2021年山西省临汾市尧都区九年级中考第三次大联考数学试题
山西省临汾市2022-2023学年九年级上学期期中数学试卷(含答案)

2022-2023学年山西省临汾市九年级(上)期中数学试卷第I卷(选择题)一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1.计算(√2)2的结果为( )A. 2B. 4C. √2D. 2√22.下列四条线段成比例的是( )A. 4,2,1,3B. 1,2,2,4C. 3,4,5,6D. 1,2,3,53.我们在解一元二次方程(x+1)2−9=0时,先将等号左边利用平方差公式进行因式分解,得到(x+1+3)(x+1−3)=0,再把它转化为两个一元一次方程x+1+ 3=0或x+1−3=0,进而解得x1=−4,x2=2,这种解方程的过程体现出来的数学思想是( )A. 抽象的思想B. 数形结合的思想C. 公理化的思想D. 转化的思想4.若m+nm =53,则nm=( )A. 23B. 25C. 35D. 735.下列计算正确的是( )A. √3+√6=3B. √(−3)2=−3C. √3×√13=313D. √12−√3=√36.图1是伸缩折叠不锈钢晾衣架的实物图,图2是它的侧面示意图,AD和CB相交于点O,点A,B之间的距离为1.2米,AB//CD,根据图2中的数据可得点C,D之间的距离为( )A. 0.8米B. 0.86米C. 0.96米D. 1米7.用配方法解方程x2−4x+1=0配方后的方程是( )A. (x+2)2=3B. (x−2)2=3C. (x−2)2=5D. (x+2)2=58.如图,E是▱ABCD的边DA的延长线上的一点,连接CE,交边AB于点P.若APCD =25,则△AEP与△BCP的周长之比为( )A. 23B. 49C. 37D. 259.关于一元二次方程x2+kx−9=0(k为常数)的根的情况,下列说法正确的是( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能确定根的情况10.如图,在四边形ABCD中,∠ABC=90°,AB=BC=2,E,F分别是AD,DC的中点,连接BE,BF,EF,点P为边BE上一点,过点P作PQ//EF,交BF于点Q,若S△BPQS△BEF=12,则PQ的长为( )A. 12B. 1C. √22D. √2第II卷(非选择题)二、填空题(本大题共5小题,共15.0分)11.√516化为最简二次根式是______.12.蝴蝶标本可以近似地看作轴对称图形.如图,将一只蝴蝶标本放在平面直角坐标系中,如果图中点A的坐标为(5,3),则其关于y轴对称的点B的坐标为______.13.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为E,F是BC的中点,EF=3,则BD的长为______.14.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来(CM⊥DM,BD⊥DM,BC与DM相交于点O),已知OM=4米,CO=5米,DO=3米,AO=√73米,则汽车从A处前行的距离AB=______米时,才能发现C处的儿童.15.如图,在△ABC中,AC=BC,∠B=72°,AD平分∠BAC,若CD=1,则AD的长为______.三、解答题(本大题共8小题,共75.0分。
2022年山西临汾平阳中学中考数学模拟试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,数轴上有A,B,C,D四个点,其中表示互为倒数的点是()A.点A与点B B.点A与点D C.点B与点D D.点B与点C2.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y 8 3 0 ﹣1 0则抛物线的顶点坐标是()A.(﹣1,3)B.(0,0)C.(1,﹣1)D.(2,0)3.为了尽早适应中考体育项目,小丽同学加强跳绳训练,并把某周的练习情况做了如下记录:周一(160个),周二(160个),周三(180个),周四(200个),周五(170个).则小丽这周跳绳个数的中位数和众数分别是()A.180个,160个B.170个,160个C.170个,180个D.160个,200个4.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(,1),下列结论:①ac<1;②a+b=1;③4ac ﹣b2=4a;④a+b+c<1.其中正确结论的个数是()A.1 B.2 C.3 D.45.方程23x1x=-的解是A.3 B.2 C.1 D.06.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.11或137.正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为()A.30°B.60°C.120°D.180°8.由一些大小相同的小正方体搭成的几何体的俯视图如图所示,其中正方形中的数字表示该位置上的小正方体的个数,那么该几何体的主视图是()A.B.C.D.9.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是()A.a B.b C.1aD.1b10.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.二、填空题(共7小题,每小题3分,满分21分)11.已知a,b为两个连续的整数,且a<5<b,则b a=_____.12.如图,在△ABC中,∠C=90°,BC=16 cm,AC=12 cm,点P从点B出发,沿BC以2 cm/s的速度向点C移动,点Q从点C出发,以1 cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为ts,当t=__________时,△CPQ与△CBA相似.135353________.14.如图,△ABC中,AB=BD,点D,E分别是AC,BD上的点,且∠ABD=∠DCE,若∠BEC=105°,则∠A的度数是_____.15.分解因式:2x3﹣4x2+2x=_____.16.把抛物线y=2x2向右平移3个单位,再向下平移2个单位,得到的新的抛物线的表达式是_____.17.填在下列各图形中的三个数之间都有相同的规律,根据此规律,a的值是____.三、解答题(共7小题,满分69分)18.(10分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:①教师讲,学生听②教师让学生自己做③教师引导学生画图发现规律④教师让学生对折纸,观察发现规律,然后画图为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图(1) 请将条形统计图补充完整;(2) 计算扇形统计图中方法③的圆心角的度数是;(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?19.(5分)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.20.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.21.(10分)如图,在△ABC中,AB=AC=4,∠A=36°.在AC边上确定点D,使得△ABD与△BCD都是等腰三角形,并求BC的长(要求:尺规作图,保留作图痕迹,不写作法)22.(10分)如图1,在平面直角坐标系中,O 是坐标原点,长方形OACB 的顶点A、B 分别在x 轴与y 轴上,已知OA=6,OB=1.点 D 为y 轴上一点,其坐标为(0,2),点P 从点 A 出发以每秒 2 个单位的速度沿线段AC ﹣CB 的方向运动,当点P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点P 经过点C 时,求直线DP 的函数解析式;(2)如图②,把长方形沿着OP 折叠,点 B 的对应点B′恰好落在AC 边上,求点P 的坐标.(3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.23.(12分)如图,在平面直角坐标系xOy中,正比例函数y=x的图象与一次函数y=kx-k的图象的交点坐标为A(m,2).(1)求m的值和一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,求△AOB的面积;(3)直接写出使函数y=kx-k的值大于函数y=x的值的自变量x的取值范围.24.(14分)如图,已知函数kyx(x>0)的图象经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图象经过点A、D,与x轴的负半轴交于点E.若AC=32OD,求a、b的值;若BC∥AE,求BC的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】试题分析:主要考查倒数的定义和数轴,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.根据倒数定义可知,-2的倒数是-12,有数轴可知A 对应的数为-2,B 对应的数为-12,所以A 与B 是互为倒数. 故选A .考点:1.倒数的定义;2.数轴.2、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标. 详解:当0x =或2x =时,0y =,当1x =时,1y =-, 04201c a b c a b c =⎧⎪∴++=⎨⎪++=-⎩,解得120a b c =⎧⎪=-⎨⎪=⎩ ,∴二次函数解析式为222(1)1y x x x =-=--,∴抛物线的顶点坐标为()1,1-,故选C .点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.3、B【解析】根据中位数和众数的定义分别进行解答即可.【详解】解:把这些数从小到大排列为160,160,170,180,200,最中间的数是170,则中位数是170;160出现了2次,出现的次数最多,则众数是160;故选B.【点睛】此题考查了中位数和众数,掌握中位数和众数的定义是解题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.4、C【解析】①根据图象知道:a<1,c>1,∴ac<1,故①正确;②∵顶点坐标为(1/2 ,1),∴x="-b/2a" ="1/2" ,∴a+b=1,故②正确;③根据图象知道:x=1时,y=a++b+c>1,故③错误;④∵顶点坐标为(1/2 ,1),∴=1,∴4ac-b2=4a,故④正确.其中正确的是①②④.故选C5、A【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,经检验x=3是分式方程的解.故选A.6、C【解析】试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.解方程x2-6x+8=0得x=2或x=4当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.7、C【解析】求出正三角形的中心角即可得解【详解】正三角形绕其中心旋转一定角度后,与自身重合,旋转角至少为120°,故选C.【点睛】本题考查旋转对称图形的概念:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角,掌握正多边形的中心角的求解是解题的关键8、A【解析】由三视图的俯视图,从左到右依次找到最高层数,再由主视图和俯视图之间的关系可知,最高层高度即为主视图高度. 【详解】解:几何体从左到右的最高层数依次为1,2,3,所以主视图从左到右的层数应该为1,2,3,故选A.【点睛】本题考查了三视图的简单性质,属于简单题,熟悉三视图的概念,主视图和俯视图之间的关系是解题关键.9、D【解析】∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.∴1a<a<b<1b,故选D.10、A【解析】解:图B、C、D中,线段MN不与直线l垂直,故线段MN的长度不能表示点M到直线l的距离;图A中,线段MN与直线l垂直,垂足为点N,故线段MN的长度能表示点M到直线l的距离.故选A.二、填空题(共7小题,每小题3分,满分21分)11、1【解析】根据已知a b,结合a、b是两个连续的整数可得a、b的值,即可求解.【详解】解:∵a,b为两个连续的整数,且a b,∴a=2,b=3,∴b a=32=1.故答案为1.【点睛】此题考查的是如何根据无理数的范围确定两个有理数的值,的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a、b的值,12、4.8或64 11【解析】根据题意可分两种情况,①当CP和CB是对应边时,△CPQ∽△CBA与②CP和CA是对应边时,△CPQ∽△CAB,根据相似三角形的性质分别求出时间t即可.