尺是1:5000000的地图上,应画多少厘米?20、希望小学装修多媒体教室。
比例解决问题

比例解决问题1.测量小组测得一烟囱的影长时2.4米,同时把20分米长的竹竿立在地上,测得竹竿的影长16分米。
烟囱的高是多少米?2.某农场的收割水稻224公顷,前3天收割了84公顷,照这样计算,剩下的水稻还要多少天收割完?3.一辆汽车从甲地开往乙地,1.2小时行了全程的1/3,照这样的速度,再行驶多少小时可以到达乙地.4.同学们做操,每行12人可站80行,如果每行站15人,可站多少行?5.一辆汽车从甲地开往乙地,每小时行驶68千米,5小时到达,返回时,每小时比原来慢2/17,返回时用了多少小时?6.用边长30厘米的方砖给教室铺地,需要2000块,如果改用边长40厘米的方砖铺地,需要多少块?7.某村要修一条道路,原计划每天修20天,60天完成,实际比计划提前10天完成,现在每天应修多少米?8.一堆煤,原计划每天烧3吨,可以烧72天,改进技术后,每天少烧0.6吨.这堆煤可以比原来多少几天.9.小兰的身高1.5M,她的影长2.4m.如果同一时间,同一地点测得一棵树的影长4m,这棵树有多高?10.工程队修一条水渠,每天工作6小时12天可以完成,如果工作效率不变,每天工作8小时,多少天可以完成任务11.我国发射的科学实验人造地球卫星,在空中绕地球运行6周需要10.6小时,运行14周要用多少小时?12.一个晒盐场用100g海水可以晒出3g盐,照这样计算,如果一块盐田以此放入585000吨海水,可以晒出多少吨盐?多少吨海水可以晒出9吨盐?13.车队向灾区运送一批救灾物资,去时每小时行60km.6.5小时到达灾区,回来时每小时行78km,多长时间能够返回出发地点14.王叔叔开车从甲地到乙地,前2小时行了100km,照这样的速度,从甲地到乙地一共要用3小时,甲乙两地相距多远?15.王叔叔开车从甲地到乙地一共用了3小时,每小时行50km,返回时每小时行60km,返回时用了多长时间?16.超市运来1吨苹果,每0.5kg苹果售价是2.8元。
比例尺的解决问题

比例尺的解决问题
1、一个长方形机件长4.5毫米,宽2.4毫米,按8:1的比例尺画在图纸上,长和宽各应画多长?
2、在比例尺是1/400000的地图上量得长春到吉林的距离是35厘米,已知一列客车每小时行70千米,这列客车从长春到吉林要行多少小时?
3、在比例尺是1:2000的图纸上量得一个圆形花坛的直径是3厘米,这个圆形花坛的实际面积是多少平方米(∏取3.14)
4、在比例尺是1:1500的图纸上量得一个操场的长是5厘米,宽是4.4厘米,求这个操场的实际面积是多少平方米。
5、在比例尺是1:4000000的地图上量得甲、乙两地的距离是30厘米。
两列火车同时从甲、乙两地相对开出。
已知甲车每小时行65千米,乙车每小时行55千米,几小时后两车才能相遇?
6、新立屯计划挖一条排水渠,在比例尺是1/100的设计图上,水渠长80厘米,宽3厘米,深1.5厘米。
按图施工,这条水渠共挖土多少立方米?
7、在一幅比例尺是1:5000000的地图上,量A B两地的距离是2.2厘米,在另外一幅比例尺是1:2000000的地图上,A B两地的距离是多少?。
比例的解决问题方法
比例的解决问题方法比例是数学中常见的概念,它在解决各种实际问题中起到了重要作用。
本文将介绍一些解决问题的比例方法,并探讨它们的应用。
一、比例的定义和性质比例是指两个或多个量之间的相对关系。
通常用分数形式表示,如a:b,表示a与b的比例关系。
比例还具有以下性质:1. 相等性质:如果两个比例相等,即a:b = c:d,那么就可以认为a 与b、c与d之间存在相等关系。
2. 反比例性质:如果两个比例为a:b和c:d,且a与d互为倒数关系(即ad=bc=1),那么可以认为a与b之间存在反比例关系。
二、比例的解决问题方法1. 物品数量比例问题在解决物品数量比例问题时,可以利用单位量的比例关系来求解。
首先确定待求的量与已知量之间的比例关系,然后构建一个等比例方程,通过求解方程可以得到待求量的值。
例题:甲乙两个班级的学生人数比为3:5,如果甲班有120人,问乙班有多少人?解析:根据题目可知,甲乙班级的学生比例为3:5,即甲班人数/乙班人数 = 3/5。
已知甲班人数为120人,代入比例关系中得:120/乙班人数 = 3/5,通过解方程求解,可以得到乙班人数为200人。
2. 图形尺寸比例问题在解决图形尺寸比例问题时,通常需要根据已知量与待求量之间的比例关系,建立一个长度比例的等式,通过解等式可以求解待求量的值。
