(能源化工行业)化工原理换热器设计

(能源化工行业)化工原理换热器设计
(能源化工行业)化工原理换热器设计

(能源化工行业)化工原理

换热器设计

|化工原理课程设计任务书

专业班级:07过控02学生姓名:赵凯学号:0703020228

壹设计题目:正戊烷冷凝器的设计

二课题条件(文献资料,仪器设备,指导力量)

(壹)设计任务

设计壹冷凝器,冷凝正戊烷蒸气;

处理能力:6万吨/年。

正戊烷蒸气压力:0.75kgf/cm2,其饱和温度为52,蒸发潜热为83kcal/kg 冷却剂:自来软水,进口温度出口温度

(二)操作条件:

(1)生产方式:连续操作

(2)生产时间:每年以300天计算,每天24小时

(3)冷凝器操作压力为常压,管程和壳程的压力均不大于30kpa

三.设计任务

1.确定设计方案,绘制工艺流程图。

2.热力学计算

2.1热力学数据的获取

2.2估算传热面积

2.3工艺尺寸的计算

2.4面积核算

2.5壁温校核

2.6压降校核

3.结构设计

3.1冷凝器的安装

3.2管设计

3.3管心距设计

3.4管板设计

3.5折流板设计

3.6壳体设计

3.7接管设计

3.8封头设计

3.9法兰设计

3.10支座设计

3.11其他

4.设计计算结果汇总表

5.设计结果评价

6.绘制装配图

7.编制设计说明书

设计流程图

计算值与假定值相差较大计算值与假定值相

1.热力学数据的获取

正戊烷液体在定性温度(52℃)下的物性数据(查化工原理附录) 循环水的定性温度: 入口温度为,出口温度为 循环水的定性温度为

俩流体的温差,故选固定管板式换热器

俩流体在定性温度下的物性数据如下 (1)计算热负荷

=6/(30024)=8333.3kg/h=2.31kg/s (2)冷却水用量

==804.3/4.08(40-25)=13.1kg/s (3)计算有效平均温度差 逆流温差

(4)选取经验传热系数K 值

根据管程走循环水,壳程走正戊烷,总传热系数K 现暂取: (5)估算换热面积 3.工艺尺寸计算

(1)管径和管内流速选用Φ25×2.5mm 较高级冷拔传热管(碳钢),取管内流速u1=0.8m/s 。 (2)管程数和传热管数可依据传热管内径和流速确定单程传热管数 =(根)

按单程管计算,所需的传热管长度为 L=

按单程管设计,传热管过长,宜采用多管程结构。根据本设计实际情况,现 取传热管长l=4.5m ,则该换热器的管程数为 =

传热管总根数N=53×4=212(根) (3)平均传热温差校正及壳程数: 平均温差校正系数有:

裕度过大或过小

压降大于设计压④

R=

P=

单壳程,双管程结构,查得

平均传热温差℃

由于平均传热温差校正系数大于0.8,同时壳程流体流量较大,故取单壳

程合适。

(4)壳体内径

采用多管程结构,壳体内径可按下式估算。取管板利用率η=0.7,则壳

体内径为

D=1.05t

按卷制壳体的进级档,可取D=600mm

则横过管数中心线管的根数(根)

卧式固定管板式换热器的规格如下:

公称直径D…………………………600mm

公称换热面积S……………………66.8m2

管程数 (4)

管数n (212)

管长L………………………………4.5m

管子直径……………………………

管子排列方式………………………正三角形

(5)折流板

采用弓形折流板,取弓形折流板圆缺高度为壳体内径的20%,则切去的圆缺高度为h=0.20*600=120mm。

取折流板间距B=0.3D,则

B=0.3*600=180mm,可取B=200mm。

折流板数N=传热管长/折流板间距-1=4500/200-1=22(块)