【详解】①CP和CB是对应边时,△CPQ∽△CBA,所以CPCB=CQCA,即16216t-=12t,解得t=4.8;②CP和CA是对应边时,△CPQ∽△CAB,所以CPCA=CQCB,即16212t-=16t,解得t=64 11.综上所述,当t=4.8或6411时,△CPQ与△CBA相似.【点睛】此题主要考查相似三角形的性质,解题的关键是分情况讨论.13、2【解析】利用平方差公式进行计算即可得.【详解】原式=22-=5-3=2,故答案为:2.【点睛】本题考查了二次根式的混合运算,掌握平方差公式结构特征是解本题的关键.14、85°【解析】设∠A=∠BDA=x ,∠ABD=∠ECD=y ,构建方程组即可解决问题.【详解】解:∵BA =BD ,∴∠A =∠BDA ,设∠A =∠BDA =x ,∠ABD =∠ECD =y ,则有21802105x y y x ︒︒⎧+=⎨+=⎩, 解得x =85°,故答案为85°.【点睛】本题考查等腰三角形的性质,三角形的外角的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.15、2x (x-1)2【解析】2x 3﹣4x 2+2x=222(21)2(1)x x x x x -+=-16、y=1(x ﹣3)1﹣1.【解析】抛物线的平移,实际上就是顶点的平移,先求出原抛物线的顶点坐标,再根据平移规律,推出新抛物线的顶点坐标,根据顶点式可求新抛物线的解析式.【详解】∵y =1x 1的顶点坐标为(0,0),∴把抛物线右平移3个单位,再向下平移1个单位,得新抛物线顶点坐标为(3,﹣1),∵平移不改变抛物线的二次项系数,∴平移后的抛物线的解析式是y =1(x ﹣3)1﹣1.故答案为y =1(x ﹣3)1﹣1.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )1+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.【解析】寻找规律:上面是1,2 ,3,4,…,;左下是1,4=22,9=32,16=42,…,;右下是:从第二个图形开始,左下数字减上面数字差的平方:(4-2)2,(9-3)2,(16-4)2,…∴a=(36-6)2=1.三、解答题(共7小题,满分69分)18、解:(1)见解析;(2) 108°;(3) 最喜欢方法④,约有189人.【解析】(1)由题意可知:喜欢方法②的学生有60-6-18-27=9(人);(2)求方法③的圆心角应先求所占比值,再乘以360°;(3)根据条形的高低可判断喜欢方法④的学生最多,人数应该等于总人数乘以喜欢方法④所占的比例;【详解】(1)方法②人数为60−6−18−27=9(人);补条形图如图:(2)方法③的圆心角为18 36010860⨯=;故答案为108°(3)由图可以看出喜欢方法④的学生最多,人数为2742018960⨯=(人);【点睛】考查扇形统计图,条形统计图,用样本估计总体,比较基础,难度不大,是中考常考题型.19、(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.20、(1)详见解析;(2)72°;(3)【解析】(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵抽查的总人数为:(人)∴类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴(恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.-+21、25【解析】作BD平分∠ABC交AC于D,则△ABD、△BCD、△ABC均为等腰三角形,依据相似三角形的性质即可得出BC的长.【详解】如图所示,作BD 平分∠ABC 交AC 于D ,则△ABD 、△BCD 、△ABC 均为等腰三角形,∵∠A =∠CBD =36°,∠C =∠C ,∴△ABC ∽△BDC , ∴DC BC BC AC=, 设BC =BD =AD =x ,则CD =4﹣x ,∵BC 2=AC ×CD , ∴x 2=4×(4﹣x ),解得x 1=25-+x 2=25-,∴BC 的长25-+【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.22、(1)y=43x+2;(2)y=43x+2;(2)①S=﹣2t+16,②点P 的坐标是(103,1);(3)存在,满足题意的P 坐标为(6,6)或(6,7)或(6,1﹣7).【解析】分析:(1)设直线DP 解析式为y=kx+b ,将D 与B 坐标代入求出k 与b 的值,即可确定出解析式;(2)①当P 在AC 段时,三角形ODP 底OD 与高为固定值,求出此时面积;当P 在BC 段时,底边OD 为固定值,表示出高,即可列出S 与t 的关系式;②设P (m ,1),则PB=PB′=m ,根据勾股定理求出m 的值,求出此时P 坐标即可;(3)存在,分别以BD ,DP ,BP 为底边三种情况考虑,利用勾股定理及图形与坐标性质求出P 坐标即可. 详解:(1)如图1,∵OA=6,OB=1,四边形OACB 为长方形,∴C (6,1).设此时直线DP 解析式为y=kx+b ,把(0,2),C (6,1)分别代入,得2610b k b =⎧⎨+=⎩,解得432k b ⎧=⎪⎨⎪=⎩ 则此时直线DP 解析式为y=43x+2; (2)①当点P 在线段AC 上时,OD=2,高为6,S=6; 当点P 在线段BC 上时,OD=2,高为6+1﹣2t=16﹣2t ,S=12×2×(16﹣2t )=﹣2t+16; ②设P (m ,1),则PB=PB′=m ,如图2,∵OB′=OB=1,OA=6,∴22OB OA '-=8,∴B′C=1﹣8=2,∵PC=6﹣m ,∴m 2=22+(6﹣m )2,解得m=103 则此时点P 的坐标是(103,1); (3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=1﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP122-786∴AP1=1﹣7,即P1(6,1﹣7;②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P322-786∴AP3=AE+EP37+2,即P3(6,7+2),综上,满足题意的P坐标为(6,6)或(6,7+2)或(6,1﹣7).点睛:此题属于一次函数综合题,涉及的知识有:待定系数法确定一次函数解析式,坐标与图形性质,等腰三角形的性质,勾股定理,利用了分类讨论的思想,熟练掌握待定系数法是解本题第一问的关键.23、(1)y=1x﹣1(1)1(3)x>1【解析】试题分析:(1)先把A(m,1)代入正比例函数解析式可计算出m=1,然后把A(1,1)代入y=kx﹣k计算出k的值,从而得到一次函数解析式为y=1x﹣1;(1)先确定B点坐标,然后根据三角形面积公式计算;(3)观察函数图象得到当x>1时,直线y=kx﹣k都在y=x的上方,即函数y=kx﹣k的值大于函数y=x的值.试题解析:(1)把A(m,1)代入y=x得m=1,则点A的坐标为(1,1),把A(1,1)代入y=kx﹣k得1k﹣k=1,解得k=1,所以一次函数解析式为y=1x﹣1;(1)把x=0代入y=1x﹣1得y=﹣1,则B点坐标为(0,﹣1),所以S △AOB =×1×1=1;(3)自变量x 的取值范围是x >1.考点:两条直线相交或平行问题24、(1)a=34,b=2;(2)5 【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k 的值,再得出A 、D 点坐标,进而求出a ,b 的值; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0),得出tan ∠ADF=42AF m DF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF mDF m-=, 在Rt △ACE 中,tan ∠AEC=42AC m EC =,∴42mm=42m,解得:m=1,∴C点的坐标为:(1,0),则考点:反比例函数与一次函数的交点问题.。
2024年山西省吕梁市文水县多校中考三模数学试题(含答案)

2024年中考第三次模拟试卷数学注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分.全卷共8页,满分120分,考试时间120分钟.2.答卷前,考生务必将自己的姓名、准考证号填写在本试卷相应的位置.3.答案全部在答题卡上完成,答在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.15-的绝对值是( )A.5-B.5C.15-D.152.已知2030A ︒'∠=,则A ∠的余角的度数为( )A.2030︒' B.6930︒' C.7930︒' D.15930︒'3.下列计算正确的是( )A.2232x x -=- B.()3236xyx y -=C.422933x x x÷= D.()()22333x y x y x y-+=-4.勿忘草是开蓝色小花的紫草科植物,它的花粉粒只有在高倍显微镜下才能看见,其直径约为0.0000045m .数据“0.0000045”用科学记数法表示正确的是( )A.64.510-⨯ B.54510-⨯ C.54.510-⨯ D.60.4510-⨯5.如图是由若干个大小相同的小正方体搭成的几何体的三视图,则组成该几何体的小正方体的个数为( )A.3个B.4个C.5个D.6个6.《中华人民共和国森林法》明确规定每年3月12日为植树节,2024年3月12日是我国的第46个植树节.某校九年级8个班级春季植树的数量(单位:棵)分别为:100,120,100,120,90,120,60,70,则这8个班级植树棵数的中位数和众数分别为( )A.90棵,120棵B.100棵,100棵C.120棵,100棵D.100棵,120棵7.已知点()11,A x y ,()22,B x y ,()33,C x y 都在反比例函数5y x-=的图象上,且1230x x x <<<,则1y ,2y ,3y 的大小关系是( )A.123y y y >> B.132y y y >> C.321y y y >> D.312y y y >>8.如图,在矩形ABCD 中,9AB =,15BC =,点E 是CD 上一点,将矩形ABCD 沿BE 折叠,点C 恰好落在AD 边上的点P 处,则CE 的长为( )A.3B.4C.5D.69.将抛物线216212y x x =-+沿x 轴向左平移4个单位长度后,得到的新抛物线的表达式为( )A.21(2)32y x =-+ B.21(2)52y x =-+C.21(10)32y x =-+ D.21(10)52y x =-+10.如图,将扇形OAB 沿OB 方向平移,使点O 平移到OB 的中点O '处,得到扇形O A B '''.若90AOB ∠=︒,OA = )A.6B.π+C.4π3+ D.π+第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:2+=__________.12.如图是一只蝴蝶标本,将其放在平面直角坐标系中,若蝴蝶两个“翅膀顶端”A ,B 两点的坐标分别为()3,2-,()3,2,则蝴蝶“翅膀尾部”点C 的坐标为__________.13.已知某品牌书包的进价为90元,某商店以140元的价格出售.新学期开学期间,该商店为增加销量,决定降价出售,但要保证利润率不低于30%,则该品牌书包最多可降价__________元.14.如图,ABC △为O 的内接三角形,过点C 的切线交BO 的延长线于点P .若28P ∠=︒,则BAC ∠的度数为__________.15.如图,在矩形ABCD 中,6AB =,BC =E 是BC 的中点,AE 与BD 交于点F ,连接CF ,则CF 的长为__________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题、第(1)小题4分,第(2)小题5分,共9分)(1)计算:2211082(1)2-⎛⎫⨯-+⨯-- ⎪⎝⎭(2)解方程组:()()41312,1.46x y y x y⎧--=--⎪⎨+=⎪⎩17.(本题7分)如图,在ABCD 中,AE BD ⊥,垂足为点E .(1)实践与操作:过点C 作CF BD ⊥,垂足为点F ,连接AF 和CE .(尺规作图,保留作图痕迹,不写作法)(2)猜想与证明:猜想AF 与CE 之间的数量关系,并说明理由.18.(本题8分)山西拥有众多爱国主义教育示范基地,某校每学期都要举行“怀革命先烈、激发爱国热情、凝聚奋斗力量”的研学教育活动,得到了家长的大力支持.新学期,学校提供了下列四个教育示范基地作为研学地点供大家选择:A.八路军太行纪念馆;B.百团大战纪念馆;C.刘胡兰纪念馆;D.太原解放纪念馆.为了解同学们的意向,学校团委随机抽取部分学生进行调查,规定被调查的学生必须从四个地点中选择一个,根据调查结果绘制成如下两幅不完整的统计图.解答下列问题:(1)本次共调查了________名学生;(2)在扇形统计图中,m的值是________,D所对应的扇形圆心角的度数是_________;(3)补全条形统计图;(4)小宇和小华两位同学要从这四个爱国主义教育示范基地中各随机选择一个作为研学地点,请用画树状图或列表的方法求小宇和小华选择同一地点的概率.19.