2020秋人教版数学八年级上册13.3实数的运算word课堂教学实录
2019-2020学年八年级数学上册《13.3实数(二)》教案 新人教版.doc

2019-2020学年八年级数学上册《13.3实数(二)》教案 新人教版教学课题13.3实数(二)年级学科八年级(上)数学 教学课时第2课时课型 新授课 主备教师 使用教师教学目标 了解实数的运算法则及运算律,会进行实数的运算教学重点与难点重点:实数的运算法则及运算律 难点:准确地进行实数范围内的运算教学准备及手段多媒体教学 探究式教学教 学 过 程动态修改部分 ㈠创设情景,导入新课复习导入:1、用字母来表示有理数的乘法交换律、乘法结合律、乘法分配律2、用字母表示有理数的加法交换律和结合律3、平方差公式、完全平方公式4、有理数的混合运算顺序 ㈡合作交流,解读探究 自主探索 独立阅读,自习教材总结 当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不为0)、乘方运算,而且正数及0可以进行开方运算,任意一个实数可以进行开立方运算。
在进行实数的运算时,有理数的运算法则及运算性质等同样适用。
讨论 下列各式错在哪里?1、2133993393-⨯÷⨯=⨯÷= 2、()21212-=-3、5656-=- 4、当2x =±时,2202x x -=- 【练一练】计算下列各式的值: ⑴()322-- ⑵3323+解:⑴()322--()322303=+-=+=(加法结合律)⑵3323+()32353=+=(分配律)总结 实数范围内的运算方法及运算顺序与在有理数范围内都是一样的 试一试 计算:()15π+ (精确到0.01) ()23·2 (结果保留3个有效数字)总结 在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照所要求的精确度用相应的近似有限小数去代替无理数,再进行计算 【练一练】计算 ⑴()()3232+-⑵1233-⑶()221-⑷()()123123+---提示 ⑴式的结构是平方差的形式 ⑶式的结构是完全平方的形式 总结 在实数范围内,乘法公式仍然适用 ㈢应用迁移,巩固提高例1 a 为何值时,下列各式有意义?()21a ()2a - ()32a + ()341a - ()5a a +- ()3216a a+ 例2 计算⑴求5的算术平方根于的平方根之和(保留3位有效数字) ⑵2552--+(精确到0.01)⑶2a a π-+- (2a π<<)(精确到0.01)例3 已知实数a b c 、、在数轴上的位置如下,化简()222a b a b c a c +++---例4 计算22232223-⎛⎫⎛⎫⎛⎫-+-- ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ㈣总结反思,拓展升华总结 1、实数的运算法则及运算律。
初中数学人教版八年级上册13.3(2)实数教案

教学过程设计板 书 设 计A .0.0002~0.0003之间B .0.002~0.003之间C .0.02~0.03之间D . 0.2~0.3之间 6.5是无限不循环小数,由整数部分和小数部分组成,它的整数部分是( )A .2B .3C .4D .5 7.2003的整数部分是( )A .43B .44C .45D .46 8.计算器面板上键所表示的含义是( )A .y 的x 次方B .x 的y 次方C .y 的x 次方根D .x 的y 次方根 9.在-1.732,2,π,3.14, 41.3&&,32+,3.212212221…,这些数中,无理数的个数为( ) A .5 B .2 C .3 D .410.下列各式中,没有意义的是( )A .2)2(-B .4)3(- C .34- D .π-14.311.已知2=1.414,20=4.472,则2000等于( ) A .14.14 B .141.4 C .44.72 D .447.2 12.1-2的相反数是______,绝对值是_______. 13.把2a 写成一个数的平方的形式是_______. 14.若一个数的平方根是42+m 和m 52-,则它的立方根是______. 15.计算下列各式的值:(1)535+ (2)71573+-(3) 436+ (4)3216196-16.已知实数a 满足a a a =-+-21,求a 的值.17. 用长3cm 、宽为2.5cm 的邮票30枚,密铺成一个正方形,要求每两张之间不留空隙、不重叠.通过计算回答能否密铺。
若能,在图中画线示意并简单说明;若不能,说明理由. 四、小结归纳 知道有理数的运算性质、运算律适用于实数; 会合并二次根式,会进行较简单的实数计算. 五、作业设计课本86-87页: 3、4、5、6、9教师组织学生回顾本节知识,学生谈个人收获,师生交流.学生谈本节课学到的知识以及解题体会2。