面积核算

(1)壳程表面传热系数

(2)管内表面传热系数.,有

管程流体流通截面积

管程流体流速

普朗特数

(3)污垢热阻和管壁热阻

管外侧污垢热阻

管内侧污垢热阻

管壁热阻计算,碳钢在该条件下的热导率为50.29w/(m·K)。所以

(4)传热系数依式3-21有

(5)传热面积裕度:可得所计算传热面积Ap为

该换热器的实际传热面积为

该换热器的面积裕度为

传热面积裕度合适,该换热器能够完成生产任务。

5.壁温核算和冷凝液流型

核算壁温时,壹般忽略管壁热阻,按以下近似计算公式计算

,这和假设相差不大,能够接受。

核算流型

冷凝负荷

(符合层流假设)

6.压降校核

(1)计算管程压降

(结垢校正系数,管程数,壳程数)

取碳钢的管壁粗糙度为0.1mm,则,而,于是

对的管子有

<30KPa

故,管程压降在允许范围之内。

(2)计算壳程压降

按式计算

,,

流体流经管束的阻力

F=0.5

壳程流体流速及其雷诺数分别为:

0.5×0.335×16.01×(22+1)×=14679Pa

流体流过折流板缺口的阻力

,B=0.2m,D=0.6m

Pa

总阻力14679+9429=24108Pa<30KPa

由于该换热器壳程流体的操作压力较高,所以壳程流体的阻力也比较适宜。

结构设计

1.冷凝器的安装

(1)采用卧式换热器

卧式换热器相对立式换热器,其占地面积虽然大壹些,但其传热系数高,

不易积气,易于安装和维修等。为了减少液膜在列管上的包角及液膜的厚度,

管板在装配时留有1%左右的坡度,或者将其轴线和设备水平线偏转壹定的角度,其计算公式为:

得:

(2)随蒸汽冷凝,流通截面积逐渐缩小,以保持蒸汽的流速。

(3)冷凝器的组合方式:单台。

(4)冷凝器内部安装折流板

在对流传热的换热器中,为了加强壳层流动的速度和湍流程度,以提高传

热效率,再在壳层内可安置折流板,折流板仍起支撑的作用。

(5)通入蒸汽前要用壹排气管排出里面的空气和不凝气,但传热冷凝过程中必须关闭。

2.管子的设计

(1)采用光滑管

光滑管结构简单,制造容易。缺点是它强化传热的性能不足。为了提高换

热器的传热系数,可采用结构形式多样化的管子,如异性管,翅片管,螺纹管等。

(2)选用的管子。

(3)管长我国生产的无缝钢管长度壹般为6m,故系列中换热管的长度

分为1.5,2,3,4.5,6米几种,本设计中采用4.5米长的管子。

(4)管子的排列形式

管子的排列方法常用的有正三角形直列,正三角形错列,正方形直列和正方

形错列。

.正三角形错列.正方形直列.正方形错列

正三角形排列比较紧凑,在壹定的壳径内可排列较多的管子,且传热效果好,但管外清洗较为困难。而正方形排列,管外清洗方便,适用于壳程中的流体易结垢的情况,其传热效果较正三角形差些。之上排列方式中最常用的是正三角形错列,用于壳侧流体清洁,不易结垢,后者壳侧污垢能够用化学处理掉的场合。本设计中采用正三角形错列的排列方式,而在隔板俩侧采用正方形直列。

(5)管数

标准管数为212根。

3.管心距的设计:

采用胀接法固定时,管心距过小会造成胀接在挤压作用下发生变形,失去

管子和管板之间的连接力。故采用焊接法。

根据经验公式:

隔板中心到离其最近壹排管中心距离

S=t/2+6=32/2+6=22㎜

各程相邻管的管心距为44㎜。

4.管板的设计

(1)管板的作用:固定作为传热面的管束,且作为换热器俩端的间壁,将管程流体分隔开来。

(2)管板上的管孔数:即为壳体中的传热系数(包括圆缺形板区安置的)。(3)管板上的孔间距不宜过大,避免布管疏松,不利传热;也不宜过小,避

免焊接时引起较大的应力,影响焊接质量,另外也不利于清扫壳程管束。

(4)管板和壳体连接采用不可拆式,即直接焊在壳体上,稍微延伸,兼作法兰,便于对胀口进行检查和维修以及清洗管子。

(5)管板直径和厚度

管板和壳体直径应保持壹致。

管板厚度和材料强度,介质压力,温度和压差,温差以及管子和外壳的

固定方式和受力因素有关。对于管子和管板胀接时,为保证胀接的可靠性,

管板的最小厚度为0.75。管子和管板焊接时,由于焊接能够达到甚至超过

管子本身的强度,只要管子强度足够,管子厚度可不受限制,而由焊接工艺

及焊接变形等要求来确定。本设计中选用由于管子和管板采用

,但焊接式,故取。

(6)采用多管程,故管板中间要留有隔板的位置。

(7)管子在管班上的固定方法,必须保证管子和管板连接牢固,不会在连接

处产生泄漏。连接方式壹般有三种:胀接法,焊接法,胀焊且用法;壹般采

用的事胀接法和焊接法。由于焊接法在高温高压下仍能使用,保持连接的紧

密性,管孔加工要求低节约空的加工工时,同时焊接工艺比胀接工艺简单等

优点,故本设计中采用焊接法。根据标准规定,管子外径为25mm时,管板

孔的直径为25.8mm,允许偏差;相邻孔中心距32mm,管孔中心距偏

差:相邻孔间,任意孔间;支撑板孔直径25.6mm,允许偏

差。

管子露出管板的长度,采用1.5mm。

5.折流板设计

(1)采用圆缺形性折流板。

(2)圆缺形折流板在卧式换热器中的排列分为圆缺上下方向和圆缺左右方向俩种。上下方向排列者可造成液体的剧烈湍动,增大传热膜系数,这种结构最为常用。故本设计中选用圆缺上下方向排列。

(3)圆缺折流板的圆缺高度壹般为%至40%,本设计中采用

h=20%=20%600mm=120mm。

(4)允许折流板的间距和管径有关,取折流板间距B=0.3D,

则B=0.3×600mm=180mm,取B为200mm。

折流板数目=

折流板圆缺面水平装配

(5)折流板外径为600-5=595mm。

(6)折流板厚度为5mm

6.壳体设计

壳体厚度计算:

其中,,,(双面焊缝),

考虑到开孔的削弱及安全,以及开孔的强度补偿措施,取壳体厚度为11mm。壳体总重约155Kg。

7.壳程接管的设计

(1)壳程流体进口接管:取接管内气体流速为u1=10m/s,则接管内径为

m

圆整后可取接管规格为。

(2)管程流体进出口接管:取接管内液体流速u2=2.0m/s,则接管内径为

m

圆整后可取接管规格为。

(3)壳层流体出口接管,为方便计算,取和管程进出口管规格相同。

(4)接管的外伸长度

8.封头设计

由于椭圆形封头制造方便,结构合理,用材较少,故本设计采用标准椭圆

形封头:

为了和筒体配套和焊接方便,标准椭圆形封头内径为600mm,厚度为10mm,曲面高度为120mm,直径高度为30mm,重量约为15.5Kg。

9.法兰设计

(1)壳层流体进出口接管法兰,查表得:

焊缝

(2)管层流体进出口接管法兰,查表得:

焊缝

10.支座设计

化工设备中的支座是支撑设备位置用的壹种必不可少的部件,在某些场合

,支座仍能够承受设备操作时的震动,地震载荷,风雪载荷等。支座的结构形式和尺寸往往取决于设备的型号,载荷情况及构造材料。常用的有:悬挂式支座,支撑式支座和鞍式支座。本设计中采用鞍式支座,以满足卧式冷凝器的要求。查表得选用支座壹个,支座壹个。

