整式、分式、二次根式的性质和概念;
初中整式、分式、二次根式的总结

定义
A 的形式, B 形如 的式子叫二次根式,其中 叫 A 如果除以 B 中含有字母,那么称 为分式, B 被开方数,只有当 是一个非负数时, 才
其中 A 称为分式的分子,B 称为分式的分母, 有意义. 对于任意的一个分式,分母 B 都不等于零。 1.分式的分子与分母都乘以(或除以)同一个 不为零的数,分式的值不变 ①
2 2 2
异分母
把分子相乘的积作为积的分子,分母相乘的 积作为积的分母, 即
运 算
乘法
b d bd a c ac
ቤተ መጻሕፍቲ ባይዱ
除法 乘方
1.单项式的除法: 2.多项式除以单项式:
把除式的分子和分母颠倒后再与被除式相 乘,即
(am bm cm) m am m bm m cm m a b c
性质
A 有意义的条件: B 0 ; B A 3. 分式 值为 0 的条件: A 0, B 0 B 4. 分式的符号,分母的符号,分子的符号三
2. 分式
② ③ ④ 把二次根式化简,然后把被开方数相同的二次 根式(即同类二次根式)的系数相加减,被开 方数不变。
者变两者,分式的值不变
同分母:
加法
合并同类项
1.单项式的乘法 2. 单项式乘以多项式:即 m(a b c) ma mb mc ( m, a, b, c 都是单项式) 3. 多项式与多项式相乘; 平方差公式: (a b)(a b) a 2 b 2 完全平方公式: (a b) a 2ab b
整式
1.单项式:由数与字母的乘积构成的代数式叫做单项式。单项式 的数字因数叫做单项式的系数,字母指数和叫单项式的次数。 2.多项式:几个单项式的和叫做多项式。多项式中每个单项式叫 多项式的项,次数最高项的次数叫多项式的次数。 3.整式:单项式和多项式统称整式
数学中的二次根式与分式方程

数学中的二次根式与分式方程二次根式是数学中的一种重要概念,与之相关的分式方程也是数学中一个常见且有挑战性的问题。
本文将介绍二次根式的定义、性质以及与分式方程的关系,并通过例题进行具体说明。
一、二次根式的定义与性质1. 定义:二次根式是形如√a 的数,其中 a 为非负实数。
其中,√a 可以理解为满足b^2 = a 的非负实数b。
在二次根式中,a 称为根式的被开方数,b 称为根式的值。
2. 性质:(1)二次根式的值是不唯一的,因为一个数的平方可能有两个相反的值。
(2)二次根式的乘法:√a * √b = √(a * b)。
即根式的乘积等于被开方数的乘积的二次根式。
(3)二次根式的除法:√a / √b = √(a / b)。
即根式的商等于被开方数的除法的二次根式。
二、分式方程的概念与解法1. 概念:分式方程是一个含有分式的方程,其中方程中至少有一个变量(未知数)存在于分式中。
2. 解法:解决分式方程的关键是将方程中的分式转化为整式,从而得到更简化的等式。
下面将介绍三种常见的解法。
(1)通分法:将方程中的所有分式的分母找出最小公倍数,并使每个分式的分母都等于最小公倍数,然后将方程两边同乘以最小公倍数,消去分母。
(2)消去法:通过观察可以将分式方程进行简化,将分子或分母中某些数值相同的项通过消去的方式,从而得到一个更简单的等式,进而求解。
(3)代换法:对于某些特定的分式方程,可以通过适当的代换使得方程更加简洁,然后利用已知的数学性质求解。
三、例题分析1. 题目:求解方程 3 / (x+2) + 2 / (x-1) = 1解法:采用通分法解此方程。
首先,找到最小公倍数为 (x+2)*(x-1),然后将方程两边同时乘以(x+2)*(x-1),得到 3*(x-1) + 2*(x+2) = (x+2)*(x-1)。
经过展开和整理后,得到 7x - 7 = x^2 + x - 2。
进一步整理后变为 x^2 - 6x + 5 = 0。
(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。
2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。
如:-2x>4,不等式两边同除以-2得x<-2。
不等式组的解集是两个不等式解集的公共部分。
如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。
★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。
如25 可以写作 5 。
(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。
(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。
其中a≥0是 a 有意义的前提条件。
(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。
(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。
要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。
练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。