新人教版八年级上册第13章实数全章精品教案-3.doc

新人教版八年级上册第13章实数第1节平方根第1课时算术平方根精品教案教学目标知识技能:了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性.会用平方运算求某些非负数的算术平方根.数学思考:学会运用熟悉的知识思考和解决新的知识和问题.解决问题:通过学习算术平方根,建立初步的数感和符号感,发展抽象思维.通过拼大正方形的活动,体验解决问题的方法的多样性,发展形象思维.情感态度:通过实际生活中问题的解决,体验数学与生活实际是紧密联系着的.通过探究活动培养动手能力和锻炼克服困难的意志,建立自信心,提高学习热情.教学重点:算术平方根的概念.教学难点:根据算术平方根的概念正确求出非负数的算术平方根.教学内容:课本第68至69页.教学过程设计活动一.创设情境,分析探究1.提出问题,引发讨论:课本第68页中的问题:小欧要裁一块面积为25dm 2的正方形画布,由于正方形的面积为边长的平方,而边长不可能为负数,故此画布的边长应为5dm.依此可得正方形的面积若分别为1,9,16,36,425时,此正方形的边长分别为1,3,4,6,25 . 由以上讨论可以发现,它就是已知一个正数平方,求这个正数.由此我们得到.2.定义:一般地,如果一个正数x 的平方等于a,即x 2=a,那么这个正数x 叫做a 的算术平方根,a 读作“根号a ”,a 叫做被开方数.规定:0的算术平方根是0. 活动二.知识应用,例题解析.例1.求下列各数的算术平方根:(1)900 (2)1 (3)4964 (4)196 (5)0解:(1)∵302=900,故900的算术平方根是30,(2)∵12=1,故1的算术平方根是1,=1.(3)∵(78)2=4964,故4964的算术平方根是78,78(4)∵142=196,故196的算术平方根是14,(5)∵02=0,故0的算术平方根是0,例 2.勤俭节约是中国人的一种美德,涛涛的爷爷是个能工巧匠,他把两张破损了一部分的桌面重新拼接成一张完整的正方形桌面,其面积为169dm 2.•已知他用的两张小桌面也是锯成了正方形的桌面,其中一张是边长为5dm 的小板子,•试问另一张较大的桌面的边长应为多少dm才能拼出面积为169dm2的桌面?分析:边长为5dm的正方形板子,其面积为25dm2,要拼出面积为169dm2的桌面,还需面积为169-25=144dm2的正方形桌面,故问题实际上转化为求144•的算术平方根=12.解:设另一张较大的桌面的边长为xdm,则有x2+52=169,x2=169-25=144,而122=144故144的算术平方根为12,即另一张桌面的边长应为12dm.活动三.知识巩固,课堂练习.1.课本第69页小练习.2.补充习题.(1)求下列各式的值:解:7 2(2)若(a-1)2+│b-9│=0,则ba的算术平方根是下列哪一个( )A.13B.±3C.3D.-3分析:由于(a-1)2≥0.│b-9│≥0,∴(a-1)2+│b-9│=0时,有a-1=0且b-9=0, ∴a=1,b=9,∴ba=91=9,故ba的算术平方根是3.?为什么?分析无意义,因为任何数的平方都是非负数,即a2≥0,.活动四.知识梳理,课堂小结.这节课主要就算术平方根进行讨论,•求一个数的算术平方根与求一个正数的平方正好是互逆的过程,因此,求正数的算术平方根实际上可以转化为求一个数的开平方运算.只不过,只有正数和0才有算术平方根,负数没有算术平方根.活动五.知识反馈,作业布置.1.课本第75页习题中的第1,2题.2.补充习题.(1)某数的算术平方根等于它本身,则这个数为_______;•若某数的算术平方根为其相反数,则这个数为______.(2)求下列各式的值(3)3x-4为25的算术平方根,求x的值.(4)已知9的算术平方根为a,b的绝对值为4,求a-b的值.(5)已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求a、b的值.(6),求xy的算术平方根.。
人教版数学八上13.3《实数》word学案

课题:13.3 实数(1)编写:汪观林张建华华成斌【学习目标】1、了解无理数、实数的概念,能对实数按要求进行分类。
2、知道实数的相反数、倒数、绝对值、大小的比较。