(本题8分)项目化学习项目主题:玉米种子购买方案的选择项目背景:种子是植物世界的起源,是农业生产的基础,是保障粮食安全最重要的因素之一.优质种子的生产、繁殖和利用,能够提高粮食生产的质量和效益.某校综合实践活动小组以探究“玉米种子的购买方案”为主题开展项目学习.驱动任务:探究玉米种子的付款金额与购买量之间的函数关系;研究步骤:(1)收集区域内甲、乙两个种子商店销售同一玉米种子的信息;(2)对收集的信息进行整理描述;(3)信息分析,形成结论.数据信息:信息1:甲商店这种玉米种子的售价为4元/kg,无论购买多少均不打折;信息2:乙商店这种玉米种子的售价如下表:购买量3kg以内(含3kg)超过3kg售价5元/kg超过3kg的部分打折销售信息3:乙商店销售这种玉米种子的部分小票统计如下表:购买量/kg 12345671531…付款金额/元5101518.52225.52957113…问题解决:(1)请分别写出在甲、乙两个商店购买玉米种子的付款金额y (元)与购买量x (kg )之间的函数关系式;(2)现需购买一批这种玉米种子,请通过计算说明选择哪个商店更合算.20.(本题9分)如图,小文骑自行车从家B 出发沿正北方向行驶2km 到岔路口C 后,沿北偏西15°方向再行驶到达综合实践活动基地D ,参加完活动后,沿路线DA 到达爷爷家A .已知小文爷爷家A 在小文家B 的北偏西45°方向上,在岔路口C 的北偏西75°方向上,且点A ,B ,C ,D 在同一平面内.(计算结果保留根号)(1)求小文爷爷家A 到小文家B 的距离;(2)求综合实践活动基地D 到小文爷爷家A 的距离.21.(本题10分)请阅读下面材料,并完成相应的任务.用“几何代数法”解分式方程《几何原本》中的“几何代数法”是指用几何方法研究代数问题,这种方法是数学家处理问题的重要依据.在意大利数学家斐波那契(约1170—1250)编写的《计算之书》中频繁运用了这种方法.例如,运用面积关系将分式方程转化为整式方程,从而求解分式方程.例:《计算之书》中记载了一道题,译文如下:一组人平分90枚硬币,每人分得若干,若再加上6人,平分120枚硬币,则第二次每人所得与第一次相同.求第一次分硬币的人数.设第一次分硬币的人数为x 人,则可列方程为901206x x =+.解:构造如图1所示的图形,BC x =,6CE =,矩形ABCD 的面积为90,矩形ABEF 的面积为120,则90CD x =,1206EF x =+.显然,CD EF =.根据图形可知ABCD CEFDS BC CD BCS CE CD CE⋅==⋅矩形矩形.所以90120906x=-.(将分式方程转化成了整式方程)解得18x =.图1答:第一次分硬币的人数为18人.任务:图2 图3(1)如图2,AB x =,2BC =,矩形ABDE 和矩形ACGH 的面积均为60,下列代数式可以表示边DF 的是___________.(多选)A.60xB.602x + C.60602x x -+ D.()1202x x +(2)如图3,AB x =,2BC =,矩形ACDE 的面积为60,矩形ABFH 的面积为20,5FI =,则可列方程为___________.(3)请仿照材料中的方法,通过构造图形,求分式方程2131x x =+-的解.22.(本题11分)综合与实践在菱形ABCD 中,60DAB ∠=︒,对角线AC ,BD 相交于点O ,点E 是AC 上的动点,将BE 绕点B 顺时针旋转60°得到BF ,连接AF ,DF .图1 图2 备用图猜想证明:(1)如图1,当点E 在线段AO 上时,DAF ∠与AFD ∠之间的数量关系为___________.(2)如图2,当点E 在线段OC 上时,(1)中的结论还成立吗?请说明理由.探究发现:(3)当ADF △是等腰直角三角形时,直接写出EBC ∠的度数.23.(本题13分)综合与探究如图,抛物线21382y x x =--与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D,连接AC,BC,BC与抛物线的对称轴交于点E.备用图(1)求点A,B,C的坐标.(2)若点P是第四象限内抛物线上一动点,连接PB,PC,当35PBC ABCS S△△时,求点P的坐标.(3)若点Q是对称轴右侧抛物线上的动点,试探究在射线ED上是否存在一点H,使以H,Q,E为顶点的三角形与BOC△相似.若存在,直接写出点H的坐标;若不存在,请说明理由.数学参考答案及评分标准一、选择题(每小题3分,共30分)题号12345678910选项DBCACDBCAB解析:3.A.22232x x x -=-,错误;B.()3236xyx y -=-,错误;C.422933x x x ÷=,正确;D.()3x y -()2239x y x y +=-,错误.5.根据三视图,在俯视图中,可标出小正方体的个数如图.所以组成该几何体的小正方体的个数为2215++=(个).6.将这8个数按从小到大的顺序排列为60,70,90,100,100,120,120,120,位于最中间的两个数分别为100,100,所以这8个班级植树棵数的中位数为1001001002+=(棵),120出现的次数最多,所以众数为120棵.8. 四边形ABCD 是矩形,90A D ∴∠=∠=︒,15AD BC ==,9CD AB ==.由折叠的性质,得15BP BC ==,PE CE =.在Rt ABP △中,12AP ===.15123DP AD AP ∴=-=-=.设CE x =,则PE x =,9DE CD CE x =-=-.在Rt DEP △中,由勾股定理,得222DP DE PE +=,即2223(9)x x +-=,解得5x =.CE ∴的长为5.9.2211621(6)322y x x x =-+=-+ ,∴将抛物线216212y x x =-+沿x 轴向左平移4个单位长度后,得到的新抛物线的表达式为21(2)32y x =-+.10.如图,设O A ''与AB 交于点T ,连接OT .点O '是OB 的中点,OB OA ==,12OO OB ∴=='OT OB = ,12OO OT ∴'=.由平移的性质,得90A O B AOB ∠'''=∠=︒.18090OO T A O B ∴∠=︒-'''∠='︒.在Rt OO T '△中,1cos 2OO TOO OT ''∠==,60TOO ∴='∠︒.tan tan 603O T OO TOO ∴'=⋅∠='︒=',30AOT AOB TOO ∠︒'=∠-∠=.由平移的性质,得O A B OAB S S '''=扇形扇形,13π2OO TOAT S S S '∴=+=+=+△阴影扇形.二、填空题(每小题3分,共15分)11.5+ 12.()1,2-- 13.23 14.121° 15.6解析:13.设该品牌书包可降价x 元.根据题意,得14090100%30%90x --⨯≥.解得23x ≤.所以该品牌书包最多可降价23元.14.如图,设O 与OP 交于点E ,连接OC ,CE .CP 为O 的切线,OC CP ∴⊥.90OCP ︒∴∠=.90902862COP P ∴∠=︒-∠=︒-︒=︒.OC OE = ,()()11180180625922OEC OCE COP ∴∠=∠=︒-∠=⨯︒-︒=︒.四边形ABEC 为O 的内接四边形,180BAC OEC ︒∴∠+∠=.180121BAC OEC ∴∠=︒-∠=︒.15.如图,过点F 作FH BC ⊥于点H ,则90BHF FHC ︒∠=∠=.四边形ABCD 是矩形,//DA BC ∴,90BCD ∠=︒,6DC AB ==.点E 是BC 的中点,12BE BC ∴=.12BE DA ∴=.//DA BC ,EBF ADF ∴∠=∠,BEF DAF ∠=∠.BFE DFA ∴△∽△.12BF BE DF DA ∴==.13BF BD ∴=.90BHF BCD ︒∠=∠= ,//FH DC ∴.BFH BDC ∴△∽△.13FH BH BF DC BC BD ∴===.123FH DC ∴==,13BH BC ==.CH BC BH ∴=-=-=6CF ∴===.三、解答题(本大题共8个小题,共75分)16.解:(1)原式5214=-+--8=-.(2)原方程组可化为45,3212.x y x y -=⎧⎨+=⎩①②2⨯①,得8210x y -=.③③+②,得1122x =.解得2x =.把2x =代入①,得425y ⨯-=.解得3y =.所以原方程组的解为2,3.x y =⎧⎨=⎩17.解:(1)如图.(2)AF CE =.理由:AE BD ⊥ ,CF BD ⊥,90AEB CFD ∴∠=∠=︒,//AE CF . 四边形ABCD 是平行四边形,AB CD ∴=,//AB CD .ABE CDF∴∠=∠在ABE △和CDF △中,,,,AEB CFD ABE CDF AB CD ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS ABE CDF ∴△≌△.AE CF ∴=.∴四边形AECF 是平行四边形.AF CE∴=18.解:(1)50 (2)24 72° (3)如图.(4)根据题意,列表如下:小宇小华A B C D A AABA CA DA B AB BB CB DB C AC BC CC DC DADBDCDDD共有16种等可能的结果,其中小宇和小华选择同一地点的结果有4种,所以P (小宇和小华选择同一地点)41164==.19.解:(1)甲商店:4y x =.乙商店:5(03),3.5 4.5(3).x x y x x <⎧=⎨+>⎩…(2)45x x < ,∴当03x <≤时,选择甲商店更合算;由4 3.5 4.5x x <+,得9x <.∴当39x <<时,选择甲商店更合算;由4 3.5 4.5x x =+,得9x =.∴当9x =时,选择两个商店的付款金额相同;由4 3.5 4.5x x >+,得9x >.∴当9x >时,选择乙商店更合算.综上,当09x <<时,选择甲商店更合算;当9x =时,选择两个商店一样;当9x >时,选择乙商店更合算.20.解:(1)如图,过点C 作CE AB ⊥于点E ,则90BEC AEC ︒∠=∠=.由题意,得45ABC ∠=︒,75ACK ∠=︒,2BC =.30BAC ACK ABC ∴∠=∠-∠=︒.在Rt BCE △中,cos 2cos 45BE BC ABC =⋅∠=⨯︒=,sin 2sin 45CE BC ABC =⋅∠=⨯︒=.在Rt ACE △中,tan CE AE BAC ===∠km AB AE BE ∴=+=+.答:小文爷爷家A 到小文家B 的距离为km +.(2)如图,过点A 作AF CD ⊥于点F ,则90AFC AFD ∠=∠=︒.∵90AEC ∠=︒,30BAC ∠=︒,2CE =.2AC CE ∴==由题意,得15DCK ∠=︒,75ACK ∠=︒,CD =.60ACF ACK DCK ∴∠=∠-∠=︒.在Rt ACF △中,cos cos 60CF AC ACF =⋅∠=︒=,sin sin 60AF AC ACF =⋅∠=︒=.DF CD CF ∴=-=-=.)km AD ∴===.答:综合实践活动基地D 到小文爷爷家A .21.解:(1)CD (2)602052x x-=+(3)构造如图所示的图形,BC x =,3CE =,1CG =,矩形ABGH 的面积为1,矩形ABEF 的面积为2,则23EF x =+,11GH x =-.显然,EF GH =.根据图形可知ABEF EFHGS EF BE BES EF GE GE⋅==⋅矩形矩形.所以232113x +=-+.解得5x =.22.解:(1)90DAF AFD ∠+∠=︒ (2)成立.理由: 四边形ABCD 是菱形,AB AD ∴=,1302BAE DAB ∠=∠=︒.60DAB ∠=︒ ,ABD ∴△是等边三角形.DB AB ∴=,60ABD ADB ∠=∠=︒.由旋转的性质,得BF BE =,60EBF ∠=︒.EBF ABD ∴∠=∠.EBF DBE ABD DBE ∴∠+∠=∠+∠,即DBF ABE ∠=∠.在DBF △和ABE △中,,,,DB AB DBF ABE BF BE =⎧⎪∠=∠⎨⎪=⎩()SAS DBF ABE ∴△≌△.30BDF BAE ︒∴∠=∠=.603090ADF ADB BDF ∴∠=∠+∠=︒+︒=︒.90DAF AFD ∴∠+∠=︒.(3)EBC ∠的度数是45°.提示:如图.由(1)(2)可知90ADF ∠=︒.∴当ADF △是等腰直角三角形时,AD DF =. 四边形ABCD 是菱形,AB AD ∴=,//AD BC .60DAB ︒∠= ,ABD ∴△是等边三角形.DB AD ∴=,60ADB ∠=︒.DB DF ∴=,30BDF ADF ADB ∠=∠-∠=︒.()()11180180307522DBF DFB BDF ∴∠=∠=︒-∠=⨯︒-︒=︒.//AD BC ,60DBC ADB ∴∠=∠=︒.756015CBF DBF DBC ∴∠=∠-∠=︒-︒=︒.由旋转的性质,得60EBF ∠=︒.601545EBC EBF CBF ∴∠=∠-∠=︒-︒=︒.23.解:(1)令0y =,则213802x x --=,解得12x =-,28x =.