二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。
(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。
2022年中考数学考点一遍过考点03分式与二次根式含解析202222281136

考点03 分式与二次根式一、分式 1.分式的定义(1)一般地,整式A 除以整式B ,可以表示成A B 的形式,如果除式B 中含有字母,那么称A B为分式.(2)分式AB中,A 叫做分子,B 叫做分母. 【注意】①若B ≠0,则AB有意义;②若B =0,则AB无意义;③若A =0且B ≠0,则AB=0.2.分式的基本性质分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变. 用式子表示为(0)A A C C B B C ⋅=≠⋅或(0)A A C C B B C÷=≠÷,其中A ,B ,C 均为整式. 3.约分及约分法则 (1)约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分. (2)约分法则把一个分式约分,如果分子和分母都是几个因式乘积的形式,约去分子和分母中相同因式的最低次幂;分子与分母的系数,约去它们的最大公约数.如果分式的分子、分母是多项式,先分解因式,然后约分.【注意】约分的根据是分式的基本性质.约分的关键是找出分子和分母的公因式. 4.最简分式分子、分母没有公因式的分式叫做最简分式.【注意】约分一般是将一个分式化为最简分式,分式约分所得的结果有时可能成为整式. 5.通分及通分法则 (1)通分根据分式的基本性质,把几个异分母的分式分别化为与原来的分式相等的同分母的分式,这一过程称为分式的通分. (2)通分法则把两个或者几个分式通分:①先求各个分式的最简公分母(即各分母系数的最小公倍数、相同因式的最高次幂和所有不同因式的积);②再用分式的基本性质,用最简公分母除以原来各分母所得的商分别去乘原来分式的分子、分母,使每个分式变为与原分式的值相等,而且以最简公分母为分母的分式; ③若分母是多项式,则先分解因式,再通分.【注意】通分的根据是分式的基本性质.通分的关键是确定几个分式的最简公分母. 6.最简公分母几个分式通分时,通常取各分母系数的最小公倍数与所有字母因式的最高次幂的积作为公分母,这样的分母叫做最简公分母. 7.分式的运算 (1)分式的加减①同分母的分式相加减法则:分母不变,分子相加减. 用式子表示为:a c a cb b b±±=. ②异分母的分式相加减法则:先通分,变为同分母的分式,然后再加减. 用式子表示为:a c ad bc ad bcb d bd bd bd±±=±=. (2)分式的乘法乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母. 用式子表示为:a c a cb d b d⋅⋅=⋅. (3)分式的除法除法法则:分式除以分式,把除式的分子、分母颠倒位置后与被除式相乘. 用式子表示为:a c a d a db d bc b c⋅÷=⋅=⋅. (4)分式的乘方乘方法则:分式的乘方,把分子、分母分别乘方.用式子表示为:()(nn n a a n b b=为正整数,0)b ≠.(5)分式的混合运算含有分式的乘方、乘除、加减的多种运算叫做分式的混合运算.混合运算顺序:先算乘方,再算乘除,最后算加减.有括号的,先算括号里的. 二、二次根式1.二次根式的有关概念 (1)二次根式的概念形如)0(≥a a开方数.【注意】被开方数a 只能是非负数.即要使二次根式a 有意义,则a ≥0. (2)最简二次根式被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式. (3)同类二次根式化成最简二次根式后,被开方数相同的几个二次根式,叫做同类二次根式. 2.二次根式的性质(1)a ≥ 0(a ≥0); (2))0()(2≥=a a a ;(3(0)0(0)(0)a a a a a a >⎧⎪===⎨⎪-<⎩;(40,0)a b =≥≥;(50,0)a b ≥>. 3.二次根式的运算 (1)二次根式的加减合并同类二次根式:在二次根式的加减运算中,把几个二次根式化为最简二次根式后,若有同类二次根式,可把同类二次根式合并成一个二次根式. (2)二次根式的乘除 0,0)a b =≥≥;0,0)a b≥>.(3)二次根式的混合运算二次根式的混合运算顺序与实数的运算顺序一样,先乘方,后乘除,最后加减,有括号的先算括号内的.在运算过程中,乘法公式和有理数的运算律在二次根式的运算中仍然适用.考向一分式的有关概念1.分式的三要素:(1)形如AB的式子;(2),A B均为整式;(3)分母B中含有字母.2.分式的意义:(1)有意义的条件是分式中的字母取值不能使分母等于零,即0B≠.(2)无意义的条件是分母为0.(3)分式值为0要满足两个条件,分子为0,分母不为0.典例1x的取值范围是A.x≥4B.x>4 C.x≤4D.x<4 【答案】D4-x>0,解得:x<4,即x的取值范围是:x<4,故选D.【名师点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.1.