例题:已知一个矩形的长宽比为3:4,如果矩形的宽度为12cm,问矩形的长度是多少?解析:根据题目可知,矩形的长宽比为3:4,即长/宽 = 3/4。
已知矩形的宽度为12cm,代入比例关系中得:长/12 = 3/4。
通过解等式可得到矩形的长度为9cm。
3. 比例系数问题在一些实际问题中,需要求解的比例关系并不是已知,而是通过其他已知条件来确定。
这时候可以引入比例系数的概念,将未知的比例系数表示为x,通过解方程可以求解出x的值,从而获得比例关系。
例题:甲乙丙三个人共花费600元,如果甲出的钱是乙出的3倍,丙出的2倍,问甲乙丙分别出了多少钱?解析:根据题目可设甲出的钱为3x,乙出的钱为x,丙出的钱为2x。
比例的应用问题解决
比例的应用问题解决在数学中,比例是一种重要的概念,它在日常生活和各个领域中都有广泛的应用。
比例的应用可以帮助我们解决各种实际问题,例如物体的伸缩、金融投资、生产计划等。
本文将通过几个实例来介绍比例的应用,并提供解决问题的方法。
一、物体的伸缩问题比例可以帮助我们解决物体伸缩相关的问题。
例如,我们想要将一张长方形的图纸按照比例缩小或放大打印。
假设原始图纸的长为a,宽为b,我们想要将其缩小到原来的1/2。
根据比例的性质,我们可以得到以下方程组:a/x = b/y = 1/2其中,x为缩小后的长度,y为缩小后的宽度。
通过解方程组,我们可以得到x=a/2,y=b/2。
这样,我们就可以按照比例将原始图纸进行缩小打印。
二、金融投资问题比例在金融投资中也有重要的应用。
例如,我们想要计算某个投资产品的收益率。
假设我们投资的初始金额为P,投资期限为t年,最终收益为S。
根据比例的概念,我们可以得到以下方程:(P+S)/P = 1+r其中,r为收益率。
通过解方程,我们可以得到r=(S/P)/t。
这样,我们就可以根据比例计算出投资产品的收益率,帮助我们做出更明智的投资决策。
三、生产计划问题比例在生产计划中的应用也非常常见。
例如,一个工厂生产某种产品,每天生产a个。
如果要在b天内完成生产计划,我们可以使用比例来计算每天的生产数量。
根据比例的性质,我们可以得到以下方程:a/b = x/1其中,x为每天的生产数量。
通过解方程,我们可以得到x=a/b。
这样,我们就可以根据比例计算出每天的生产数量,确保生产计划按时完成。
综上所述,比例在解决实际问题中具有重要的应用。
通过应用比例,我们可以解决物体伸缩、金融投资、生产计划等各种问题。
在实际应用中,我们可以根据具体情况建立比例模型,并通过解方程的方法求解。
比例的应用可以帮助我们更好地理解和解决各种实际问题,提高问题解决能力。
用比例解决问题
1.一间房子要用方砖铺地,用面积是9平方分米的方砖,需用96块,如果改用边长是4分米的方砖,需用多少块?(用比例解)2. 某打字员一份稿件,原计划每分钟打240个字,25分钟完成任务,由于某种原因须提前5分钟完成任务,实际每分钟打字多少个?(用比例解)3. 拖拉机厂今年前3个月生产大型拖拉机850台。
照这样计算,全年产量可以达到多少台?(用比例解答)4. 配制一种药水,药粉和水的比是1:18, 3千克的药粉可配制出多少千克的药水?(用比例解)5.甲、乙两个工程队原来人数相等,因工作需要,从甲队调10人到乙队,这时乙队与甲队的人数比为7∶6。
甲队现在有多少人?6、六年级图书角有图书200本,其中新书占80﹪,又运进一批新书后,新书的总本书与现有图书本数的比是5∶6。
求后来运来的新图书是多少本?7. 用同样的砖铺地,铺18平方米要用618块砖。
如果铺24平方米,要用多少块砖?(用比例解)8.一对互相咬合的齿轮,大齿轮有35个齿,每分钟转100转;小齿轮有20个齿,每分钟转多少转? (用比例解)9. 一堆煤,原计划每天烧12吨,可以烧45天;实际每天比计划节约25%,实际烧了多少天?(用比例解)10. 时钟6时敲6下5秒敲完12时敲12下几秒敲完? (用比例解)11. 一段木料锯成5段用了8分钟,那锯8段用了多少分钟?(用比例解)12.把一个圆柱切成两个半圆柱,切面是个正方形,已知每个半圆柱的体积是25.12立方厘米,求每个半圆柱的表面积是多少?13.有一个倒圆锥形的容器,它的底面半径是5厘米,高是10厘米,容器内放着一些石子,石子的体积为196/3∏立方厘米,在容器内倒满水后,再把石子全部拿出来,求此时容器内水面的高度。
14.一个底面半径为5厘米,高为28厘米的圆柱形水桶装满水,另一个圆锥形空水桶,它的上口周长56.52厘米。