点A 在点B 的左侧,∴点A 的坐标为()2,0-,点B 的坐标为()8,0.令0x =,得8y =-.∴点C 的坐标为()0,8-.(2)()2,0A - ,()8,0B ,()0,8C -,10AB ∴=,8OB =,8OC =.111084022ABC S AB OC ∴=⋅=⨯⨯=△.35PBC ABC S S = △△,24PBC S ∴=△.设直线BC 的表达式为y kx b =+.将()8,0B ,()0,8C -代入,得80,8.k b b +=⎧⎨=-⎩解得1,8.k b =⎧⎨=-⎩.∴直线BC 的表达式为8y x =-.如图,过点P 作PG x ⊥轴于点G ,交BC 于点F .设点P 的坐标为21,382m m m ⎛⎫-- ⎪⎝⎭,则点F 的坐标为(),8m m -.2211838422PF m m m m m ⎛⎫∴=----=-+ ⎪⎝⎭.21114824222PBC S PF OB m m ⎛⎫∴=⋅=-+⨯= ⎪⎝⎭.12m ∴=,26m =.∴点P 的坐标为()2,12-或()6,8-(3)存在.点H 的坐标为()3,8-或()3,11-或(3,5--.提示:()8,0B ,()0,8C -,8OB OC ∴==.90BOC ∠=︒ ,BOC ∴△是等腰直角三角形.抛物线的对称轴为直线33122x -=-=⨯.将3x =代入8y x =-,得5y =-.()3,5E ∴-.点H 在射线ED 上,∴点H 的横坐标为3.设21,382Q a a a ⎛⎫-- ⎪⎝⎭,3a >.分三种情况:当HQ HE =,90EHQ ∠=︒时,QHE BOC △∽△,如图①.①易得//HQ x 轴,∴点H 与点Q 的纵坐标相同,为21382a a --.2135382a a a ⎛⎫∴-=---- ⎪⎝⎭.解得12a =-(不合题意,舍去),26a =.∴点H 的坐标为()3,8-.当HQ EQ =,90HQE ∠=︒时,HQE BOC △∽△,如图②,过点Q 作QM EH ⊥于点M .②由①易得点M 的坐标为()3,8-.()3,5E - ,3EM ∴=.HQ EQ = ,QM EH ⊥,26EH EM ∴==.∴点H 的坐标为()3,11-.当EH EQ =,90HEQ ∠=︒时,HEQ BOC △∽△,如图③.③易得//EQ x 轴,∴点Q 与点E 的纵坐标相同,为5-.213852a a ∴--=-.解得13a =+,23a =-(不合题意,舍去).33EQ ∴=+-=.EH ∴=.∴点H 的坐标为(3,5--.综上,点H 的坐标为()3,8-或()3,11-或(3,5-.注:以上答案仅供参考,开放性试题的答案合理即可得分.。
2021年山西省中考数学试题及参考答案(word解析版)

2021年山西省中考数学试题及参考答案(word解析版)2021年山西省中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题3分,共30分) 1.下面有理数比较大小,正确的是() A.0<��2B.��5<3C.��2<��3 D.1<��42.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A. B. C. D.《九章算术》《几何原本》《海岛算经》《周髀算经》 3.下列运算正确的是()?b2?b6326222236A.(��a)=��a B.2a+3a=6a C.2a?a=2a D.?????38a?2a?4.下列一元二次方程中,没有实数根的是()A.x2��2x=0 B.x2+4x��1=0 C.2x2��4x+3=0 D.3x2=5x��25.近年来快递业发展迅速,下表是2021年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):太原市 3303.78 A.319.79万件大同市 332.68 长治市 302.34 晋中市 319.79 运城市 725.86 临汾市 416.01 吕梁市 338.87 31~3月份我省这七个地市邮政快递业务量的中位数是()B.332.68万件C.338.87万件D.416.01万件6.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为()A.6.06×104立方米/时 B.3.136×106立方米/时 C.3.636×106立方米/时D.36.36×105立方米/时7.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是() A.4211 B. C. D. 999318.如图,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=6,将△ABC绕点C按逆时针方向旋转得到△A'B'C',此时点A'恰好在AB边上,则点B'与点B之间的距离为()A.12 B.6 C.62 D.63 9.用配方法将二次函数y=x2��8x��9化为y=a(x��h)2+k的形式为() A.y=(x��4)2+7B.y=(x��4)2��25 C.y=(x+4)2+7 D.y=(x+4)2��2510.如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π��4B.4π��8C.8π��4D.8π��8二、填空题(本大题共5小题,每小题3分,共15分) 11.计算:32?132?1? .12.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.???? 13.2021年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为 cm.214.如图,直线MN∥PQ,直线AB分别与MN,PQ相交于点A,B.小宇同学利用尺规按以下步骤作图:①以点A为圆心,以任意长为半径作弧交AN于点C,交AB于点D;②分别以C,D为圆心,以大于1CD长为半径作弧,两弧在∠NAB内交于点E;③作射线AE交PQ于点F.若AB=2,2∠ABP=60°,则线段AF的长为.15.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG 的长为.三、解答题(本大题共8个小题,共75分) 16.计算:(1)22��|��4|+31×6+20.��??2x?2x2?11?2?(2). x?1x?4x?4x?217.如图,一次函数y1=k1x+b(k1≠0)的图象分别与x轴,y轴相交于点A,B,与反比例函数y2?k2,D(2,4). ?k2?0?的图象相交于点C(��4,��2)x(1)求一次函数和反比例函数的表达式;(2)当x为何值时,y1>0;(3)当x为何值时,y1<y2,请直接写出x的取值范围.318.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1)请补全条形统计图和扇形统计图;(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?19.祥云桥位于省城太原南部,该桥塔主体由三根曲线塔柱组合而成,全桥共设13对直线型斜拉索,造型新颖,是“三晋大地”的一种象征.某数学“综合与实践”小组的同学把“测量斜拉索顶端到桥面的距离”作为一项课题活动,他们制订了测量方案,并利用课余时间借助该桥斜拉索完成了实地测量.测量结果如下表.项目课题测量示意图内容测量斜拉索顶端到桥面的距离说明:两侧最长斜拉索AC,BC相交于点C,分别与桥面交于A,B两点,且点A,B,C在同一竖直平面内.测量数据… ∠A的度数38° ∠B的度数28° … AB的长度 234米(1)请帮助该小组根据上表中的测量数据,求斜拉索顶端点C到AB的距离(参考数据:sin38°≈0.6,4cos38°≈0.8,tan38°≈0.8,sin28°≈0.5,cos28°≈0.9,tan28°≈0.5)(2)该小组要写出一份完整的课题活动报告,除上表的项目外,你认为还需要补充哪些项目(写出一个即可).20.2021年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南��北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的4(两列车中途停留时间均除5外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.21.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办消去.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴同理可得..∴.∵Z'A'=Y'Z',∴ZA=YZ. 5感谢您的阅读,祝您生活愉快。
山西省吕梁市临县多校2024-2025学年上学期期中测试九年级数学试卷(含答案)

2024-2025学年九年级上期中评估试卷数学试卷说明:共三大题,23小题,满分120分,考试时间120分钟.一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请把正确答案的代号填在下表中)1.把一元二次方程化成一般形式,则二次项系数、一次项系数、常数项分别为( )A .3,,1B .3,1,4C .3,D .3,4,12.2024年6月25日,嫦娥六号返回器准确着陆于预定区域,工作正常,标志着探月工程嫦娥六号任务取得圆满成功,实现世界首次月球背面采样返回.下列航天领域的图标中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.我们解一元二次方程时,可以运用因式分解法,将此方程化为,得到两个一元一次方程:,从而得到原方程的解为.这种解法体现的数学思想是( )A .公理化思想B .模型思想C .函数思想D .转化思想4.二次函数的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限5.如图,在中,A 是的中点,点D 在上.若,则 ( )AB . C.D .6.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,,将绕点C 旋转得到,则点A 与点之间的距离为( )2314x x +=4-4,1--210x -=()()110x x -+=10,10x x -=+=121,1x x ==-25y x x =+O BCO AOB α∠=AD C ∠=α2α12α90α︒-4,16AC BD ==BOC △180︒B O C '''△B 'A .6B .8C .10D .127.下列方程没有实数根的是( )A .B .C .D .8.如图,学校课外生物小组的试验田的形状是长为、宽为的矩形,为了方便管理,要在中间开辟两横一纵共三条等宽的小路,小路与试验田的各边垂直或平行,要使种植面积为,则小路的宽为多少米若设小路的宽为x m ,根据题意可列方程( )A .B .C .D .9.石拱桥是中国传统的桥梁四大基本形式之一,是用天然石料作为主要建筑材料的拱桥,以历史悠久,形式优美,结构坚固等特点闻名于世,它的主桥是圆弧形.如图,某石拱桥的跨度AB (AB 所对的弦的长)约为,拱高CD (AB 的中点到弦AB 的距离)约为,则AB 所在圆的半径OA 为( )A .B .C .D .10.已知二次函数的图象如图所示,该抛物线的对称轴为直线,则下列结论不正确的是()()235x x -=2210x x -+=280x x --=()()230x x -+=36m 22m 2700m ()()3622700x x --=()()36222700x x --=()()36222700x x ++=()()36222700x x --=36m 6m 30m 27m 25m2y ax bx c =++1x =A .B .关于x 的方程的两根是C .当时,y 随x 的增大而减小D .二、填空题(本大题共5个小题,每小题3分,共15分)11.方程的解是___________.12.如图,四边形ABCD 内接于,若,则的度数为___________.13.若二次函数的图象经过点,利用抛物线可知不等式的解集是____________.14.铅球是利用人体全身的力量,将一定重量的铅球从肩上用手臂推出的田径运动项目之一,是集力量和技术于一体的运动,绝对力量和完美技术都是取得好成绩的因素,铅球行进高度和铅球行进曲线都影响着铅球投掷的成绩.如图,一位运动员推铅球,铅球行进高度y (单位:m )与水平距离x (单位:m )之间的关系是,此运动员投掷时,铅球的最大行进高度是_________m .15.如图,在矩形ABCD 中,E 是边CD 上一点,对角线AC ,BD 相交于点O ,于点F ,连接OF .若,则OF 的长为______.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分)(1)解方程:.0a c <20ax bx c ++=121,3x x =-=0x >20a b +=()()430x x -+=O 125A ∠=︒C ∠22y x x m =-+()2,3-22y x x m =-+220x x m -+≤21251233y x x =-++EF AB ⊥15,5,12AB DE AD ===243x x +=(2)以下是小夏同学解方程的过程,请解决问题:解:原方程可变形为, 第一步方程两边同时除以得, 第二步∴原方程的解是.