若分式21xx-在实数范围内无意义,则x的取值范围是A.x≠1 B.x=1C.x=0 D.x>1考向二分式的基本性质分式基本性质的应用主要反映在以下两个方面:(1)不改变分式的值,把分式的分子、分母中各项的系数化为整数;(2)分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.典例2 分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为A.扩大为原来2倍B.缩小为原来的12倍C.不变D.缩小为原来的14倍【答案】B【解析】∵若x、y的值都扩大到原来的2倍,则为()()()2234623123 12432323x yx y x y x y xy xy xy xy++++===⋅∴把分式233x yxy+中的x、y的值都扩大到原来的2倍,则分式的值为原来的12,故选B.【名师点睛】本题考查了分式的基本概念和性质的相关知识.这类题目的一个易错点是:在没有充分理解题意的情况下简单地通过分式的基本性质得出分式值不变的结论.对照分式的基本性质和本题的条件不难发现,本题不符合分式基本性质所描述的情况,不能直接利用其结论.因此,在解决这类问题时,要注意认真理解题意.2.下列变形正确的是A.ab=22ab++B.0.220.1a b a bb b++=C.ab–1=1ab-D.ab=22(1)(1)a mb m++考向三分式的约分与通分1.约分与通分都是根据分式的基本性质,对分式进行恒等变形,即每个分式变形之后都不改变原分式的值;2.约分是针对一个分式而言,约分可使分式变得简单;3.通分是针对两个或两个以上的分式来说的,通分可使异分母分式化为同分母分式.典例3 关于分式的约分或通分,下列哪个说法正确A.21 1x x +-约分的结果是1xB .分式211x -与11x -的最简公分母是x -1 C .22xx 约分的结果是1 D .化简221x x --211x -的结果是1【答案】D 【解析】A 、211x x +-=11x -,故本选项错误; B 、分式211x -与11x -的最简公分母是x 2-1,故本选项错误; C 、22x x =2x ,故本选项错误;D 、221x x --211x -=1,故本选项正确,故选D .【名师点睛】本题主要考查分式的通分和约分,这是分式的重要知识点,应当熟练掌握. 3.下列分式中,是最简分式的是A .2xyxB .222x y-C .22x y x y +-D .22xx + 考向四 分式的运算(1)分式的加减运算:异分母分式通分的依据是分式的基本性质,通分时应确定几个分式的最简公分母.(2)分式的乘除运算:分式乘除法的运算与因式分解密切相关,分式乘除法的本质是化成乘法后,约去分式的分子分母中的公因式,因此往往要对分子或分母进行因式分解(在分解因式时注意不要出现符号错误),然后找出其中的公因式,并把公因式约去.(3)分式的乘方运算,先确定幂的符号,遵守“正数的任何次幂都是正数,负数的偶数次幂是正数,负数的奇数次幂是负数”的原则.(4)分式的混合运算有乘方,先算乘方,再算乘除,有时灵活运用运算律,运算结果必须是最简分式或整式.注意运算顺序,计算准确.典例4 化简:2291(1)362m m m m -÷---.【解析】2291(1)362m m m m -÷--- 33m m+=.【名师点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.4.先化简,再求值:2221()211x xx x x x+÷--+-,其中x=4.考向五二次根式的概念与性质1.二次根式的意义:首先考虑被开方数为非负数,其次还要考虑其他限制条件,这样就转化为解不等式或不等式组问题,如有分母时还要注意分式的分母不为0.2.利用二次根式性质时,如果题目中对根号内的字母给出了取值范围,那么应在这个范围内对根式进行化简,如果题目中没有给出明确的取值范围,那么应注意对题目条件的挖掘,把隐含在题目条件中所限定的取值范围显现出来,在允许的取值范围内进行化简.典例5 函数yA.x>0且x≠0B.x≥0且x≠12C.x≥0D.x≠12【答案】B【解析】根据题意得,x≥010≠,∴x≥0且x≠12.故选B.【名师点睛】本题考查了函数自变量取值范围的求法.要使得本题函数式子有意义,必须满足被开方数是非负数且分母不为零.5.已知:x>4=__________.典例6 下列二次根式是最简二次根式的是A B C D【答案】C【解析】A=,故原选项不是最简二次根式;B=C是最简二次根式;D =4,故原选项不是最简二次根式, 故选C .6;.其中是最简二次根式的有 A .2个 B .3个 C .4个D .5个考向六 二次根式的运算1.二次根式的运算(1)二次根式的加减法就是把同类二次根式进行合并.(2)二次根式的乘除法要注意运算的准确性;要熟练掌握被开方数是非负数.(3)二次根式混合运算先乘方,再乘除,最后加减,有括号的先算括号里的(或先去括号). 2.比较分式与二次根式的大小(1)分式:对于同分母分式,直接比较分子即可,异分母分式通常运用约分或通分法后作比较; (2)二次根式:可以直接比较被开方数的大小,也可以运用平方法来比较. 典例7 下列计算正确的是A =B 6=C 5=D 4=【答案】A【解析】A 、原式-B 、原式CD 、原式,错误, 故选A .7.计算:(1(2)(–2.典例8 比较大小:__________5(填“>” “<”或“=”). 【答案】>【解析】因为2228,525==,28>25,所以>5.