弹性力学及有限元法学习总结

合集下载

弹性力学与有限元分析

弹性力学与有限元分析

第一部分:有限元基本理论与方法长安大学张青哲一、有限元基本理论有限元方法是一种有效的数值计算方法。

目前,它已广泛地应用于各类工程技术领域,如结构的应力、应变分析,各种连续问题的场变量——温度、压力、流速势、电磁场等问题的数值计算,并日益受到重视。

其基本思想是:将一个连续的求解域离散化,即分割成彼此用节点(离散点)互相联系的有限个单元,在单元体内假设近似解的模式,用有限个节点上的未知参数表征单元的特性,然后用适当的方法,将各个单元的关系式组合成包含这些未知参数的方程组,求解这个方程组,得出各节点的未知参数,利用插值函数求出近似解。

随着单元尺寸的缩小,单元数目也就增加,解的近似程度不断提高,如果单元满足收敛要求的话,近似解就收敛于真实解。

二、有限元法的分类与求解步骤从选择基本未知量的角度来看,有限元法分为以下三类:�位移法——以节点位移作为基本未知量�力法——以节点力作为基本未知量�混合法——取一部分节点位移和一部分节点力作为基本未知量由于位移法比较简单,计算规律性强,便于编写计算机通用程序,因此在用有限元法进行结构分析时,大多采用位移法。

其求解步骤如下:1、结构的离散化——单元划分2、假设单元的位移插值函数和形函数3、计算单元刚度矩阵4、载荷移置——把非节点载荷等效地移置到节点上5、计算结构刚度矩阵,形成结构刚度方程6、引入位移边界条件,求解方程7、计算应力与应变三、两种平面问题平面问题分为平面应力问题和平面应变问题两大类。

体力——指分布于物体体积内的外力,它作用于物体内部的各个质点上,如重力、磁力和运动时的惯性力等。

面力——指均布于物体表面上的外力,它作用于物体表面的各个质点上,如物体间的接触力和气体压力等。

1、平面应力问题在这类问题的应力分量中,凡带某一脚标的(如z )都为零。

其特点是:几何形状特点:物体在一个方向(如z 向)上的尺寸远 小于其他两个方向的几何尺寸,如薄 板。

所受外力特点:在薄板的两个侧面上无面力作用,只 在其边缘受到平行于板面且沿板厚均 匀分布的面力(面力分量中 )作 用,同时体力也平行于板面且不沿板厚变化(体力分量中 )。

弹性力学基础及有限单元法

弹性力学基础及有限单元法

第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。

2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。

实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。

根据这个假设所得的结果与实验结果是符合的。

(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。

这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。

钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。

木材不是各向同性的。

(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。

同时还假定材料服从胡克定律,即应力与形变成正比。

(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。

在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。

在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。

(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。

也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。

物体中初应力的性质及数值与物体形成的历史有关。

若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。

上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。

弹性力学作业总结

弹性力学作业总结

弹性⼒学作业总结⼀、综述这学期我们有幸跟着邱⽼师学习了弹性⼒学这门课程,虽然我本科是学习机械专业的,但经过这学期的系统学习,使我对弹性⼒学的认识也越发的清晰,我对平⾯问题、空间问题等基本知识有了较为清晰的了解与掌握,会⽤逆解法、半逆解法、差分法、变分法和有限元法解决⼀些基础的弹性⼒学问题。