11.其他

(1)拉杆数量和直径选取,本换热器壳体内径为600mm,故其拉杆直径为Ф12 拉杆数量不得少于10。壳程入口处,应设置防冲挡板。

(2)其他附属部件可根据国家标准的有关规定及容器设计规范进行选用,计算和制造。

设计结果评价

通过分析管壳式换热器壳程传热和阻力性能特点,说明在采用能量系数K/N来评

价强化传热时,应更着眼于提高其换热性能。本设计中:

,N=ΔP1+ΔP2+ΔP3+ΔP4=33603Pa

K/N=0.0253

满足要求,性能良好。

本设计通过对面积校核,压降校核,壁温校核等计算可知均满足要求,且传热效率为70%,能很好的完成任务。

经济和环境效益评价:生命周期方法是壹种针对产品或生产工艺对环境影响进行评价的过程,它通过对能量和物质消耗以及由此造成的废弃物排放进行辨识和量化,来评估能量和物质利用对环境的影响,以寻求对产品或工艺改善的途径。这种评价贯穿于产品生产、工艺活动的整个生命周期,包括原材料的开采和加工、产品制造、运输、销售、产品使用和再利用、维护、再循环及最终处置。本设计中使用水作冷却剂,无污染,耗资少,无有害气体产生,整个过程简单,易操作,环境和经济效益良好。

本设计中面积,传热系数,压降等均有比较好的裕度保证,即使生产使用中出现比较大的误差,设备结构也能保证不出现打的安全损伤的事故,具有良好可靠的安全保证。

(2)

化工原理 换热器设计

|化工原理课程设计任务书 专业班级:07过控02 学生姓名:赵凯 学号: 0703020228 一 设计题目:正戊烷冷凝器的设计 二 课题条件(文献资料,仪器设备,指导力量) (一)设计任务 设计一冷凝器,冷凝正戊烷蒸气; 1) 处理能力:6万吨/年。 2) 正戊烷蒸气压力:0.75kgf/c m2,其饱和温度为52C ?,蒸发潜热为 83kc al/kg 3) 冷却剂:自来软水,进口温度C 251?=t 出口温度C 40o 2=t (二)操作条件: (1)生产方式:连续操作 (2)生产时间:每年以300天计算,每天24小时 (3)冷凝器操作压力为常压,管程和壳程的压力均不大于30kpa 三.设计任务 1.确定设计方案,绘制工艺流程图。 2.热力学计算 2.1热力学数据的获取 2.2估算传热面积 2.3工艺尺寸的计算 2.4面积核算 2.5壁温校核 2.6压降校核

3.结构设计 3.1冷凝器的安装3.2管设计 3.3管心距设计 3.4管板设计 3.5折流板设计 3.6壳体设计 3.7接管设计 3.8封头设计 3.9法兰设计 3.10支座设计 3.11其他 4.设计计算结果汇总表5.设计结果评价6.绘制装配图 7.编制设计说明书

设计流程图 裕 度 过 大 或 过 小

工艺流程图 热力学计算 1.热力学数据的获取 正戊烷液体在定性温度(52℃)下的物性数据(查化工原理附录) 。 ,,kJ/kg 5.347C W/m 13.0C kJ/kg 34.2,s Pa 108.1,kg/m 59643=??=??=??==-r c p λμρ 循环水的定性温度: 入口温度为C 251?=t ,出口温度为C 40o 2=t 循环水的定性温度为()C 5.322/4025 =+=m t 两流体的温差C 50C 5.195.3252 <=-=-m m t T ,故选固定管板式换热器 两流体在定性温度下的物性数据如下