故答案为:>.【名师点睛】比较二次根式的大小,可以转化为比较被开方数的大小,也可以将两个数平方,计算出结果,再比较大小.8.设a b 1,c,则a ,b ,c 之间的大小关系是 A .c >b >a B .a >c >b C .b >a >cD .a >b >c1(2)a -有意义,则实数a 的取值范围是 A .1a ≥B .2a ≠C .1a ≥-且2a ≠D .a >22.若分式293x x -+的值为零,则x 值为A .x =±3B .x =0C .x =-3D .x =33.下列式子是最简二次根式的是ABCD .4.在化简分式23311x x x-+--的过程中,开始出现错误的步骤是 A .33(1)(1)(1)(1)(1)x x x x x x -+-+-+-B .331(1)(1)x x x x --++-C .22(1)(1)x x x --+-D .21x -- 5.下列关于分式的判断,正确的是A .当x =2时,12x x +-的值为零 B .当x ≠3时,3x x -有意义C .无论x 为何值,31x +不可能得整数值D .无论x 为何值,231x +的值总为正数6.计算33a a a +-的结果是 A .6a a + B .6a a-C .1aD .17a 的值为 A .1 B .2C .23D .328.化简2211x ax ÷--的结果是21x +,则a 的值是A .1B .-1C .2D .-29.已知 1x <,则化简的结果是 A .1x - B .1x - C .1x --D .1x +10.下列运算中错误的是AB .+C2D 11.若分式11x x -+的值为0,则x 的值为 A .1B .−1C .±1D .无解12 A .2B .21x - C .23x -D .41x x --13.若x 、y ()2210y -=,则x y +的值等于A .1B .32 C .2D .5214a=,则1x x+的值为 A .22a - B .2a C .24a -D .不确定15.16最接近的整数是__________.17.比较大小:>、<、或=”)18.计算(-2)(-2)的结果是__________.19.已知a ,b 互为倒数,代数式222a ab b a b+++_____________.20.若1112a b -=,则a b abab a b--=-__________.21.计算:(10)a ≥;(2.22.先化简,再求值:22(1)a b a b a b -÷--,其中1a =,1b =. 23.先化简:22144(1)1m m m m m-+-÷--,再从-1≤m ≤2中选取合适的整数代入求值. 24.先化简,再求值:22121(1)1121m m m m m --÷-+--+,其中m 为一元二次方程230x x +-=的根. 25.先化简,再求代数式21211a aa a a -÷-+-的值,其中a =2cos30°.1.(2019•常州)若代数式13x x +-有意义,则实数x 的取值范围是A .x =-1B .x =3C .x ≠-1D .x ≠32.(2019x 的取值范围是 A .x >0 B .x ≥-1 C .x ≥1D .x ≤13.(2019•黄石)若式子2x -在实数范围内有意义,则x 的取值范围是 A .x ≥1且x ≠2B .x ≤1C .x >1且x ≠2D .x <14.(2019•山西)下列二次根式是最简二次根式的是A BCD5.(2019•贵港)若分式211x x -+的值等于0,则x 的值为A .±1B .0C .-1D .16.(2019=A .B .4CD .7.(2019•扬州)分式13x-可变形为 A .13x + B .13x -+ C .13x -D .13x --8.(2019•江西)计算1a ÷(21a-)的结果为 A .a B .-aC .31a -D .31a 9.(2019·天津)计算2211a a a +++的结果是 A .2B .22a +C .1D .41aa + 10.(2019•临沂)计算21a a --a -1的正确结果是A .11a -- B .11a - C .211a a ---D .211a a --11.(2019•北京)如果m +n =1,那么代数式22221()()m n m n m mn m++⋅--的值为 A .-3B .-1C .1D .312.(2019•河北)如图,若x 为正整数,则表示22(2)1441x x x x +-+++的值的点落在 A .段①B .段②C .段③D .段④13.(2019·重庆A 卷)估计 A .4和5之间 B .5和6之间 C .6和7之间D .7和8之间14.(2019有意义时,x 应满足的条件是__________.15.(2019的结果是__________.16=__________.17.(2019•吉林)计算:22yx·x y =__________.18.(2019·天津)计算1)的结果等于__________.19.(2019·南充)计算:2111x x x+=--__________.20.(2019•武汉)计算221164a a a ---的结果是__________.21.(20192)2 22.(2019•益阳)化简:2244(4)2x x x x+--÷. 23.