弹性⼒学是固体⼒学的⼀个分⽀,研究弹性体由于外⼒作⽤或温度改变等原因⽽发⽣的应⼒、形变和位移。

它是学习塑性⼒学、断裂⼒学、有限元⽅法的基础,⼴泛应⽤于建筑、机械、化⼯、航天等⼯程领域。

本课程较为完整的表现了⼒学问题的数学建模过程,建⽴了弹性⼒学的基本⽅程和边值条件,并对⼀些问题进⾏了求解。

弹性⼒学基本⽅程的建⽴为进⼀步的数值⽅法奠定了基础。

⼆、绪论弹性⼒学所依据的基本规律有三个:变形连续规律、应⼒-应变关系和运动(或平衡)规律,它们有时被称为弹性⼒学三⼤基本规律。

弹性⼒学中许多定理、公式和结论等,都可以从三⼤基本规律推导出来。

通过对弹性⼒学的学习,我感觉整本书就讲了⼗五个控制⽅程解⼗五个未知数。

⽽剩下的问题就是如何求解这些⽅程的问题,这也是数学和⼒学结合最紧密的地⽅。

⽽求解的⽅法⽆外乎有:基于位移的求解(位移法)和基于应⼒的求解(应⼒函数法),差分法、变分法。

⽽前⼈的研究⼤部分都是如何使这些⽅程求解起来更⽅便。

弹性⼒学思路清晰,但是⽅程和公式复杂。

1.⼯程⼒学问题建⽴⼒学模型的过程,⼀般要对三⽅⾯进⾏简化:结构简化、材料简化及受⼒简化。

建模过程如右图:结构简化:如空间问题向平⾯问题的简化,向轴对称问题的简化,实体结构向板、壳结构的简化。

受⼒简化:根据圣维南原理,复杂⼒系简化为等效⼒系。

材料简化:根据各向同性、连续、均匀等假设进⾏简化。

在建⽴数学模型的过程中,通常要注意分清问题的性质进⾏简化:线性化和实验验证。

2.弹性⼒学的基本内容就是研究研究弹性体由于外⼒作⽤或温度改变等原因⽽发⽣的应⼒、形变和位移。

应⽤在⼯程中的实例有⽐赛斜塔,⽔轮机以及各种齿轮等等。

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。

正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。

弹性力学的研究对象:材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。

结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。

弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。

弹性力学研究方法:在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。

弹性力学的基本假设:1)连续性,假定物体是连续的。

连续性因此,各物理量可用连续函数表示。

2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不计,由此得到的弹性力学微分方程将是线性的。

4)完全弹性假设假设固体材料是完全弹性的。

5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所引起的。

有限元法的基本思想:有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。

及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组合体来加以分析。

有限元分析第3章弹性力学基础知识2

有限元分析第3章弹性力学基础知识2

应变能密度的性质
U0 1 x x y y z z xy xy yz yz zx zx 2 1 1 2 2 2 2 2 2 U 0 ij x y z x y y z z x xy yz zx 2E E 2G 1 2 2 2 2 2 2 2 U 0 ij e 2 G G x y z xy yz zx 2
1
1
1 1
1 0 0 0
0 0 0 1 2 2 1 0 0
0 0 0 0 1 2 2 1 0
1
0 0 0
xy yz zx
xy
G
yz
G
0 x 0 y z 0 xy yz 0 zx 1 2 2 1 0
2、力的边界条件
边界上给定面力时,则物体边界上的应 力应满足与面力相平衡的力的平衡条件
X 0
以二维问题为例
注意ds为边界斜边的长度,边界外法 线n的方向余弦l=dy/ds,m=dx/ds
有:
一、弹性力学的边界条件
以二维问题为例
同理:
Y 0
M 0
一、弹性力学的边界条件
以二维问题为例
x z y
T
w (x,y,z) dz v dx u
Sp
dy
Ω
Su
一、弹性力学的边界条件
1、位移边界条件
T 边界上已知位移时,应建 立物体边界上点的位移与 给定位移相等的条件
w (x,y,z) dz v dx u dy

弹性力学总结

弹性力学总结

通过圣维南原理的使用,可以将一些难以处理的边界条件
转化为基本方程所能够满足的边界条件,使得弹性力学问题得 到解答。
应用的注意事项:
1、取代原力系的必须是静力等效力系:主失量和主矩相等。 2、应用时不能讨论局部应力场。
弹性力学问题的提出
极坐标中的基本方程和边界条件
(1)平衡微分方程

1 f 0 2 1 f 0
(2)几何方程
(4-9)

u
u 1 u u u 1 u
(4-13)
弹性力学问题的提出
(3)物理方程(平面应力问题)
1 ( ) E 1 ( ) E 2(1 ) E
xБайду номын сангаас
0, 0,
o
a ( )
a

r
rd cos ( ) r rd sin 0 rd sin ( ) r rd cos 0
y
a ( )
a

r
M
0, ( ) r rd r M 0
习题课
A cos 2 B sin 2 C D
(3)求应力分量一般表达式:将上式代入(4-15),得 应力分量为:
1 1 2 1 2 2 4 A cos 2 4 B sin 2 2 2 0 1 1 ( ) 2 2 A sin 2 2 B cos 2 C
2 2
0
2
(4-14)

弹性力学及有限元

弹性力学及有限元

热传导案例
总结词
热传导是有限元分析中用于模拟物体内部热量传递规律的应用之一。
详细描述
在电子、机械、化工和材料等领域,热传导分析用于研究材料的热性能、热应力和热变形等。通过有 限元方法,可以模拟物体内部的热量传递过程,预测温度分布和热应力分布,优化材料和系统的热设 计。
06
结论展望
结论
01
02
有限元分析
有限元分析是一种数值分析方法,通过将复杂的物体或系统离散 化为有限个小的单元(或称为元素),并分析这些单元的应力、 应变和位移,从而对整个物体或系统的行为进行预测和分析。
主题的重要性
工程应用
弹性力学和有限元分析在工程领域中具有广泛的应用,如结 构分析、机械设计、航空航天、土木工程等。通过这些方法 ,工程师可以更准确地预测和分析结构的性能,优化设计, 提高安全性。
03
04
研究意义
弹性力学及有限元分析在工程 领域具有广泛应用,为复杂结 构的分析提供了有效方法。
主要成果
本文系统地介绍了弹性力学的 基本原理和有限元分析的方法 ,并通过实例验证了其有效性 。
研究限制
由于时间和资源的限制,本研 究未能涵盖所有相关领域,未 来研究可进一步拓展。
对实践的指导意义
本文为实际工程中的结构分析 提供了理论依据和实践指导, 有助于提高结构的安全性和稳 定性。
优势
有限元方法具有广泛的适用性,可以用于求解各种复杂的物理问题;能够处理 复杂的几何形状和边界条件;可以通过增加单元数目来提高解的精度;可以方 便地处理非线性问题和材料非均质性问题等。
局限性
有限元方法需要较大的计算资源和时间,尤其对于大规模问题;对于某些特殊 问题(如高速冲击、爆炸等),需要采用特殊处理方法;对于多物理场耦合问 题,需要采用多场耦合有限元方法等。