第三步上述解方程的过程从第_______步开始出错,错误的原因是____________②请直接写出方程的解:_________________________17.(本题9分)已知二次函数的图象与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为D .(1)求点A ,B ,C ,D 的坐标,并在如图所示的平面直角坐标系中画出该二次函数的大致图象(每个小方格的边长都是1个单位长度).(2)描述抛物线是由抛物线如何平移得到的.(3)求四边形AOCD 的面积.18.(本题8分)如图,已知的直径AB 垂直弦CD 于点E ,连接CO 并延长交AD 于点F ,且F 为AD 的中点.(1)求证:.(2)若,求弦CD 的长.19.(本题7分)大豆,通称黄豆,属一年生草本,是我国重要粮食作物之一,已有五千年栽培历史,古称“菽”.某校综合实践小组以“探究大豆种植密度优化方案”为主题展开项目学习.在六块不同的试验田中种植株数不同的大豆,()()323x x x -=-()()323x x x -=--()3x -2x =-2x =-223y x x =+-223y x x =+-2y x =O AD CD=8AB =严格控制影响大豆生长的其他变量,在大豆成熟期,对每株大豆的产量进行统计,并记录如下:试验田编号123456单位面积试验田种植株数/株304050607080单位面积试验田单株的平均产量/粒514641363126(1)根据记录表中的数据分析单位面积试验田的单株平均产量与种植株数的变化规律,若设单位面积试验田种植x 株(),则单位面积试验田单株的平均产量为_________粒.(2)如果要想获得单位面积大豆的总产量达到2160粒,又相对减少田间管理,那么单位面积大豆应种植多少株?20.(本题8分〉某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系;乙种水果的销售利润(单位:万元)与进货量x (单位:吨)近似满足函数关系 (其中a ,b 为常数,),且当进货量为1吨时,销售利润为1.4万元,当进货量为2吨时,销售利润为2.6万元.如果该批发市场准备进甲、乙两种水果共10吨,问这两种水果各进多少吨时获得的销售利润之和最大?最大利润是多少?21.(本题8分)阅读与思考观察下列方程系数的特征及其根的特征,解决问题:方程及其根方程及其根方程及其关联方程方程的根方程及其关联方程方程的根①①②②…………(1)请描述一元二次方程和关联方程的系数特征及它们根的关系特征.(2)方程和是不是关联方程?求解两个方程并判断两个方程的根是否符合根的关系特征.(3)请以一元二次方程为例证明关联方程根的关系特征.22.(本题12分)综合与实践如图1,这是某广场中的喷水池,那随着音乐声此起彼伏的水线,一会儿高高跃起,一会儿盘旋而下,令人心旷神怡!边上各个方向向外喷出的水线可以看做一圈形状相同的抛物线,从这些抛物线中抽象出一条分析研究,若水线达到最大高度 (点P 距地面的距离)时,水线的跨度.3080x ≤≤y 甲0.3y x =甲y 乙2y ax bx =+乙0a ≠22310x x -+=121,12x x ==2230x x +-=123,1x x =-=22310x x ++=121,12x x =-=-2230x x --=123,1x x ==-2240x x --=2240x x +-=()2200,40axbx c a b ac ++=≠-≥3.2m 8m AB =请你结合所学知识解决下列问题:(1)在图2中建立以为单位长度,点A 为坐标原点,AB 所在直线为x 轴,过点A 与AB 垂直的直线为y 轴,构建平面直角坐标系,并求出抛物线的解析式.(2)若喷水池中心C 到A 的距离约为,则该喷水池的半径至少为多少米,才能使喷出的水流都落在水池内?(3)在(2)的条件下,身高为的清洁工王师傅在水池中清理漂浮物,为了不被淋湿,王师傅站立时必须在离水池中心点C 多少米范围内?(结果保留1位小数,参考数据:,)23.(本题13分)综合与探究问题情境:数学课上,老师提出一个问题:如图1,在中,,把绕点C 逆时针旋转到的位置,点A ,B 的对应点分别是与AB 相交于点D .在旋转过程中,线段之间存在一些特殊的位置关系和数量关系.如图2,在旋转过程中,当经过AB 的中点D 时,试判断四边形与AC 的位置关系,并加以证明.问题解决:(1)请你解答老师提出的问题.数学思考:(2)小明同学发现:在图形旋转过程中,有线段垂直关系的存在.如图3,在旋转过程中,当时,求点A 与点之间的距离.数学探究:(3)小敏同学发现:在旋转过程中,有特殊三角形的存在.在旋转过程中,当是等腰三角形时,请直接写出线段AD的长.1m 2.3m 1.8m 2.24≈≈≈2.45, 3.32≈≈≈Rt ABC △90,4,3ACB AC BC ∠=︒==ABC △()090αα︒≤≤︒ABC ''△,,A B AC'''A C 'A B ''A C A B '⊥A 'BCD △数学参考答案1.A2.B 3.D4.D5.C6.C7.A8.B 9.A10.C 提示:由抛物线开口方向可知,由抛物线与y 轴交点位置可知,∴,A 选项正确;根据抛物线的轴对称性可知抛物线与x 轴分别交于和,∴方程的两根是,B 选项正确;抛物线的对称轴是直线,变形可得,D 选项正确;抛物线的对称轴是直线,故时,y 随x 的增大而增大,时,y 随x 的增大而减小,C 选项不正确.故选C .11.12.13. 14.315.6.5 提示:如图,延长FO 交DC 于点G ,构造中心对称.在矩形ABCD 中,.在矩形AFED 中,,所以.根据矩形的中心对称性和线段的中心对称性可知,,有,∴.在中,根据勾股定理得,∴.16.(1)(解法不唯一)解:配方,得,3分直接开平方,得, 4分∴5分(2)解:①二;没有考虑为0而错误地运用等式的基本性质2进行变形.3分0a <0c >0a c <()3,0()1,0-20ax bx c ++=121,3x x =-=12bx a=-=20a b +=1x =01x <<1x >124,3x x ==-55︒13x -≤≤15AB C D ==5,12AF DE AD EF ====10C E B F ==AFO CGO △≌△15,2CG AF OF FG ===1055EG =-=Rt FEG △13FG ==16.52OF FG ==()227x +=2x +=1222x x =-=-()3x -②. 5分17.解:(1)当时,,解得.∵点A 在点B 的左侧,∴点,点.当时,,∴点.由可得点.2分二次函数的大致图象如下图所示.4分(2)(方法不唯一)抛物线可由抛物线先向左平移1个单位长度,再向下平移4个单位长度得到.6分(3)如图,直线DE 为该抛物线的对称轴,其中E 为对称轴与x 轴的交点,∴.由可得是直角三角形,四边形EOCD 是直角梯形,, 8分∴9分18.解:(1)证明:如图,连接AC .∵直径AB 垂直弦CD 于点E ,∴,∴,∴.2分又∵F 为AD 的中点,CF 经过圆心O ,∴,∴,∴,∴. 4分(2)由(1)可知,∴是等边三角形,∴.如图,连接BD ,可得. 6分122,3x x =-=0y =2230x x +-=123,1x x =-=()3,0A -()1,0B 0x =3y =-()0,3C -()222314y xx x =+-=+-()1,4D --223y x x =+-223y x x =+-2y x =()1,0E -()()()3,0,0,3,1,4A C D ----A D E △2,1,4AE OE DE ===()4312415222AED AOCD EOCDS S S =+⨯⨯+=+=△四边形梯形CE DE =AC AD = AC AD =C F A D ⊥CD AC = CD AC = AC CD=AC AD CD ==ACD △30D AB ∠=︒90AD B ∠=︒在中,,∴,∴,∴.8分19.解:(1).2分(2)根据题意可列方程:. 4分整理,得,解得.6分∵种植60株比种植72株的田间管理少一些,故应舍去,∴.答:单位面积大豆应种植60株.7分20.解:由题意可知,解得 2分∴.3分设乙种水果进货m 吨,则甲种水果进货吨,10吨水果销售利润之和为W 万元,根据题意,,5分配方,得.∵,∴当时,W 的最大值为6.6.∴.7分答:甲、乙两种水果分别进货4吨,6吨时获得的销售利润之和最大,最大利润是6.6万元. 8分21.解:(1)一元二次方程和关联方程的系数特征是二次项系数、常数项相同,一次项系数互为相反数;一元二次方程和关联方程的根的关系特征是对应根互为相反数.2分(2)方程和的二次项系数、常数项相同,一次项系数互为相反数,符合(1)中描述的特征,故它们是关联方程.3分Rt ABD △8AB =142BD AB ==AD ===CD AD ==()660.5x -()660.52160x x -=213243200x x -+=1272,60x x ==1x 60x =1.442 2.6a b a b +=⎧⎨+=⎩0.11.5a b =-⎧⎨=⎩20.1 1.5y x x =-+乙()10m -()220.1 1.50.3100.1 1.23W m m m m m =-++-=-++()20.16 6.6Wm =--+0.10-<6m =104m -=2240x x --=2240x x +-=方程的根是的根是它们的两个根对应互为相反数,符合根的关系特征.5分(3)一元二次方程的根是,它的关联方程的根是,它们的两个根对应互为相反数.8分22.解:(1)根据题意,构造平面直角坐标系如图所示. 2分由题意可知,抛物线的顶点,可设抛物线的函数解析式为,2分将点B 代入,得,解得,∴抛物线的解析式为.4分(2)由题可知,∴.6分答:喷水池的半径至少为,才能使喷出的水流都落在水池内. 7分(3)当时,,解得9分.答:王师傅站立时必须在离水池中心点C 约至的范围内. 12分23.解:(1). 1分证明:由旋转的性质可知.∵D 是的中点,∴,∴,2分∴,∴ 4分(2)如图,连接2240x x --=21211240x x x x =+=-+-=1211x x =--=-+()200ax bx c a ++=≠≥x =20ax bx c -+=x =()()00,0,8,0B ()4,3.2P ()24 3.2y a x =-+()284 3.20a-+=0.2a =-()220.24 3.20.2 1.6y x x x =--+=-+2.3,8CA AB ==10.3CB CA AB =+=10.3m 1.8y =20.2 1.6 1.8x x -+=1244x x ==+()()122.3 6.3 6.3 2.65 3.7m , 2.3 6.3 6.3 2.658.9m x x +=≈-≈+=≈+≈3.7m 8.9m A B AC ''∥A A ∠=∠'Rt ABC △12AD BD CD AB ===AC A A ∠'=∠ACA A ∠'=∠'A B AC ''∥AA '在中,根据勾股定理可得.根据三角形面积公式可得由旋转可知.∴6分在中,根据勾股定理可得,在中根据勾股定理可得∴点A 与点10分(3)AD 的长为2或或. 13分提示:①当时,;②当时,;③当时,Rt ABC △5AB ==341255CD ⨯==4A C A C '==128455A D A C CD '='-=-=Rt AD C △165AD ==Rt AD A '△AA '==A '7552BC BD =532AD AB BD =-=-=BC CD =9725255AD AB BD =-=-⨯=BC CD =1522AD AB ==。
山西省2021-2022学年度九年级上学期数学期中试卷(I)卷(精编)