【前置学习】1、什么是有理数?有理数可以怎样分类?2、边长为1的正方形的对角线长是_________.3、学生自学课本82—84页内容【学习探究】探究1①使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3=_____ ,35-=_____,478=_____ ,911=_____ ,119=______ ,59=______我的发现是: ____________________________________________________②使用计算器计算, 把下列带根号的数写成小数的形式,你有什么发现?=_________=________.我的发现是:____________________________________________________③上面两组数都可以写成小数的形式,但也有不同,它们的不同之处是:______________________________________________我们把第一类数叫做_______,我们把第二类数叫做_______,它们统称为___________无理数也有正负π是___无理数,,,π-是___无理数。
试一试把实数分类(两种分法)探究2(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?从图中可以看出OO′的长是这个圆的周长______,点O′的坐标是_______,这样,无理数可以用数轴上的点表示出来(2的点吗?动手试一试由探究2,我的猜想与发现是:①每一个无理数都可以用数轴上的____表示出来,这就是说,数轴上的点有些表示__________,有些表示__________实数与数轴上的点是__________的,即每一个实数都可以用数轴上的______来表示;反过来,数轴上的________都是表示一个实数实数的有关性质:数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数______数a的相反数是______,这里a表示任意一个实数。
八年级数学上册《13.3实数(一)》教案新人教版.docx

13.3实数(一)教学课题13.3实数(一)年级学科八年级(上)数学 教学 第1 课型 新授课 主备教师 使用教师教学目标了解无理数和实数的概念,知道实数和数轴上的点一一对应,能估算无理数的大小;教学重点与难点重点:实数的意义和实数的分类难点:体会数轴上的点与实数是一一对应的 教学准备及手段多媒体教学 探究式教学教 学 过 程动态修改部分 ㈠创设情景,导入新课 略㈡合作交流,解读探究探究 使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3 , 35- ,478 ,911 ,119 ,59我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即 3 3.0= ,30.65-=- ,47 5.8758= ,90.8111= ,111.29= ,50.59= 归纳 任何一个有理数都可以写成有限小数或无限循环小数的形式。
反过来,任何有限小数或无限循环小数也都是有理数观察 通过前面的探讨和学习,我们知道,很多数的平方根和立方根都是无限不循环小数,无限不循环小数又叫无理数, 3.14159265π=也是无理数 结论 有理数和无理数统称为实数试一试 把实数分类⎧⎧⎫⎨⎬⎪⎨⎩⎭⎪→⎩整数有理数有限小数或无限循环小数实数分数无理数无限不循环小数像有理数一样,无理数也有正负之分。
例如2,33,π是正无理数,2-,33-,π-是负无理数。
由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数负有理数负实数负无理数我们知道,每个有理数都可以用数轴上的点来表示。
无理数是否也可以用数轴上的点来表示呢?探究 如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O ′,点O ′的坐标是多少?总结 1、事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数1、 与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大讨论 当数从有理数扩充到实数以后,有理数关于相反数和绝对值的意义同样适合于实数吗?总结 数a 的相反数是a -,这里a 表示任意一个实数。
新人教八年级数学上册第十三章《实数》教案

第 十 三 章 《实 数》 教 案是互为逆运算的关系,会用计算器求一些正数的算术平方根示一个数的平方根分算术平方根与平方根第1课时一、创设情景,导入新课请同学们欣赏本节导图,并回答问题,学校要举行金秋美术作品比赛,小欧很高兴,他想裁出一块面积为252dm 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少dm ?如果这块画布的面积是212dm ?这个问题实际上是已知一个正数的平方,求这个正数的问题(引入新课)二、合作交流,解读探究讨论:1、什么样的运算是平方运算? 2、你还记得1~20之间整数的平方吗? 自主探索:让学生独立看书,自学教材总结:一般地,如果一个正数x 的平方为a ,即2x a =,那么正数x 叫做a 的算术平方根,记为a ,读作根号a ,其中a 叫做被开方数。