(2019•深圳)先化简(132x -+)2144x x x -÷++,再将x =-1代入求值.24.(2019•河南)先化简,再求值:2212(1)244x x xx x x +--÷--+,其中x . 25.(2019•烟台)先化简(x +373x --)2283x xx -÷-,再从0≤x ≤4中选一个适合的整数代入求值.26.(2019•安顺)先化简2221(1)369x x x x -+÷--+,再从不等式组24324x x x -<⎧⎨<+⎩的整数解中选一个合适的x 的值代入求值.1.【答案】B 【解析】∵分式21xx-在实数范围内无意义, ∴1-x =0,即x =1, 故选B . 2.【答案】D【解析】A .a b ≠22a b ++,故A 错误; B .0.20.1a b b +=210a b b +,故B 错误;C .a b -1=a b b-,故C 错误,故选D . 3.【答案】D 【解析】A 、2xy x =yx,错误; B 、222x y -=1x y-,错误;C 、22x y x y +-=1x y-,错误;D 、22xx +是最简分式,正确. 故选D .4.【解析】2221()211x x x x x x+÷--+-=2(+1)2(111)()()x x x x x x x --÷--=2()(+1)111)(x x x x x x -⋅-+=21x x -, 当x =4时,原式=2416413=-.5.【答案】B【解析】根据二次根式被开方数必须是非负数的条件知,必须101x x -≥⇒≥.故选B .6.【答案】B==,=,∴ 故选B .7.【解析】(1)原式162.(2)原式=(–4)÷2=4÷2=12. 8.【答案】D【解析】a −1),b −1,c)×−1),,∴a >b >c .故选D .1.【答案】C【解析】由题意得:a+1≥0,且a–2≠0,解得,1a≥-且2a≠.故选C.2.【答案】D【解析】∵分式293xx-+的值为零,∴x2-9=0且x+3≠0.解得:x=3.故选D.3.【答案】C【解析】A=B,不是最简二次根式,故本选项不符合题意;CD、=故选C.4.【答案】B【解析】∵正确的解题步骤是:23311xx x-+--33(1)(1)(1)(1)(1)x xx x x x-+=-+-+-333(1)(1)x xx x---=+-,∴开始出现错误的步骤是331(1)(1)x xx x--++-.去括号是漏乘了.故选B.5.【答案】1【解析】∵x>4,∴x-4>0,∴原式=44xx--=1,故答案为:1.【名师点睛】本题考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键. 6.【答案】D 【解析】33331a a a a a++--==,故选D . 7.【答案】D【解析】1+4a a =-,解得32a =,故选D . 8.【答案】A 【解析】22122111111x x a x x x x +=÷==--+--,∴a =1,故选A . 9.【答案】B【解析】∵x <1,∴x -1<0x -1|=1-x .故选:B . 10.【答案】B【解析】A .原式,所以A 选项的计算正确;B .和B 选项的计算错误C .原式=2,所以C 选项的计算正确;D .原式=4,所以D 选项的计算正确. 故选B . 11.【答案】A【解析】∵分式11x x -+的值为0,∴|x |−1=0,且x +1≠0,解得:x =1.故选A .12.【答案】B(13x -−11x -)•(x −3)=13x -•(x −3)−11x -•(x −3)=1−31x x --=21x -.故选B . 13.【答案】B【解析】()2210y -=,∴()2121022101x x y y ⎧-=⎧=⎪⎪⇒⎨⎨-=⎪⎪⎩=⎩.∴13122x y +=+=.故选B . 14.【答案】Ax +2+1x =a ²,∴x +1x=a ²−2,故选A . 15==.16.【答案】4<<,,故答案为:4. 17.【答案】<,因为12<18,所以18.【答案】-16【解析】原式=-()()=-(20-4)=-16. 故答案为:-16. 19.【答案】1【解析】对待求值的代数式进行化简,得()ab a b a b +⋅+ab =,∵a ,b 互为倒数,∴ab =1,∴原式=1.故答案为:1. 20.【答案】–32【解析】∵1112a b -=,∴a −b =−2ab .∴原式=−22ab ab ab ab --=−2+12=−32. 故答案为:−32.21.【解析】(1)原式=4a 2.(2)原式. 22.【解析】22(1)a b a b a b-÷-- a b =+,当1a =,1b =时,原式11=23.【解析】原式=2-2(1)1(2)m m m m m -⋅-- =2mm -, 根据分式有意义的条件可知:m =-1, ∴原式=13. 24.【解析】原式=()()()22122111111m m m m m m m --+--÷++-- =()()()()21121112m m m m m m m ---⋅++-- =()1111m m m m --++ =()()11m m m m --+=()11m m + =21m m+.由m 是方程230x x +-=的根,得到23m m +=, 所以原式=13. 25.