山西省2021-2022学年度九年级上学期数学期中试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019九上·巴州期中) 在“线段、等腰三角形、直角三角形、矩形、菱形、正方形、平行四边形、圆、等腰梯形”中既是中心对称,又是轴对称的图形有()A . 6个B . 5个C . 4个D . 3个2. (2分) (2019八下·杭州期末) 已知关于的方程是一元二次方程,则m的取值范围是()A .B .C .D . 任意实数3. (2分) (2019九上·阳信开学考) 已知二次函数y=ax2+bx+c(a≠0)的图象如右图所示,有下列结论:①b2-4ac>0:②abc>0;③8a+c>0;④9a+3b+c<0.其中,正确结论的个数是()A . 1B . 2C . 3D . 44. (2分)若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2015﹣a﹣b的值是()A . 2017B . 2018C . 2019D . 20205. (2分)(2017·灌南模拟) 如图,抛物线y1=a(x+2)2﹣3与y2= (x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确结论是()A . ①②B . ②③C . ③④D . ①④6. (2分) (2018九上·库伦旗期末) 抛物线的对称轴是()A . 直线x=-2B . 直线 x=2C . 直线x=-3D . 直线x=37. (2分)已知二次函数y=﹣3(x﹣h)2+5,当x>﹣2时,y随x的增大而减小,则有()A . h≥﹣2B . h≤﹣2C . h>﹣2D . h<﹣28. (2分)(2017·玉林模拟) 某班学校毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了2550份留言,如果全班有x名学生,根据题意,列出方程()A . =2550B . =2550C . x(x﹣1)=2550D . x(x+1)=25509. (2分) (2017八上·云南期中) 如图,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B2C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为()A .B .C . 2πD . π10. (2分) (2020八上·包河月考) 在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是()A . P(2,5)表示这个点在平面内的位置B . 点P的纵坐标是5C . 点P到x轴的距离是5D . 它与点(5,2)表示同一个坐标11. (2分)(2020·新昌模拟) 如图,在平面直角坐标系中,矩形O ABC的点B坐标为(8, 6),点A 在x轴上,点C在y轴上.点D是边AB上的动点,连接OD,作点A关于线段OD的对称点A'.已知一条抛物线y=ax²+bx+c (a≠0)经过O,A',A三点,且点A'恰好是抛物线的顶点,则b的值为()A . -B . 2C . -2D .12. (2分) (2020九上·龙岗期末) 如图,抛物线y=ax2+bx+c(a< 0)的图象经过点(1, 2),与x轴交点的横坐标分别为x1 , x2 ,其中-1<x1<0,1<x2<2,则下列结论中正确的是()A . a<-1B . b>2C . 2a+b> 0D . k为任意实数,关于x的方程ax2 +bx+c+k2 = 0没有实数根二、填空题 (共6题;共6分)13. (1分) (2020九上·兰州月考) 如果是关于x的一元二次方程,那么m的值为1.14. (1分) (2020九上·安庆月考) 抛物线的对称轴是直线1.15. (1分)二次函数y=﹣2x2﹣x+3的图象与y轴的交点坐标为116. (1分) (2019九上·松山期中) 要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排场比赛,则共有1支球队参赛.17. (1分) (2019九上·邯郸开学考) 二次函数的图像开口向下,则m的值为1.18. (1分) (2020七下·小店月考) 两块不同的三角板按如图所示摆放,两个直角顶点C重合,∠A=60o ,∠D=45o .接着保持三角板ABC不动,将三角板CDE绕着点C旋转,但保证点D在直线AC的上方,若三角板CDE 有一条边与斜边AB平行,则∠ACD=1.三、解答题 (共7题;共72分)19. (10分) (2020九上·莘县期末) 解方程(1) 2x2+1=3x(用配方法)(2) (x-2)2-3(x-2)-4=0(3) -3tan30°+(π-4)0+()-120. (6分) (2020九上·鼓楼月考) 己知在平面直角坐标系中的位置如图所示.(1)画出绕点A按逆时针方向旋转90°后的;(2)在(1)的条件下,求点C旋转到点所经过的路线长(结果保留).21. (10分)(2017·番禺模拟) 已知:关于x的一元二次方程tx2﹣(3t+2)x+2t+2=0(t>0)(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x1 , x2(其中x1<x2),若y是关于t的函数,且y=x2﹣2x1 ,求这个函数的解析式,并画出函数图象;(3)观察(2)中的函数图象,当y≥2t时,写出自变量t的取值范围.22. (10分) (2020九上·薛城期末) 某商场购进一种单价为10元的商品,根据市场调查发现:如果以单价20元售出,那么每天可卖出30个,每降价1元,每天可多卖出5个,若每个降价x(元),每天销售y(个),每天获得利润W(元).(1)写出y与x的函数关系式;(2)求W与x的函数关系式(不必写出x的取值范围)(3)若降价x元(x不低于4元)时,销售这种商品每天获得的利润最大为多少元?23. (15分) (2020九上·福州月考) 在平面直角坐标系中,抛物线y=ax2+bx经过点A(2,4)和点B(6,0).(1)求这条抛物线所对应的二次函数的解析式;(2)直接写出它的开口方向、顶点坐标;(3)点(x1 , y1),(x2 , y2)均在此抛物线上,若x1>x2>4,则y1 1 y2(填“>”“=”或“<”).24. (6分) (2012八下·建平竞赛) 如图1,小明将一张矩形纸片沿对角线剪开,得到两张三角形纸片(如图2),量得他们的斜边长为10cm,较小锐角为30°,再将这两张三角纸片摆成如图3的形状,但点B、C、F、D 在同一条直线上,且点C与点F重合.(在图3至图6中统一用F表示)小明在对这两张三角形纸片进行如下操作时遇到了三个问题,请你帮助解决.(1)将图3中的△ABF沿BD向右平移到图4的位置,使点B与点F 重合,请你求出平移的距离;(2)将图3中的△ABF绕点F顺时针方向旋转30°到图5的位置,A1F交DE于点G,请你求出线段FG的长度;(3)将图3中的△ABF沿直线AF翻折到图6的位置,AB1交DE于点H,请说明:AH=DH.25. (15分)(2017·广州模拟) 已知抛物线C1:y=ax2+bx﹣(a≠0)经过点A(1,0)和B(﹣3,0).(1)求抛物线C1的解析式,并写出其顶点C的坐标.(2)如图1,把抛物线C1沿着直线AC方向平移到某处时得到抛物线C2 ,此时点A,C分别平移到点D,E 处.设点F在抛物线C1上且在x轴的上方,若△DEF是以EF为底的等腰直角三角形,求点F的坐标.(3)如图2,在(2)的条件下,设点M是线段BC上一动点,EN⊥EM交直线BF于点N,点P为线段MN的中点,当点M从点B向点C运动时:①tan∠ENM的值如何变化?请说明理由;②点M到达点C时,直接写出点P经过的路线长.参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:三、解答题 (共7题;共72分)答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、答案:24-2、答案:24-3、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:。
山西省临汾市尧都区2021-2022学年九年级上学期期末评估数学试题(Word版含答案)

人教版九年级数学上册期末教学质量评估卷(考试时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.已知⊙0的半径是5,点A到圆心0的距离是7,则点A与⊙0的位置关系是( )A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合2.下列图形中,是轴对称图形,但不是中心对称图形的是( )3.如图,在⊙0中,⌒AB所对的圆周角∠ACB=50°,若P为AB上一点,∠AOP=55°,则∠POB的度数为( )A.30°B.45°C.55°D.60°4.抛物线y=-2(x+1)2-3的对称轴是( )A.直线x=1B.直线x=-1C.直线x=3D.直线x=-35.已知点A(1,y1),B(2,y2)在抛物线y=-(x+1)2+2上,则下列结论正确的是( )A.2>y1>y2B.2>y2>y1C.y1>y2>2D.y2>y1>26.当b+c=5时,关于x的一元二次方程3x2+bx-c=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定7.把边长为3的正方形ABCD绕点A顺时针旋转45°得到正方形AB′C′D′,边BC与D′C′交于点O,则四边形ABOD′的周长是( )A.6 2B.6C.3 2D.3+3 28.如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是( )A.c<0B.b2-4ac<0C.a-b+c<0D.图象的对称轴是直线x=39.从1、2、3、4四个数中随机选取两个不同的数,分别记为a、c,则关于x的一元二次方程ax2+4x+c=0有实数解的概率为( )A.14B.13C.12D.2310.如图,AC是矩形ABCD的对角线,⊙0是△ABC的内切圆,现将矩形ABCD按如图所示的方式折叠,使点D与点O重合,折痕为FG.点F,G分别在边AD,BC上,连接OG,DG.若OG⊥DG,且⊙O的半径长为1,则下列结论不成立的是( )A.CD+DF=4B.CD-DF=2 3 -3C.BC+AB=2 3 +4D.BC-AB=2二、填空题(每小题3分,共24分)11.一个正多边形的每个外角都等于60°,那么这个正多边形的中心角为________。
2022-2023学年山西临汾霍州三中九年级数学第一学期期末调研模拟试题含解析

2022-2023学年九上数学期末模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.已知关于x 的一元二次方程24220kx x -+=有两个实数根,则k 的取值范围是( ) A .4k ≥ B .4k ≥-且0k ≠ C .4k ≤且0k ≠D .4k ≤-2.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <23.如图,AB ⊥BD ,CD ⊥BD ,垂足分别为B 、D ,AC 和BD 相交于点E ,EF ⊥BD 垂足为F .则下列结论错误的是( )A .B .C .D .4.一元二次方程2 340x x ﹣﹣=的常数项是( ) A .﹣4B .﹣3C .1D .25.如图,双曲线ky x=与直线y mx =相交于A 、B 两点,B 点坐标为()2,3--,则A 点坐标为( )A .()2,3? --B .()2,3C .()2,3-D .()2,3-6.下列事件是必然事件的是( )A .3个人分成两组,并且每组必有人,一定有2个人分在一组B .抛一枚硬币,正面朝上C .随意掷两个均匀的骰子,朝上面的点数之和为6D .打开电视,正在播放动画片7.Rt ABC ∆中,90C ∠=︒,15b =,4c =,则cos B 的值是( )A 15B .13C 15D .148.下列说法正确的是( )A .打开电视机,正在播放广告是必然事件B .天气预报明天下雨的概率为90%,说明明天一定会下雨C .买一张体育彩票会中奖是可能事件D .长度分别为3,5,9厘米的三条线段不能围成一个三角形是随机事件9.已知,当﹣1≤x ≤2时,二次函数y =m (x ﹣1)2﹣5m +1(m ≠0,m 为常数)有最小值6,则m 的值为( ) A .﹣5B .﹣1C .﹣1.25D .110.如图,抛物线2y ax bx c =++的对称轴为直线1x =,与x 轴的-个交点坐标为(1-,0),其部分图象如图所示,下列结论:①240b ac -<;②方程20ax bx c ++=的两个根是11x =-,23x =;③20a b +=;④当0y >时,x 的取值范围是13x -<<.其中结论正确的个数是( )A .4B .3C .2D .1二、填空题(每小题3分,共24分)11.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.12.一个布袋里装有10个只有颜色不同的球,这10个球中有m 个红球,从布袋中摸出一个球,记下颜色后放回,搅匀,再摸出一个球,通过大量重复试验后发现,摸到红球的频率稳定在0.3左右,则m 的值约为__________. 13.在函数y 2x 1=-中,自变量x 的取值范围是 .14.长度等于62的弦所对的圆心角是90°,则该圆半径为_____. 15.已知二次函数y=-x 2+2x+5,当x________时,y 随x 的增大而增大 16.150°的圆心角所对的弧长是5πcm ,则此弧所在圆的半径是______cm . 17.一元二次方程x 2﹣4=0的解是._________18.如图,等腰直角三角形AOC 中,点C 在y 轴的正半轴上,OC =AC =4,AC 交反比例函数y =2x的图象于点F ,过点F 作FD ⊥OA ,交OA 与点E ,交反比例函数与另一点D ,则点D 的坐标为_____.三、解答题(共66分)19.(10分)如图,反比例函数(0)ky x x =>的图象与正比例函数32y x =的图象交于点A ,且A 点的横坐标为2.(1)求反比例函数的表达;(2)若射线OA 上有点P ,2PA OA =,过点P 作PM 与x 轴垂直,垂足为点M ,交反比例函数图象于点B ,连接AB ,OB ,请求出OAB ∆的面积.20.(6分)如图,AB 是直径AB 所对的半圆弧,点C 在AB 上,且∠CAB =30°,D 为AB 边上的动点(点D 与点B 不重合),连接CD ,过点D 作DE ⊥CD 交直线AC 于点E .