有限元基础课程学习总结

有限元基础课程学习总结

有限元基础理论学习总结报告中国矿业大学(北京)14级硕士王涛通过课上和课下的学习,对有限元基础理论有了一定的了解和认识。

经过学习,更加深刻的理解了有限元的离散、单元类型、插值函数构造和等参变换等知识,现对有限元的基本理论和用法做了如下学习和报告。

已经发展的偏微分方程数值分析方法可以分为两大类。

一类是有限差分法,其特点是直接求解基本方程和相应定解条件的近似解,求解步骤归纳为:首先将求解域划分为网格,然后在网格的节点上用差分方程来近似微分方程。

借助于有限差分法能够求解相当复杂的问题,特别是求解方程建立于固结在空间的坐标系(Euler坐标系)的流体力学问题,有限差分法有自身的优势,因此在流体力学领域内,至今仍占支配地位。

但是对于固体结构问题,由于方程通常建立于固结的物体上的坐标系(Lagrange坐标系)和形状复杂,另一类数值分析方法——有限元法则更为合适。

有限差分法:特点:以差分方程近似微分方程,直接数值求解原问题的微分方程,在流体力学,岩土力学领域占重要地位。

有限元法:特点:区别于有限差分法,即不是直接从问题的微分方程和相应的定解条件出发,而是从等效的积分形式出发,数值求解原问题的等效积分方程。

基本思想:1 将求解域离散为有限个子域(单元)的集合2 分片逼近待求函数分析过程:1 单元特性分析,单元节点位移与节点力之间的关系2 系统特性分析,将单元刚度矩阵集成整体刚度方程1. 有限元法的理论基础——加权余量法和变分原理1.1 微分方程的等效积分形式和加权余量法1.1.1 微分方程的等效积分形式工程或物理学中的许多问题,通常是以未知场函数应满足的微分方程和边界条件形式提出来的,可以一般地表示为未知函数应满足微分方程组()0A u =(在Ω内) (1.1.1) 域Ω可以是体积域、面积域等。

同时未知函数还应满足边界条件()0B u =(在Г内) (1.1.2) Г是域Ω的边界。

由于微分方程组(1.1.1)在域Ω中每一点都必须为零,因此就有0...))()(()(2211=Ω++=Ω⎰⎰ΩΩd A A d A T μυμυμυ (1.1.3)其中是函数向量,它是一组和微分方程个数相等的任意函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹性力学及有限元法学习总结
摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。

正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。

弹性力学的研究对象:
材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。

结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。

弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。

弹性力学研究方法:
在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。

弹性力学的基本假设:
1)连续性,假定物体是连续的。

连续性因此,各物理量可用连续函数表示。

2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不
计,由此得到的弹性力学微分方程将是线性的。

4)完全弹性假设假设固体材料是完全弹性的。

5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所
引起的。

有限元法的基本思想:
有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。

及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组合体来加以分析。

有限元法的数学基础:
微分方程的近似求解法,包括有限差分方法,变分原理和加权余量法。

有限元法分析的基本步骤:
1)建立研究对象的近似模型
2)将研究对象分割成有限数量的单元
3)用标准方法对每一个单元提出一个近似解
4)将所有单元按标准方法组合成一个与原有系统近似的系统
5)用数值方法求解这个近似系统
在力学学科和工程学科中, 弹性力学在力学学科和工程学科中, 具有重要的地位:弹性力学是其他固体力学分支学科的基础。

弹性力学是工程结构分析的重要手段。

通过学习弹性力学及有限元法,我取得了以下成绩,(1)理解和掌握弹力的基本理论;理解和掌握弹力的基本理论;(2)能阅读和应用弹力文献;能阅读和应用弹力文献;(3)能用弹力近似解法(变分法、差分法能用弹力近似解法(变分法、和有限单元法)解决工程实际问题;和有限单元法)解决工程实际问题;(4)为进一步学习其他固体力学分支学科打下基础。

参考文献:《弹性力学简明教程》徐芝纶 2002年 8 月第 3 版
同济大学弹性力学讲义李遇春编。

相关文档
最新文档