化工原理课程设计

绪论 1.1换热器在工业中的应用 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可或缺的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化元件诞生。随着研究的深入,工业应用取得了令人瞩目的成就,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T型翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张情况。 换热器是一种实现物料之间热量传递的节能设备,是在石油、化工、石油化工、冶金、电力、轻工、食品等行业普遍应用的一种工艺设备。在炼油、化工装置中换热器占总设备数量的40%左右,占总投资的30%-45%。近年来随着节能技术的发展,应用领域不断扩大,利用换热器进行高温和低温热能回收带来了显著的经济效益。 随着环境保护要求的提高,近年来加氢装置的需求越来越多,如加氢裂化,煤油加氢,汽油、柴油加氢和乳化油加氢装置等建设量增加,所需的高温、高压换热器数量随之加大。螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器、蜜蜂盖板式换热器技术发展越来越快,不仅在承温、承压上满足装置运行要求,而且在传热与动力消耗上发展较快,同时亦适用于乙烯裂解、化肥中合成氨、聚合和天然等场合,可满足承压高达35MPa,承温达700℃的使用要求。在这些场合,换热器占有的投资占50%以上。 1.2换热器的研究现状 20世纪80年代以来,换热器技术飞速发展,带来了能源利用率的提高。各种新型、高效换热器的相继开发与应用带来了巨大的社会经济效益,市场经济的发展、私有化比例的加大,降低成本已成为企业追求的最终目标。因而节能设备的研究与开发备受瞩目。能源的日趋紧张、全球环境气温的不断升高、环境保护要求的提高和换热器及空冷式换热器及高温、高压换热器带来了日益广阔的应用前景。在地热、太阳能、核能、余热回收、风能的利用上,各国政府都加大了投入资金力度。 国内各研究机构和高等院校研究成果不断推陈出新,在强化传热元件方面华南理工

化工原理课程设计样板

课程设计 课程名称化工原理课程设计 题目名称热水泠却器的设计 专业班级XX级食品科学与工程(X)学生姓名XXXX 学号XXXXXXXX 指导教师 二O一年月日

锯齿形板式热水冷却器的设计任务书一、设计题目: 锯齿形板式热水冷却器的设计 二、设计参数: (1)处理能力:7.3×104t/Y热水 (2)设备型式:锯齿形板式热水冷却器 (3)操作条件: 1、热水:入口温度80℃,出口温度60℃。 2、冷却介质:循环水,入口温度30℃,出口温度40℃。 3、允许压降:不大于105Pa。 4、每年按330天,每天按24小时连续运行。 5、建厂地址:蚌埠地区。

目录 1 概述 (1) 1. 1 换热器简介 (1) 1. 2 设计方案简介 (2) 1. 3 确定设计方案 (2) 1. 3. 1 设计流程图 (3) 1. 3. 2 工艺流程简图 (4) 1. 3. 3 换热器选型 (4) 1. 4 符号说明 (4) 2 锯齿形板式热水冷却器的工艺计算 (5) 2.1 确定物性数据 (5) 2.1.1 计算定性温度 (5) 2.1.2 计算热负荷 (6) 2. 1. 3 计算平均温差 (6) 2. 1. 4 初估换热面积及初选板型 (6) 2. 1. 5 核算总传热系数K (7) 2. 1. 6 计算传热面积S (9) 2. 1. 7 压降计算 (10) 2.2 锯齿形板式热水冷却器主要技术参数和计算结果 (10) 3 课程设计评述 (11) 参考文献 (12) 附录 (13)

1 概述 1.1 换热器简介 换热器,是将热流体的部分热量传递给冷流体的设备,又称热交换器。换热器是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用更加广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器种类很多,若按换热器传热面积形状和结构可分为管式换热器和特殊形式换热器。由于生产规模、物料的性质、传热的要求等各一相同,故换热器的类型很多,特点不一、可根据生产工艺要求进行选择。 1.2 设计方案简介 根据设计要求:用入口温度30 ℃,出口温度40℃的循环水冷却热水(热水的入口温度80℃,出口温度60℃),通过传热量、阻力损失传热系数、传热面积的计算,并结合经验值确定换热器的工艺尺寸、设备型号、规模选定,然后通过计算来确定各工艺尺寸是否符合要求,符合要求后完成工艺流程图和设备主体条件图,进而完成设计体系。 设计要求:选择一台适宜的锯齿形换热器并进行核算。下图中左面的为板式换热器外形,右边的是板式换热器工作原理图。