另外:0的算术平方根是0 探究:怎样用两个面积为1的正方形拼成一个面积为2的大正方形把两个小正方形沿对角剪开,将所得的四个直角形拼在一起,就的到一个面积为2的大正方形。
设大正方形的边长为x ,则22x =; 由算术平方根的意义,2x =即大正方形的边长为2。
讨论:2有多大呢?思考:你能举些象2这样的无限不循环小数吗?三、应用迁移,巩固提高例1 求下列各数的算术平方根⑴100 ⑵4964 ⑶0.0001 ⑷0 ⑸124点拨:由一个数的算术平方根的定义出发来解决问题思考:-4有算术平方根吗?备选例题:要使代数式23x -有意义,则x 的取值范围是( )A. 2x ≠B. 2x ≥C. 2x >D. 2x ≤四、总结反思,拓展升华小结:1、算术平方根的定义和性质; 2、用计算器求一个正数的算术平方根拓展:已知21a -的算术平方根是3,31a b +-的算术平方根是4,c 是13的整数部分,求2a b c +-的算术平方根五、课堂跟踪反馈1、 非负数a 的算术平方根表示为___,225的算术平方根是____,0的算术平方根是____2、 1612181___,____,_____2581==-= 3、 16的算术平方根是_____, 0.64-的算术平方根____4、 若x 是49的算术平方根,则x =( )A. 7B. -7C. 49D.-495、 若47x -=,则x 的算术平方根是( ) A. 49 B. 53 C.7 D 53.6、 若()2130x y x y z -+++++=,求,,x y z 的值。
人教版数学八年级上册13.3《实数的运算》教案
人教版数学八年级上册13.3《实数的运算》教案一. 教材分析人教版数学八年级上册13.3《实数的运算》是学生在掌握了实数的概念、性质以及实数的运算律的基础上进行学习的内容。
本节内容主要介绍了实数的加法、减法、乘法、除法的运算方法,以及实数运算律的应用。
通过本节课的学习,使学生能够熟练掌握实数的运算方法,进一步理解和掌握实数运算律,为后续学习更高级的数学知识打下坚实的基础。
二. 学情分析学生在学习本节内容之前,已经掌握了实数的概念、性质,以及实数的运算律。
但学生在运算过程中,可能会出现对运算律理解不深,导致运算过程繁琐,甚至出现错误。
因此,在教学过程中,需要引导学生理解运算律的应用,以及运算的优先级。
三. 教学目标1.知识与技能:使学生掌握实数的加法、减法、乘法、除法的运算方法,以及实数运算律的应用。
2.过程与方法:通过实例讲解,让学生理解并掌握实数运算律的应用,提高学生的运算速度和准确性。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.教学重点:实数的加法、减法、乘法、除法的运算方法,实数运算律的应用。
2.教学难点:实数运算律的应用,运算的优先级。
五. 教学方法采用实例讲解法、问题驱动法、合作学习法。
通过实例讲解,让学生理解并掌握实数运算律的应用;通过问题驱动,引导学生主动探索和思考;通过合作学习,培养学生的团队协作能力。
六. 教学准备1.教师准备:教材、教案、PPT、黑板、粉笔。
2.学生准备:教材、笔记本、文具。
七. 教学过程1.导入(5分钟)利用PPT展示一些生活中的实际问题,如购物时如何计算总价,让学生思考如何运用实数进行运算。
通过这些问题,激发学生的学习兴趣,引出本节课的主题。
2.呈现(15分钟)讲解实数的加法、减法、乘法、除法的运算方法,以及实数运算律的应用。
通过PPT和板书,展示运算过程,让学生清晰地理解每一步的运算方法。
3.操练(15分钟)让学生独立完成一些实数运算的练习题,教师在课堂上进行解答和讲解。
2019-2020年八年级数学上学期期末复习《实数》课堂教学实录 新人教版
2019-2020年八年级数学上学期期末复习《实数》课堂教学实录 新人教版师生问好,组织上课。
师:同学们,实数学完了吗?生(全体):学完了!师:感觉学得怎么样?生(全体):还好!师:今天我陪大家一起来复习一下,同学们可借此机会考查一下自己到底掌握得怎么样?师:同学们课前我已要求大家对照课本将知识梳理了一遍,并画出本章的知识结构图,并完成了预习练习。
现在就大家预习作业中普遍存在的问题进行点评。
师:下面把回答预习练习里的答案对一对。
1.(1)10,(2),(3)0.01。
2.(1),(2),(3).3.(1)12,(2)-0.9,(3)。
4.(1),3.14-,(2),,(3)4,(4)。
5.(1) ,(2)。
6.正方形的周长比较大。
评析:通过知识点的呈现,加深学生对所学知识的理解,进一步提升学生的认知能力。
今天我们着重来复习一下实数的应用。