小明根据学习函数的经验,对线段AE ,AD 长度之间的关系进行了探究. 下面是小明的探究过程,请补充完整:(1)对于点D 在AB 上的不同位置,画图、测量,得到线段AE ,AD 长度的几组值,如下表:位置1 位置2 位置3 位置4 位置5 位置6 位置7 位置8 位置9AE /cm 0.00 0.41 0.77 1.00 1.15 1.00 0.00 1.00 4.04 … AD /cm 0.000.501.001.412.002.453.003.213.50…在AE ,AD 的长度这两个量中,确定_______的长度是自变量,________的长度是这个自变量的函数; (2)在下面的平面直角坐标系xOy 中,画出(1)中所确定的函数的图象;(3)结合画出的函数图象,解决问题:当AE =12AD 时,AD 的长度约为________cm (结果精确到0.1). 21.(6分)甲乙两人参加一个幸运挑战活动,活动规则是:一个布袋里装有3个只有颜色不同的球,其中2个红球,1个白球.甲从布袋中摸出一个球,记下颜色后放回,搅匀,乙再摸出一个球,若颜色相同,则挑战成功. (1)用列表法或树状图法,表示所有可能出现的结果. (2)求两人挑战成功的概率.22.(8分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y=﹣10x+1. (1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额﹣成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?23.(8分)如果一条抛物线2y ax bx c =++(0)a ≠与坐标轴有三个交点.那么以这三个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)命题“任意抛物线都有抛物线三角形”是___________(填“真”或“假”)命题; (2)若抛物线解析式为243y x x =-+,求其“抛物线三角形”的面积.24.(8分)如图,//AE BF ,AC 平分BAE ∠,且交BF 于点C ,BD 平分ABF ∠,且交AE 于点D ,AC 与BD 相交于点O ,连接CD()1求AOD ∠的度数;()2求证:四边形ABCD 是菱形.25.(10分)如图,已知反比例函数kyx=的图像与一次函数y x b=+的图象相交于点A(1,4)和点B(m,-2).(1)求反比例函数和一次函数的解析式;(2)求ΔAOC的面积;(3)直接写出kx bx+>时的x的取值范围(只写答案)26.(10分)随着科学技术的不断进步,草莓的品种越来越多样化,某基地农户计划尝试购进牛奶草莓和巧克力草莓新品种共5000株,其中牛奶草莓成本每株5元,巧克力草莓成本每株8元.(1)由于初次尝试该品种草莓种植,农户购进两种草莓品种的金额不得超过34000元,则牛奶草莓植株至少购进多少株?(2)农户按(1)中牛奶草莓的最少进货量购进牛奶草莓巧克力草莓植株,经过几个月的精心培育,可收获草莓共计2500千克,农户在培育过程中共花费25000元.农户计划采用直接出售与生态采摘出售两种方式进行售卖,其中直接出售牛奶草莓的售价为每千克30元,直接出售巧克力草莓的售价为每千克40元,且两种草莓各出售了500千克.而生态采摘出售时,两种品种幕莓的采摘销售价格一样,且通过生态采摘把余下的草莓全部销售完,但采摘过程中会有0.6a%的损耗,其中生态采摘出售草莓的单价比直接出售巧克力草莓的单价还高3a%(0<a≤75),这样该农户经营草莓的总利润为65250元,求a的值.参考答案一、选择题(每小题3分,共30分)1、C【分析】若一元二次方程有两个实数根,则根的判别式△=b2-4ac≥1,建立关于k的不等式,求出k的取值范围.还要注意二次项系数不为1.【详解】解:∵一元二次方程24220kx x -+=有两个实数根, ∴2(42)420k ∆=--⨯⨯≥, 解得:4k ≤, ∵0k ≠,∴k 的取值范围是4k ≤且0k ≠; 故选:C . 【点睛】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件. 2、C【解析】一次函数y 1=kx+b 落在与反比例函数y 2=cx图象上方的部分对应的自变量的取值范围即为所求. 【详解】∵一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点, ∴不等式y 1>y 2的解集是﹣3<x <0或x >2, 故选C .【点睛】本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键. 3、A【解析】利用平行线的性质以及相似三角形的性质一一判断即可. 【详解】解:∵AB ⊥BD ,CD ⊥BD ,EF ⊥BD , ∴AB ∥CD ∥EF ∴△ABE ∽△DCE , ∴,故选项B 正确,∵EF ∥AB , ∴,∴,故选项C ,D 正确,故选:A .【点睛】考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 4、A【分析】一元二次方程ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)中a 、b 、c 分别是二次项系数、一次项系数、常数项. 【详解】解:一元二次方程2 340x x ﹣﹣=的常数项是﹣4, 故选A . 【点睛】本题考查了一元二次方程的一般形式:ax 2+bx +c =0(a ,b ,c 是常数且a ≠0)特别要注意a ≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a 、b 、c 分别叫二次项系数,一次项系数,常数项. 5、B【解析】反比例函数的图象是中心对称图形,则经过原点的直线的两个交点一定关于原点对称. 【详解】解:点A 与B 关于原点对称, B 点坐标为()2,3--∴A 点的坐标为(2,3).所以B 选项是正确的. 【点睛】本题主要考查了反比例函数图象的中心对称性,要求同学们要熟练掌握. 6、A【分析】根据必然事件是指在一定条件下,一定发生的事件,对每一选项判断即可.【详解】解:A 、3个人分成两组,并且每组必有人,一定有2个人分在一组是必然事件,符合题意,故选A ; B 、抛一枚硬币,正面朝上是随机事件,故不符合题意,B 选项错误;C 、随意掷两个均匀的骰子,朝上面的点数之和为6是随机事件,故不符合题意,C 选项错误;D 、打开电视,正在播放动画片是随机事件,故不符合题意,D 选项错误; 故答案选择D . 【点睛】本题考查的是事件的分类,事件分为必然事件,随机事件和不可能事件,掌握概念是解题的关键. 7、D【分析】根据勾股定理求出BC 的长度,再根据cos 函数的定义求解,即可得出答案.【详解】∵AB=4,∠C=90°∴1BC==∴14BC cosBAB==故答案选择D.【点睛】本题考查的是勾股定理和三角函数,比较简单,需要熟练掌握sin函数、cos函数和tan函数分别代表的意思.8、C【分析】根据必然事件,随机事件发生的可能性逐一判断即可.【详解】A.打开电视机,正在播放广告是随机事件,故错误;B.天气预报明天下雨的概率为90%,明天也不一定会下雨,故错误;C.买一张体育彩票会中奖是可能事件,故正确;D.长度分别为3,5,9厘米的三条线段不能围成一个三角形是必然事件,故错误;故选:C.【点睛】本题主要考查随机事件和必然事件,掌握随机事件和必然事件发生的可能性是解题的关键.9、A【分析】根据题意,分情况讨论:当二次函数开口向上时,在对称轴上取得最小值,列出关于m的一次方程求解即可;当二次函数开口向下时,在x=-1时取得最小值,求解关于m的一次方程即可,最后结合条件得出m的值.【详解】解:∵当﹣1≤x≤2时,二次函数y=m(x﹣1)2﹣5m+1(m≠0,m为常数)有最小值6,∴m>0,当x=1时,该函数取得最小值,即﹣5m+1=6,得m=﹣1(舍去),m<0时,当x=﹣1时,取得最小值,即m(﹣1﹣1)2﹣5m+1=6,得m=﹣5,由上可得,m的值是﹣5,故选:A.【点睛】本题考查了二次函数的最值问题,注意根据开口方向分情况讨论,一次方程的列式求解,分情况讨论是解题的关键.10、B【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另个交点坐标为(3,0),则可对②进行判断;由对称轴方程可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断.【详解】∵观察函数的图象知:抛物线与x轴有2个交点,∴24b ac ->0,所以①错误; ∵抛物线的对称轴为直线1x =,而点()10,-关于直线1x =的对称点的坐标为()30,, ∴方程20ax bx c ++=的两个根是1213x x =-=,,所以②正确; ∵抛物线的对称轴为12bx a=-=,即2b a =-, ∴20a b +=,所以③正确;∵抛物线与x 轴的两点坐标为()10,-,()30,,且开口向下, ∴当y >0时,x 的取值范围是13x -<<,所以④正确; 综上,②③④正确,正确个数有3个. 故选:B . 【点睛】本题考查了二次函数图象与系数的关系,关键是掌握对于二次函数()20y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置;常数项c 决定抛物线与y 轴交点位置;抛物线与x 轴交点个数由24b ac =-⊿决定.二、填空题(每小题3分,共24分) 11、1:2【解析】试题分析:∵两个相似三角形的面积比为1:4,∴这两个相似三角形的相似比为1:1,∴这两个相似三角形的周长比是1:1,故答案为1:1. 考点:相似三角形的性质. 12、3【解析】在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.【详解】解:根据题意得,10m=0.3,解得m =3. 故答案为:3. 【点睛】本题考查随机事件概率的意义,关键是要知道在同样条件下,大量重复实验时,随机事件发生的频率逐渐稳定在概率附近.13、1x 2≥ 【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使2x 1-在实数范围内有意义,必须12x 10x 2-≥⇒≥. 14、1【分析】结合等腰三角形的性质,根据勾股定理求解即可.【详解】解:如图AB =12,∠AOB =90°,且OA =OB ,在Rt OAB 中,根据勾股定理得222OA OB AB +=,即2222(62)72OA AB ===∴236OA =,0OA >6OA ∴=故答案为:1.【点睛】本题考查了等腰三角形的性质及勾股定理,在等腰直角三角形中灵活利用勾股定理求线段长度是解题的关键. 15、x<1【分析】把二次函数解析式化为顶点式,可求得其开口方向及对称轴,利用二次函数的增减性可求得答案.【详解】解:∵y=-x 2+2x+5=-(x-1)2+6,∴抛物线开口向下,对称轴为x=1,∴当x <1时,y 随x 的增大而增大,故答案为:<1.【点睛】此题考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).16、1;【解析】解:设圆的半径为x ,由题意得:150180x π =5π,解得:x =1,故答案为1.点睛:此题主要考查了弧长计算,关键是掌握弧长公式l =180n R π (弧长为l ,圆心角度数为n ,圆的半径为R ). 17、x=±1 【解析】移项得x 1=4,∴x=±1.故答案是:x=±1. 18、 (4,12) 【分析】先求得F 的坐标,然后根据等腰直角三角形的性质得出直线OA 的解析式为y =x ,根据反比例函数的对称性得出F 关于直线OA 的对称点是D 点,即可求得D 点的坐标.【详解】∵OC =AC =4,AC 交反比例函数y =2x 的图象于点F , ∴F 的纵坐标为4,代入y =2x 求得x =12, ∴F (12,4), ∵等腰直角三角形AOC 中,∠AOC =45°,∴直线OA 的解析式为y =x ,∴F 关于直线OA 的对称点是D 点,∴点D 的坐标为(4,12), 故答案为:(4,12) . 【点睛】本题考查了反比例函数图象上点的坐标特征,等腰直角三角形的性质,反比例函数的对称性是解题的关键.三、解答题(共66分)19、(1)y=6x(x>0);(2)△OAB 的面积为2. 【分析】(1)将A 点的横坐标代入正比例函数,可求出A 点坐标,再将A 点坐标代入反比例函数求出k ,即可得解析式;(2)过A 点作AN ⊥OM ,垂足为点N ,则AN ∥PM ,根据平行线分线段成比例得OA ON AP NM=,进而求出M 点坐标,将M 点的横坐标分别代入反比例函数和正比例函数,求出B 、P 的坐标,再利用三角形面积公式求出△POM 、△BOM 的面积,作差得到△BOP 的面积,最后根据S △OAB ∶S △BAP =OA ∶AP=1∶2即可求解.【详解】解:(1)A 点在正比例函数y=32x 的图象上,当x=2时,y=3,∴点A的坐标为(2,3)将(2,3)代入反比例函数解析式y=kx(x>0),得32k=,解得k=1.