最新17-18化工原理课程设计任务题目40+40+40-doc

化工原理课程设计任务书示例一 1 设计题目分离苯―甲苯混合液的浮阀板式精馏塔工艺设计 2 设计参数 (1)设计规模:苯――甲苯混合液处理量________t/a (2)生产制度:年开工300天,每天三班8小时连续生产 (3)原料组成:苯含量为40%(质量百分率,下同) (4)进料状况:热状况参数q为_________ (5)分离要求:塔顶苯含量不低于_____%,塔底苯含量不大于_____% (6)建厂地区:大气压为760mmHg、自来水年平均温度为20℃的某地 3 设计要求和工作量 (1)完成设计说明书一份 (2)完成主体精馏塔工艺条件图一张(A1) (3)完成带控制点的工艺流程简图(A2) 4 设计说明书主要内容(参考) 中文摘要,关键词 第一章综述 1.精馏原理及其在工业生产中的应用 2.精馏操作对塔设备的要求(生产能力、效率、流动阻力、操作弹性、结构、造价和工艺特性等) 3.常用板式塔类型及本设计的选型

4.本设计所选塔的特性 第二章工艺条件的确定和说明 1.确定操作压力 2.确定进料状态 3.确定加热剂和加热方式 4.确定冷却剂及其进出、口温度 第三章流程的确定和说明(附以流程简图) 1.流程的说明 2.设置各设备的原因(精馏设备、物料的储存和输送、必要的检测手段、操作中的调节和重要参数的控制、热能利用) 第四章精馏塔的设计计算 1.物料衡算 2.回流比的确定 3.板块数的确定 4.汽液负荷计算(将结果进行列表) 5.精馏塔工艺尺寸计算(塔高塔径溢流装置塔板布置及浮阀数目与排列) 6.塔板流动性能校核(液沫夹带量校核、塔板阻力校核、降液管液泛校核、液体在降液管中停留时间校核以及严重漏液校核) 7.塔板负荷性能图 8.主要工艺接管尺寸的计算和选取(进料管、回流管、釜液出口管、塔顶蒸汽管、塔底蒸汽管、人孔等) 9.塔顶冷凝器/冷却器的热负荷

换热器原理及设计大纲.pdf

《换热器原理及设计》教学大纲 Principles and Design of Heat Exchanger 一、课程类别和教学目的 课程类别:专业课 课程教学目标:通过该门课程的学习,使学生了解各种常用热交换器(也称换热器)的工作原理,掌握以满足流动和传热为条件的热交换器的设计方法,了解热交换器的实验研究方法、强化技术和性能评价,为以后的学习、创新和科学研究打下扎实的理论和实践基础。 二、课程教学内容 (一)绪论 介绍热交换器的重要性、分类及其在工业中的应用,换热器设计计算的内容。 (二)热交换器计算的基本原理 介绍传热方程式、热平衡方程式的应用;讲授流体比热或传热系数变化时的平均温差的 计算方法、传热有效度、热交换器计算方法的比较、流体流动计算方法的比较。 (三)管壳式热交换器 介绍管壳式热交换器的类型、标准与结构;讲授管壳式热交换器的结构计算、传热计算和流动阻力计算、管壳式热交换器的设计程序、管壳式冷凝器与蒸发器的工作特点。 (四)高效间壁式热交换器 介绍螺旋板式热交换器、板式热交换器、板翅式热交换器、翅片管热交换器、热管热交 换器、蒸发(冷却)器、微尺度热交换器的结构、工作原理及其设计计算。 (五)混合式热交换器 讲授冷水塔的热力计算、通风阻力计算与设计计算,汽-水喷射式热交换器的相关计算、水-水喷射式热交换器的相关计算;介绍混合式热交换器的分类。 (六)蓄热式热交换器 介绍回转型蓄热式热交换器和阀门切换型蓄热式热交换器的构造和工作原理;讲授蓄热式热交换器的计算、蓄热式热交换器与间壁式热交换器中气流及材料的温度变化比较。 (七)热交换器的试验与研究 介绍传热系数的测定方法、阻力特性实验的测定方法;讲授增强传热的基本途径、热交换器的结垢类型与腐蚀方法、热交换器的优化设计与性能评价方法。 三、课程教学基本要求 (一)绪论