师:大家知道数学知识来自于实践,又应用于实践,下面让我们一起来体会一下,请看题:(教师放课件,请一个学生读题)要制作一种容积为27m 2的正方体形状的包装箱,这种包装箱的边长应该是多少?师:请同学们设未知数。
生:可设这种包装箱的边长应该是xm 。
师:能得出什么样的方程,请同学们自己在下面完成本题。
请一个同学上黑板板书:生1的板书过程:解:设这种包装箱的边长应该是xm,则x=27解得x=3即这种包装箱的边长应为3m.师:同学们,他的过程完美吗?生:完美。
师:对,不错,大家鼓掌(学生鼓掌)师:下面我们再看一题(放课件)已知,求的值。
x y x y -+-=-53022||师:同学们自己读题完成本题。
(等待一分钟后)师:下面我请同学告诉我你的答案是多少。
生1:我已得出=0,x=5.生2:我已得出=0,y=3.生3:我得到答案是19。
师:他的答案对不对?生(部分):对师:看来还有部分同学没得到正确答案,请哪位同学完整的说出你的解题过程?特别要说出=0,=0的理由。
人教版八上13.3《实数》word教案
师生共用导·学案年级:八年级 学科:数学 课型:新授 时间:2010.10. 课题:实数1 执笔: 试做: 审核:【学习目标】1.了解无理数和实数的概念;会对实数按照一定的标准进行分类,培养分类能力;2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;学会比较两个实数的大小。
【重 点】会对实数按照一定的标准进行分类【难 点】对“实数与数轴上的点一一对应关系”的理解一, 学前准备1.什么是有理数?如何分类?2?二, 探究活动 活动一自习实数的定义以及分类自习课本82页完成下列问题:1.小组交流并展示实数的分类:2.下列实数中是无理数的为( )A .0B . 3.5-CD 3.把下列各数分别填入相应的集合里:2273.141,,,,,1.414,0.020202,7378π----,22, 0.1010010001,正有理数{ } 负有理数{ } 正无理数{ } 负无理数{ }活动二 知道数轴上的点与实数的对应关系阅读课本P83-84上第一段并解决下列问题:1.我们知道,每个有理数都可以用数轴上的点来表示.无理数是否也可以用数轴上的点来表示呢?完成下列题目: ①如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?2.当从有理数扩充到实数以后,实数与数轴上的点就是 的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数.平面直角坐标系中的点与有序数对也是 的.三,巩固提升1. 在71;-π;22;0;0.3;0.3131131113…(两个3之间依次多一个1) 5∏ 属于有理数的有:{ }属于无理数的有:{ }属于实数的有:{ }2. 下列说法正确的是 ( )A .带根号的数是无理数B .无限小数是无理数C .无理数是无限小数D .无理数是开方开不尽的数3. 在实数2271π,14159265.3,2.12112111211112…(两个2之间依次多一个1)中,无理数的个数是 ( )A .2个B .3个C .4个D .5个4.下列说法:①数轴上的点与有理数是一一对应的;②数轴上的点与实数是一一对应的;③若a 是实数,则a 是无理数.其中正确的有 ( )A .1个B .2个C .3个D .0个四.小结经过本节课的学习你有哪些收获。
八年级数学上人教版《实数的运算》教案
《实数的运算》教案
教学目标
1.了解算术平方根的概念,会求一些非负数的算术平方根,并会运用它们进
行简单的计算.
2.通过实例引入,使学生了解平方根和算术平方根的意义,并会用开平方的
方法求某些非负数的平方根.
3.了解立方根的概念,会求一些数的立方根.
4.通过观察、类比、实践、探究等活动,使学生体验数学活动充满着探索性
和创造性,感受数学文化.
5.通过学生了解算术平方根、平方根、立方根的意义和它们之间的内在联系,
培养学生的探究能力、观察能力、归纳能力和创新精神.
教学重点与难点
重点:算术平方根、平方根、立方根的概念及运算.
难点:算术平方根、平方根、立方根概念的建立过程及运算.
教学准备
教师准备小黑板或投影片若干块,准备若干道口算题(最好有与开平方、开立方有关的计算题).
教学过程
一、复习导入
教师:同学们已经学习了有理数的基础知识,并能用它进行简单的计算.现在请同学们先做几道口算题(出示小黑板或投影片).
学生口算后,教师引导学生观察这些式子的特点,并指出这些式子都可以看成是某个数的平方等于另一个数.由此引入新课(将课题写在黑板上).
二、新课教学
1.算术平方根概念的引入教学.
教师:在小学学习过程中我们已经知道,正数的平方是正数,负数的平方也是正数.那么一个正数有几个平方根?它们互为相反数还是相等呢?一个负数有几个平方根?请同学们思考一下这个问题.