【解析】原式=2111(1)1a a a a --+÷-- =211(1)a a a a --⨯-,=1a. ∵a=2= ∴原式3=.1.【答案】D 【解析】∵代数式13x x +-有意义,∴x -3≠0,∴x ≠3.故选D . 2.【答案】C【解析】由题意,得x -1≥0,解得x ≥1,故选C . 3.【答案】A【解析】依题意,得x -1≥0且x -200,解得x ≥1且x ≠2.故选A . 4.【答案】D 【解析】A 2=,故A 不符合题意; B 7=,故B 不符合题意; C =C 不符合题意;D D 符合题意.故选D .5.【答案】D 【解析】21(1)(1)11x x x x x -+-==++x -1=0,∴x =1,经检验:x =1是原分式方程的解,故选D . 6.【答案】B4==.故选B .7.【答案】D 【解析】分式13x -可变形为:13x --.故选D . 8.【答案】B 【解析】原式1a =·(-a 2)=-a ,故选B . 9.【答案】A【解析】原式=222(1)211a a a a ++==++,故选A . 10.【答案】B 【解析】原式()211a a a =-+-22111a a a a -=---11a =-.故选B . 11.【答案】D【解析】原式=2()m n m n m m n ++--·(m +n )(m -n )=3()m m m n -·(m +n )(m -n )=3(m +n ), 当m +n =1时,原式=3.故选D .12.【答案】B 【解析】∵2222(2)1(2)111441(2)111x x x x x x x x x x ++-=-=-=+++++++, 又∵x 为正整数,∴12≤x <1,故表示22(2)1441x x x x +-+++的值的点落在②,故选B . 13.【答案】C【解析】,又因为,所以,故选C . 14.【答案】x >8有意义时,x -8>0,解得x >8.故答案为:x >8. 15.【答案】3,故答案为:3.16.【答案】【解析】原式==.故答案为:17.【答案】12x【解析】22y x ·12x y x =,故答案为:12x. 18.【答案】2【解析】原式=3-1=2.故答案为:2.19.【答案】x +1 【解析】2111x x x +--=2111x x x ---211x x -=-()()111x x x +-=-1x =+,故答案为:x +1. 20.【答案】14a + 【解析】原式()()()()244444a a a a a a +=-+-+-()()2444a a a a --=+-()()444a a a -=+-14a =+. 故答案为:14a +. 21.【解析】原式63⨯=7.22.【解析】原式=2(2)2(2)(2)x x x x x -⋅+- =242x x -+. 23.【解析】原式21(2)21x x x x -+=⨯+-=x +2,将x =-1代入得:原式=x +2=1.24.【解析】原式=212(2)()22(2)x x x x x x x +---÷--- =322x x x -⋅- =3x ,当x时,原式25.【解析】(x +373x --)2283x xx -÷-=(29733x x x ----)2283x xx -÷- (4)(4)3x x x +-=-·32(4)x x x -- 42x x +=,当x =1时,原式145212+==⨯.26.【解析】原式232(3)3(1)(1)x x x x x -+-=⨯-+- =31x x -+,解不等式组24324x x x -<⎧⎨<+⎩①②得-2<x <4, ∴其整数解为-1,0,1,2,3, ∵要使原分式有意义, ∴x 可取0,2.∴当x =0时,原式=-3, (或当x =2时,原式=13-).。
根式及其运算.

根式及其运算二次根式的概念、性质以及运算法则是根式运算的基础,在进行根式运算时,往往用到绝对值、整式、分式、因式分解,以及配方法、换元法、待定系数法等有关知识与解题方法,也就是说,根式的运算,可以培养同学们综合运用各种知识和方法的能力.下面先复习有关基础知识,然后进行例题分析.二次根式的性质:二次根式的运算法则:设a,b,c,d,m是有理数,且m不是完全平方数,则当且仅当两个含有二次根式的代数式相乘时,如果它们的积不含有二次根式,则这两个代数式互为有理化因式.例1 化简:法是配方去掉根号,所以因为x-2<0,1-x<0,所以原式=2-x+x-1=1.=a-b-a+b-a+b=b-a.说明若根式中的字母给出了取值范围,则应在这个范围内进行化简;若没有给出取值范围,则应在字母允许取值的范围内进行化简.例2 化简:分析两个题分母均含有根式,若按照通常的做法是先分母有理化,这样计算化简较繁.我们可以先将分母因式分解后,再化简.解法1 配方法.配方法是要设法找到两个正数x,y(x>y),使x+y=a,xy=b,则解法2 待定系数法.例4 化简:(2)这是多重复合二次根式,可从里往外逐步化简.分析被开方数中含有三个不同的根式,且系数都是2,可以看成解设两边平方得②×③×④得(xyz)2=5×7×35=352.因为x,y,z均非负,所以xyz≥0,所以xyz=35.⑤⑤÷②,有z=7.同理有x=5,y=1.所求x,y,z显然满足①,所以解设原式=x,则解法1 利用(a+b)3=a3+b3+3ab(a+b)来解.将方程左端因式分解有(x-4)(x2+4x+10)=0.