现把圆柱形水桶的水往圆锥形水桶里倒,当圆锥形水桶装满水时,圆柱形水桶的水还剩13厘米高的水。
用比例解决问题
用比例解决问题在生活中,我们经常会碰到各种各样的问题和难题。
有些问题需要我们用比例进行解决。
本文将从实际例子出发,介绍如何运用比例来解决问题。
第一种情况:比例乘法小王在超市购买了一袋苹果,他发现商家在标价的时候少贴了一个数字,书写成了3.9元/kg,而不是正确的价格3.98元/kg。
这时,小王突然想,如果按照3.98元/kg的价格,他需要支付多少钱呢?这个问题就可以通过比例来计算。
假设小王买了x kg的苹果,那么他需要支付的钱数y元可以表示成:3.98/x × x = y。
因此, y= 3.98x元。
同理,在解决商品打折问题时,也可以应用比例乘法。
例如,一家商铺宣传说“所有商品8折”,若商品最初的价格为P元,那么在打折后的售价为p元,它们之间的比例为0.8:1,也可以写成0.8/1 = p/P。
假设打折后的售价为p元,那么原价P可以表示为:P= p/0.8元。
第二种情况:比例除法小李在银行取出了100元钞票。
他需要将这100元换成1元硬币、5角硬币和1角硬币。
现在的问题是,他需要多少个1元硬币、5角硬币和1角硬币呢?在这种情况下,我们可以使用比例除法来计算。
设1元硬币的个数为x,5角硬币的个数为y,1角硬币的个数为z,则有:x+y+z= 100(单位:元)1元硬币和5角硬币和1角硬币之间的比例为1:0.5:0.1,那么,同样用比例除法可以推导出:1元硬币的个数为x个,则5角硬币的个数为0.5x个,1角硬币个数为0.1x个,则有:1x + 0.5x + 0.1x =100x = (100/(1+0.5+0.1)= 60 (个)因此,需要60个1元硬币,30个5角硬币和10个1角硬币。
第三种情况:比例的基准变化小明和小红比赛谁可以先吃两斤牛肉干。
小明以每分钟吃0.1公斤的速度吃完,而小红以每分钟吃0.15公斤的速度吃完。
在某一时间点,小明和小红一起吃了4/5斤的牛肉干(即小明吃了a公斤,小红吃了b公斤,且a+b=4/5),请问他们两人吃牛肉干用时谁更快?假设小明和小红A、B两人的吃肉干的速度成比例分别为0.1:1和0.15:1,他们吃两斤肉干用的时间分别是x、y分钟。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比例解决问题
(1) 一种微型零件的长5毫米,画在设计图纸上长20厘米。
这幅设计图的比例尺是多少?
5mm=0.5cm 20÷0.5=40:1
(2)、一幅地图的线段比例尺是0 40 80km甲乙两城在这幅地图上相距18厘米,两城间的实际距离是多少千米?丙丁两城的地面距离是660千米,在这幅地图上两城之间的距离是多少厘米?
18÷1/4000000
66000000×1/4000000
(3)加工一批零件,如果每天做1200个,8天可以完成;如果每天加工1500个,几天可以完成?
1500×=1200×8
(4)小明买4本同样的练习本用了4.8元,用3.6元可以买多少本这样的练习本?[用比例解]
4.8:4=3.6:x
(5) 配制一种农药,药粉和水的比是1:500。
①用600kg水配制这种农药,需要药粉多少千克? ②用药粉3.6kg配制这种农药,需加入水多少千克?
600×1/500 3.6÷1/500
(6)一个榨油厂榨26kg豆油,用了黄豆200kg。
照这样计算,用5吨黄豆可榨出豆油多少吨?[用比例解]
26:200=x:5000
(7)机器上有两个互相咬合的齿轮,主动轮有50个齿,每分钟转90转;从动轮有30个齿,每分钟转多少转?[用比例解]
30x=50×90
(9)一幅地图,图上3厘米代表实际距离150千米;A、B两地实际距离600千米,在图上为多少厘米?[用比例解] 3:15000000=x:60000000
(10)一间空房间的地面,如果用边长4dm的方砖铺,需要400块;如果用边长5dm的方砖铺,最少要多少块?[用比例解]
5×5×x=4×4×400
(11)小李买来同样数量的方砖,边长4dm的可以铺设地面4000dm²,边长5dm的可以铺设地面多少dm²?[用比例解]
4000:(4×4)=x:5×5
(12)加工1500个零件,3小时完成了20%。
照这样计算,完成余下的任务还要多少小时?
(1-20%):x=20%:3
(13)一辆汽车从甲地往乙地送货,去时每小时行驶44km,用6小时到达;返回时缩短了半小时,这辆汽车返回时每小时行多少千米?
(6-0.5)x=44×6。