学生思考后回答:一个正数有两个平方根,它们互为相反数;一个负数在实数范围内没有平方根;0的平方根只有一个,是0本身.由此我们得到一个正数的正的平方根,叫做这个正数的算术平方根;一个正数的负的平方根,叫做这个正数的负平方根;0的算术平方根和负平方根都是0本身.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5课 实数的运算
(课堂实录)
【导入新课】
师: 同学们,今天这节课,我们一起来学习研究实数的运算这一节的内容.首先我们一起来回忆一下如何用字母表示有理数的加法交换律和结合律、乘法的交换律、乘法结合律和分配律。
生: (板书)a + b = b + a a + b + c = a + ( b + c )
a ·
b = b ·a ab
c = a (bc ) a (b+c )= ab + ac
师: 很好!现在我们来看这道题目(小黑板出示题目):
填空:
(1)1.5的相反数是 ;(2) 的相反数是-3;
(3)5-= ;
(4)绝对值等于4的数是 。
(5)32- 4
3-(比较大小) 生1:1.5的相反数是-1.5;
生2: 3的相反数是-3;
生3:5-=5;
生4:绝对值等于4的数是 4
生5:32- >4
3- 师:都对吗?
生:第4题错了,绝对值等于4的数应该是±4。
师:很好。
〖评析〗让学生进行简单的练习,帮助学生回顾旧知识,为本节课的迁移伏笔. 师:什么是实数?
生:有理数和无理数统称实数。
师:实数与数轴上的点有什么关系?
生:实数与数轴上的点一一对应。
【课内探究】
师:当数从有理数扩充到实数以后,有理数关于相反数、绝对值的意义同样适用于实数。
请同学们完成84页的思考题。
…… 生:2的相反数是-2;-π的相反数是π;0的相反数是0。
师:对吗?
生们:对的。
师:很好。
如果用a 表示一个实数,则a 的相反数是什么?
生:a 的相反数是-a 。
师:很好。
下面谁回答一下? 生:2=2; π-=π;0= 0 。
师:同学们,他的回答怎么样?
生们:正确。
师:很好。
这说明一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。
如果用a 表示一个实数,则a 的相反数怎么表示? 生:a
师:很好。
怎样根据a 的性质化简?
生:当a >0时a =a ;当a=0时,a =0;当a <0时,a =-a 。
师: 我们一起完成下列各题. 示题:⑴分别写出6-
、π- 3.14的相反数; ⑵指出5-、331-是什么数的相反数; ⑶求
364-的绝对值; ⑷已知一个数的绝对值是3,求这个数。
学生练习,教师巡查。
一段时间后师生共同分析、求答。
……
〖评析〗通过练习加深学生对知识的理解,让学生进一步认识实数。
师:下面我们来看看预习思考题。
生:3的相反数是-3;3π的相反数是3
π-;5-=5;绝对值等于6的数是6±。
师:很好。
当数从有理数扩充到实数以后,实数之间不仅可以进行加、减、乘、除(除数不能为0)、乘方运算,而且正数及0可以进行开平方运算,任意一个实数可以进行开立方运
算。
在进行实数的运算时,有理数的运算法则及运算性质等同样适用。
示题:计算下列各式的值:
⑴ 2)23(-+;⑵3233+
学生根据教师的提示,尝试解答,教师巡视、指导,一段时间后讲解。
师示范给解………
〖评析〗在例题的讲解中,通过穿插说明运用的运算法则和运算定律,帮助学生进一步认识实数的运算。
师:在实数运算中,当遇到无理数并且需要求出结果的近似值时,可以按照要求的精确度用相应的近似值去代替无理数,再进行计算。
再看一例:(示题)计算:(结果保留小数点后两位)
⑴ π+5 ⑵ 23⨯
师示范给解………(计算器使用指导)
巩固训练:86页练习第4题,学生板演,师生共同评价。
师:下面我们来小试牛刀,看谁做得快!行吗?
生:好!
师:请同学们做!
示题
1.-2的相反数( )
A .22
B .-2
2 C .2 D .-2 2.写一个小于 -1的无理数:
3.下列计算正确的有( )
A .532=
+ B .3333=-C .752863=+ D .942
188+=+ 4.计算:
⑴ 2223+ ⑵ 3333--
师生共同探讨。
〖评析〗学生讲评为主,教师点拨为辅,充分体现学生主体意识,能有效发现问题并及时解决,有利于培养学生的自主分析和解决问题的能力.
师: 好,我们一起回顾本节课所学的知识.(教师和学生一起回顾)
师:同学们还有问题吗?
……
师:如有问题,课后我们个别交流,好吗?
生:好……
师:这节课就到这儿,请同学完成讲义课后延伸的题目和课本作业:课本P86习题13.3第
3、4、5题..
师:下课!
(课结束)。