因为x2+4x+10=(x+2)2+6>0,所以x-4=0,x=4.所以原式=4.解法2说明解法2看似简单,但对于三次根号下的拼凑是很难的,因此本题解法1是一般常用的解法.例8 化简:解(1)本小题也可用换元法来化简.解用换元法.解直接代入较繁,观察x,y的特征有所以3x2-5xy+3y2=3x2+6xy+3y2-11xy=3(x+y)2-11xy=3×102-11×1=289.例11 求分析本题的关键在于将根号里的乘积化简,不可一味蛮算.解设根号内的式子为A,注意到1=(2-1),及平方差公式(a+b)(a-b)=a2-b2,所以A=(2-1)(2+1)(22+1)(24+1)…(2256+1)+1=(22-1)(22+1)(24+1)(28+1)…(2256+1)+1=(24-1)(24+1)(28+1)(216+1)…(2256+1)+1=…=(2256-1)(2256+1)+1=22×256-1+1=22×256,的值.分析与解先计算几层,看一看有无规律可循.解用构造方程的方法来解.设原式为x,利用根号的层数是无限的特点,有两边平方得两边再平方得x4-4x2+4=2+x,所以x4-4x2-x+2=0.观察发现,当x=-1,2时,方程成立.因此,方程左端必有因式(x +1)(x-2),将方程左端因式分解,有(x+1)(x-2)(x2+x-1)=0.解因为练习1.化简:2.计算:3.计算:。
2011中考数学代数式、整式、分式、二次根式知识点

2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。
初中数学二次根式基础知识点(共6篇)

初中数学二次根式根底知识点〔共6篇〕篇1:初中数学二次根式根底知识点 1.二次根式概念:式子a(a≥0)叫做二次根式。
2.最简二次根式:必须同时满足以下条件:3.同类二次根式:二次根式化成最简二次根式后,假设被开方数一样,那么这几个二次根式就是同类二次根式。
4.二次根式的_质:a(a0)22(1)(a)=a(a≥0);(2)aa0(a=0);5.二次根式的运算:a(a0)(1)因式的外移和内移:假如被开方数中有的因式可以开得尽方,那么,就可以用它的算术根代替而移到根号外面;假如被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式单项式和多项式统称为整式。
1.单项式:1)数与字母的乘积这样的代数式叫做单项式。
单独的一个数或字母(可以是两个数字或字母相乘)也是单项式。
2)单项式的系数:单项式中的数字因数及_质符号叫做单项式的系数。
3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式:1)几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
一个多项式有几项就叫做几项式。
2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
3.多项式的排列:1).把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。
2).把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于单项式的项,包括它前面的_质符号,因此在排列时,仍需把每一项的_质符号看作是这一项的一局部,一起挪动初中数学一元二次方程常见考法1.考察一元二次方程的根与系数的关系(韦达定理):这类题目有着解题规律性强的特点,题目设置会很灵敏,所以一直很吸引命题者。
整式、分式、二次根式的性质和概念;

第五章整式、分式、二次根式得知识梳理1、整式得概念与指数:与统称为整式。
单项式包括: 、、 ;一个单项式中所有字母得叫做这个单项式得次数。
多项式:几个单项式得代数与多项式。
单项式中次数最得项就就是这个多项式得次数。
2、分式得概念与意义:一般地,形如式子,且B≠0叫做分式。
(1)、分式有意义得条件:(2)、分式无意义得条件:(3)、分式为0得条件:(4)、分式得基本性质:分式得分子与分母同时 (一个不等于0)得整式,分式得值不变。
(5)、约分:(6)、最简分式:一个分式得分子与分母没有公因式时,这种分式叫做最简分式。
(7)、通分:(8)、最简公分母:(9)、分母有理化:把分母中得根号化去,叫做分母有理化。
注意:分母有理化时,分子与分母需要同时乘分母得有理化因式。
3、二次根式得概念与意义:(1)、定义:形如(a≥0)得式子,叫做二次根式。
(2)、二次根式有意义得条件:二次根式无意义得条件:(3)、二次根式得性质:① =a(a≥0);②= =③= (a≥0, b≥0);④=( a≥0, b>0)。
(4)、最简二次根式:①中不含二次根式;②被开方数中不含能开得尽得因数或因式。
(5)、同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。
知识点二:代数式得运算(一)、整式得加减运算(1)、同类项:(2)、合并同类项法则:(3)、去括号法则:(4)、整式得加减得实质就就是合并同类项。