∴反比例函数的表达式为y=6x (x>0)(2)如图,过A点作AN⊥OM,垂足为点N,则AN∥PM,∴OA ON AP NM=.∵PA=2OA,∴MN=2ON=4,∴OM=ON+MN=2+4=1 ∴M点的坐标为(1,0)将x=1代入y=6x,得y=66=1,∴点B的坐标为(1,1)将x=1代入y=32x,得y=362⨯=9,∴点P的坐标为(1,9).∴S△POM=12×1×9=27,S△BOM=12×1×1=3∴S△BOP=27-3=24又∵S△OAB∶S△BAP=OA∶AP=1∶2∴S△OAB=13×24=2答:△OAB的面积为2.【点睛】本题考查了反比例函数与一次函数的综合问题,以及平行线分线段成比例,熟练掌握待定系数法求函数解析式,利用点的坐标求三角形面积是解题的关键.20、(1)AD,AE;(2)画图象见解析;(3)2.2,3.3.【分析】(1)根据函数的定义可得答案;(2)根据题意作图即可;(3)满足AE=12AD条件,实际上可以转化为正比例函数y=12x.【详解】解:(1)根据题意,D为AB边上的动点,∴AD的长度是自变量,AE的长度是这个自变量的函数;∴故答案为:AD,AE.(2)根据已知数据,作图得:(3)当AE=12AD时,y=12x,在(2)中图象作图,并测量两个函数图象交点得:AD=2.2或3.3故答案为:2.2或3.3【点睛】本题是圆的综合题,以几何动点问题为背景,考查了函数思想和数形结合思想.在(3)中将线段的数量转化为函数问题,设计到了转化的数学思想.21、(1)见解析;(2)59.【分析】用列表法列举出所有等可能出现的结果,从中找出颜色相同的结果数,进而求出概率.【详解】解:(1)用列表法表示所有可能出现的结果如下:(2)共有9种等可能出现的结果,其中颜色相同的有5种,∴P(颜色相同)=59,答:获胜的概率为59.【点睛】考查列表法或树状图法求等可能事件发生的概率,使用此方法一定注意每一种结果出现的可能性是均等的,即为等可能事件.22、y=﹣10x 2+1600x ﹣48000;80元时,最大利润为16000元.【解析】试题分析:(1)根据“总利润=单件的利润×销售量”列出二次函数关系式即可;(2)将得到的二次函数配方后即可确定最大利润试题解析:(1)S=y (x ﹣20)=(x ﹣40)(﹣10x+1)=﹣10x 2+1600x ﹣48000;(2)S=﹣10x 2+1600x ﹣48000=﹣10(x ﹣80)2+16000,则当销售单价定为80元时,工厂每天获得的利润最大,最大利润是16000元.考点:二次函数的应用23、(1)假;(2)3【分析】(1)判定是真假命题,要看抛物线与坐标轴交点的个数,当有3个交点时是真命题,有两个或一个交点时不能构成三角形.(2)先求抛物线与坐标轴的交点坐标,再求面积即可.【详解】解:(1)假命题.如果抛物线与x 坐标轴没有交点时,不能形成三角形.(2)抛物线解析式为243y x x =-+∴与y 轴交点坐标为()0,3,与x 轴交点坐标为()1,0,()3,0∴“抛物线三角形”的面积为3【点睛】本题考查了抛物线的性质,再求抛物线与坐标轴的交点组成的三角形的面积.24、 (1) 90AOD ∠=;(2)见解析.【分析】(1)已知C 、BD 分别是∠BAD 、∠ABC 的平分线,根据角平分线的定义可得∠DAC=∠BAC ,∠ABD=∠DBC ,又因AE // BF ,根据平行线的性质可得∠DAB+∠CBA=180°,即可得∠BAC+∠ABD=90°,∠AOD=90°;(2)根据平行线的性质和角平分线的定义易证AB=BC ,AB=AD ,即可得AD=BC ,再由AD // BC ,根据一组对边平行且相等的四边形为平行四边形可得四边形ABCD 是平行四边形,再根据一组邻边相等的平行四边形为菱形即可判定四边形ABCD 是菱形.【详解】() 1∵AC 、BD 分别是BAD ∠、ABC ∠的平分线,∴DAC BAC ∠=∠,ABD DBC ∠=∠,∵//AE BF ,∴180DAB CBA ∠+∠=, ∴()111809022BAC ABD DAB ABC ∠+∠=∠+∠=⨯=, ∴90AOD ∠=; ()2证明:∵//AE BF ,∴ADB DBC ∠=∠,DAC BCA ∠=∠,∵AC 、BD 分别是BAD ∠、ABC ∠的平分线,∴DAC BAC ∠=∠,ABD DBC ∠=∠,∴BAC ACB ∠=∠,ABD ADB ∠=∠,∴AB BC =,AB AD =,∴AD BC =,∵//AD BC ,∴四边形ABCD 是平行四边形,∵AD AB =,∴四边形ABCD 是菱形.【点睛】本题考查了平行线的性质、角平分线的定义、等腰三角形的判定及性质、菱形的判定,证明四边形ABCD 是平行四边形是解决本题的关键.25、(1)4y x =,3y x ;(2)C (-3,0), S=6;(3)20x -<<或1x >【分析】(1)根据题意把A 的坐标代入反比例函数k y x=的图像与一次函数y x b =+,分别求出k 和b ,从而即可确定反比例函数和一次函数的解析式; (2)由题意先求出C 的坐标,再利用三角形面积公式求出ΔAOC 的面积;(3)根据函数的图象即可得出一次函数的值大于反比例函数的值的x 的取值范围.【详解】解:(1)将点A (1,4)代入反比例函数k y x=的图像与一次函数y x b =+,求得4k =以及3b =, 所以反比例函数和一次函数的解析式分别为:4y x =和3y x ; (2)因为C 在一次函数3y x 的图象上以及x 轴上,所以求得C 坐标为(-3,0),则有OC=3, ΔAOC 以OC 为底的高为4,所以ΔAOC 的面积为:13462⨯⨯=; (3)由k x b x+>可知一次函数的值大于反比例函数的值, 把B (m ,-2)代入4y x=,得出m=-2,即B (-2,-2), 此时当20x -<<或1x >时,一次函数的值大于反比例函数的值.【点睛】本题考查一次函数与反比例函数的交点问题,用待定系数法求一次函数和反比例函数的解析式及利用图象比较函数值的大小,解题的关键是确定交点的坐标.26、(1)牛奶草莓植株至少购进2株;(2)a 的值为1.【分析】(1)设购进牛奶草莓植株x 株,则购进巧克力草莓植株(5000﹣x)株,根据总价=单价×数量结合购进两种草莓品种的金额不得超过34000元,即可得出关于x 的一元一次不等式,解之取其中的最小值即可得出结论;(2)根据利润=销售收入﹣成本﹣消耗,即可得出关于a 的一元二次方程,利用换元法解一元二次方程即可求出a 值,取其小于等于75的值即可得出结论.【详解】解:(1)设购进牛奶草莓植株x 株,则购进巧克力草莓植株(5000﹣x)株,根据题意得:5x+8(5000﹣x)≤34000,解得:x≥2.答:牛奶草莓植株至少购进2株.(2)根据题意得:500×(30+40)+(100﹣500﹣500)(1﹣0.6a%)×40(1+3a%)﹣1000﹣34000=6510, 令m =a%,则原方程可整理得:48m 2﹣64m+13=0,解得:m 1=14,m 2=1312, ∴a 1=14×100=1,a 2=1312×100=3253, ∵0<a≤75,∴a 1=1,a 2=3253(不合题意,舍去). 答:a 的值为1.【点睛】本题考查了一元一次不等式的应用、一元二次方程的应用,根据题意正确列出不等式和方程是解答本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.12mB.12.5mC.13mD.13.5m
4.某体校要从四名射击选手中选拔一名选手参加省体育运动会,选拔赛中每名选手连续射靶 次,他们各自的平均成绩及其方差如下表所示:
A.公理化B.分类讨论
C.数形结合D.由特殊到一般
7.在一个不透明的袋中,装有2个黄球和3个红球,它们除颜色外都相同.从袋中任意摸出两个球,则这两个球颜色不同的概率是( )
A. B. C. D.
8.某种品牌自行车的进价为400元,出售时标价为500元,商店准备打折出售,但要保持利润率不低于5%,则至多可打的折数是( )
“农谷一号”番茄挂果数量统计表
挂果数量x(个)
频数(株)
频率
25≤<35
6
35≤x<45
0.2
45≤x<55
15
a
55≤x<65
65≤x<75
9
请结合图表中的信息解答下列问题:
(l)统计表中,a=,若绘制“农谷一号”番茄挂果数量扇形统计图,则挂果数量在“35≤x<45”所对应扇形的圆心角度数为;
(2)将频数分布直方图补充完整;
(1)求点C的坐标及k的值;
(2)直接写出正方形EFGH的边长.
19.阅读与探究
请阅读下列材料,完成相应的任务:幻方:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”.中国古代称“幻方”为“河图”“洛书”等,例如,图1是一个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到3x3的方格中得到的,其每行、每列、每条对角线上的三个数之和相等,我们称这种幻方为“数字连续型三阶幻方”.
2021年山西省临汾市尧都区九年级中考第三次大联考数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知∠A=80°,则∠A的补角是( )
A.100°B.80°C.40°D.10°
2.下列运算正确的是()
A. B.
C. D.
A.16﹣8 B.16 ﹣16C.12﹣8 D.16 ﹣12
二、填空题
11.不等式组 的解集是______.
12.如图是一组有规律的图案,它们是由边长相同的正方形和等边三角形组成,其中正方形涂有阴影.依此规律,第n个图案中有_____个涂有阴影的正方形(用含有n的代数式表示).
13.盈不足术是中国古代解决盈亏类问题的一种算术方法.中国古代数学名著《九章算术》中,专辟一章名为“盈不足”.该章第一个问题大意是“有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问该物品售价为多少元?”,则该物品售价为_____元.
任务:(1)观察图1中三阶幻方中间的数字与9个数的和,可以发现二者有确定的数量关系.设“数字连续型三阶幻方中间的数字是x,幻方中9个数的和为s,则s与x之间的数量关系为;
(2)现要用9个数3,4,5,6,7,8,9,10,11构造一个三阶幻方.请将构造的幻方填写在图2的3×3方格中;
(3)某学习小组同学在研究图1的三阶幻方时,发现任何一个角上的数都有两个数与其不在同一行、列及对角线上,并且它们之间存在一个等量关系.为此该小组同学绘制了图3,请你用图3中的字母m,a,b表示他们发现的这个等量关系.(直接写出,不必证明)
(3)若所种植的“农谷一号”番茄有1000株,请估计挂果数量在“55≤x<65”范围的番茄株数.
18.如图,在平面直角坐标系中,菱形ABCD的顶点B,C在x轴上,反比例函数y=﹣ (x<0)的图象经过A,E两点,反比例函数y= (x>0)的图象经过第一象限内的D,H两点,正方形EFCH的顶点F.G在AD上.已知A(﹣1,a),B(﹣4,0).
A.八折B.八四折C.八五折D.八八折
9.如图,在平面直角坐标系中,第二象限内的点P是反比例函数y= (k≠0)图象上的一点,过点P作PA⊥x轴于点A,点B为AO的中点若△PAB的面积为3,则k的值为( )
A.6B.﹣6C.12D.﹣12
10.如图,正方形ABCD的边长为2,点O为其中心.将其绕点O顺时针旋转45°后得到正方形A'B'C'D',则旋转前后两正方形重叠部分构成的多边形的周长为( )(参考计算: )
20.如图,以 为直径,点 为圆心的半圆上有一点 且 点 为 上一点.将 沿直线 对折得到 点 的对应点为 且 与半圆相切于点 连接 交半圆于点 .
甲
乙
丙
丁
(环)
如果要选出一名成绩高且发挥稳定的选手参赛,则应选择的选手是()
A.甲B.乙C.丙D.丁
5.如图,AC是⊙O的直径,B,D是⊙O上的点,且∠CAB=34°,则∠D的度数是( )
A.44°B.54°C.56°D.66°
6.探究课上,老师给出一个问题“利用二次函数y=2x2与一次函数y=x+2的图象,求一元二次方程2x2=x+2的近似根”小华利用计算机绘制出如图所示的图象,通过观察可知该方程的两近似根x1和x2满足﹣1<x1<0,1<x2<2.小华的上述方法体现的数学思想是( )
15.如图,平行四边形ABCD的边长AD=3,AB=2,∠BAD=120°,E为AB的中点,F在边BC上,且BF=2FC.AF与DE交于点G,则AG的长为_____.
三、解答题
16.(1)计算: |+( 5月,山西省政府大力实施的建设“山西农谷”战略成果初现,“山西农谷”通过组建山西农谷生物科技研究院,逐步建成大学生“互联网+农业”创新创业园.某校科技小组到该创业园的全环境智能番茄特色小镇进行综合实践活动,随机调查了60株“农谷一号“番茄的挂果数量(单位:个),并绘制了如下不完靠的统计图表:
14.某兴趣小组同学借助无人机航拍测量某公园内一座古塔高度.如图,无人机在距离地面168米的A处,测得该塔底端点B的俯角为40°,然后向古塔方向沿水平面飞行50秒到达点C处,此时测得该塔顶端点D的俯角为60°.已知无人机的飞行速度为3米/秒,则这座古塔的高度约为_____米(参考计算:sin40°≈064.cos40°≈077.tan40°≈0.84. ≈1.41. 1.73.结果精确到0.1米)