(二)、整式得乘除(1)、同底数幂得乘法:a m·a n= ,底数不变,指数相加、(2)、幂得乘方与积得乘方:(a m)n= ,底数不变,指数相乘;(3)、(ab)n= ,积得乘方等于各因式乘方得积、(4)、单项式得乘法:系数相乘,相同字母 ,只在一个因式中含有得字母,连同指数写在积里、(5)、单项式与多项式得乘法:m(a+b+c)= ,用单项式去乘多项式得每一项,再把所得得积相加、(6)、多项式得乘法:(a+b)·(c+d)= ,先用多项式得每一项去乘另一个多项式得每一项,再把所得得积相加、(7)、乘法公式:平方差公式:(a+b)(a-b)= ,两个数得与与这两个数得差得积等于这两个数得平方差;完全平方公式:①(a+b)2= ,等于它们得 ,加上它们得积得2倍;② (a-b)2= ,等于它们得 ,减去它们得积得2倍; 十字相乘法:+(m+n)x+mn=( )( )(8)、同底数幂得除法:a m÷a n= ,底数不变,指数相减、(9)、零指数与负指数公式:a0= (a≠0); a-n= ,(a≠0)、注意:00,0-2无意义;(10).单项式除以单项式:(11).多项式除以单项式:★整式混合运算:先 ,后 ,最后 ,有括号先算括号内、★整式得化简:①合并到不能再合并;②首项不能为负数;★整式得因式分解(1)提共因式法:(2)公式法:(3)十字相乘法:(4)分组法,在循环运用“提十公分”法;(三)、分式得运算(1)、分式得加减法:①、同分母得分式相加减,分母 ,把分子相。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章整式、分式、二次根式的知识梳理
1、整式的概念和指数:
与统称为整式。
单项式包括:、、;
一个单项式中所有字母的叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
单项式中次数最的项就是这个多项式的次数。
2、分式的概念和意义:
A,且B≠0叫做分式。
一般地,形如式子
B
(1)、分式有意义的条件:
(2)、分式无意义的条件:
(3)、分式为0的条件:
(4)、分式的基本性质:分式的分子与分母同时(一个不等于0)的整式,分式的值不变。
(5)、约分:
(6)、最简分式:一个分式的分子与分母没有公因式时,这种分式叫做最简分式。
(7)、通分:
(8)、最简公分母:
(9)、分母有理化:把分母中的根号化去,叫做分母有理化。
注意:分母有理化时,分子与分母需要同时乘分母的有理化因式。
3、二次根式的概念和意义:
(1)、定义:形如a (a ≥0)的式子,叫做二次根式。
(2)、二次根式有意义的条件:
二次根式无意义的条件:
(3)、二次根式的性质:
()a 2
=a(a ≥0); a 2=a =⎪⎩
⎪⎨⎧<-=>)0()0(0)0(a a a a a ab =a b ⋅ (a ≥0, b ≥0);
④b a =b
a ( a ≥0,
b >0)。
(4)、最简二次根式:
中不含二次根式;
被开方数中不含能开得尽的因数或因式。
(5)、 同类二次根式:最简二次根式后,被开方数相同,叫做同类二次根式。
知识点二:代数式的运算
(一)、整式的加减运算
(1)、同类项:
(2)、合并同类项法则:
(3)、去括号法则:
(4)、整式的加减的实质就是合并同类项。
(二)、整式的乘除
(1)、同底数幂的乘法:a m ·a n = ,底数不变,指数相加.
(2)、幂的乘方与积的乘方:(a m)n= ,底数不变,指数相乘;(3)、(ab)n= ,积的乘方等于各因式乘方的积.
(4)、单项式的乘法:系数相乘,相同字母,只在一个因式中含有的字母,连同指数写在积里.
(5)、单项式与多项式的乘法:m(a+b+c)= ,用单项式去乘多项式的每一项,再把所得的积相加.
(6)、多项式的乘法:(a+b)·(c+d)= ,先用多项式的每一项去乘另一个多项式的每一项,再把所得的积相加.(7)、乘法公式:
平方差公式:(a+b)(a-b)= ,两个数的和与这两个数的差的积等于这两个数的平方差;
完全平方公式:
① (a+b)2= ,等于它们的,加上它们的积的2倍;
② (a-b)2= ,等于它们的,减去它们的积的2倍;
十字相乘法:x2+(m+n)x+mn=()()
(8)、同底数幂的除法:a m÷a n= ,底数不变,指数相
减.
(9)、零指数与负指数公式:
a0= (a≠0); a-n= ,(a≠0). 注意:00,0-2无意义;(10).单项式除以单项式: (11).多项式除以单项式:
★整式混合运算:先,后,最后,有括号先算括号内.
★整式的化简:合并到不能再合并;首项不能为负数;
★整式的因式分解
(1)提共因式法:
(2)公式法:
(3)十字相乘法:
(4)分组法,在循环运用“提十公分”法;
(三)、分式的运算
(1)、分式的加减法:
①、同分母的分式相加减,分母,把分子相。
②、异分母的分式相加减,先,变成同分母的分式,然后相加减。
(2)、分式的乘除法:
①、分式乘分式,用作为分子,作为分母。
②、分式除以分式,等于被除式乘除式的。
(3)、分式的方程的运算
1、分式方程
里含有未知数的方程;
2、分式方程的一般方法
解分式方程的思想是将“分式方程”转化为“整式方程”。
它的一般解法是:
(1)去分母,方程两边都乘以;
(2)解所得的方程;
(3)验根:将所得的根代入,若等于零,就是,应该;若不等于零,就是。
(四)、二次根式的运算
(1)、二次根式的加减实质就是合并同类二次根式。
(2)、二次根式的乘法:
(3)、二次根式的除法:
(4)、分母的有理化:。