化工原理课程设计

《化工原理》课程设计报告精馏塔设计 学院 专业 班级 学号 姓名 指导教师

目录 苯-氯苯分离过程板式精馏塔设计任务 (3) 一.设计题目 (3) 二.操作条件 (3) 三.塔设备型式 (3) 四.工作日 (3) 五.厂址 (3) 六.设计内容 (3) 设计方案 (4) 一.工艺流程 (4) 二.操作压力 (4) 三.进料热状态 (4) 四.加热方式 (4) 精馏塔工艺计算书 (5) 一.全塔的物料衡算 (5) 二.理论塔板数的确定 (5) 三.实际塔板数的确定 (7) 四.精馏塔工艺条件及相关物性数据的计算 (8) 五.塔体工艺尺寸设计 (10) 六.塔板工艺尺寸设计 (12) 七.塔板流体力学检验 (14) 八.塔板负荷性能图 (17) 九.接管尺寸计算 (19) 十.附属设备计算 (21) 设计结果一览表 (24) 设计总结 (26) 参考文献 (26)

苯-氯苯精馏塔的工艺设计 苯-氯苯分离过程精馏塔设计任务 一.设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为99.6%的氯苯140000t,塔顶馏出液中含氯苯不高于0.1%。原料液中含氯苯为22%(以上均为质量%)。 二.操作条件 1.塔顶压强自选; 2.进料热状况自选; 3.回流比自选; 4.塔底加热蒸汽压强自选; 5.单板压降不大于0.9kPa; 三.塔板类型 板式塔或填料塔。 四.工作日 每年300天,每天24小时连续运行。 五.厂址 厂址为天津地区。 六.设计内容 1.设计方案的确定及流程说明 2. 精馏塔的物料衡算; 3.塔板数的确定; 4.精馏塔的工艺条件及有关物性数据的计算; 5.精馏塔主要工艺尺寸;

化工原理课程设计换热器

化工原理课程设计 换热器 1

设计题目: 换热器的设计 学院化学化工学院 班级化工** 姓名张子健 学号 指导教师: *** 日期: .9.12 2

列管式换热器设计任务书 一设计题目: 煤油冷却器的设计(3组: 21- ) 二设计任务及操作条件 1.处理能力: 18万吨/年煤油 2.设备形式: 列管式换热器 3.操作条件 (1)煤油: 入口温度110℃, 出口温度35℃ (2)冷却介质: 自来水, 入口温度25℃, 出口温度40℃ (3)允许压强降: 不大于100kPa (4)煤油定性温度下的物性数据: 密度825kg/m3, 黏度7.15×10-4Pa.s, 比热容2.22kJ/(kg.℃), 导热系数0.14W/(m.℃)(5)每年按330天计, 每天24小时连续运行 三选择适宜的列管式换热器并进行核算 3.1 传热计算 3.2 管、壳程流体阻力计算 3.3管板厚度计算 3.4 U形膨胀节计算 3.5 管束振动 3

3.6 管壳式换热器零部件结构 目录 1.概述 ........................................................................... 错误!未定义书签。 2.设计标准 ................................................................... 错误!未定义书签。 3.方案设计和拟订 ....................................................... 错误!未定义书签。 4.设计计算 (9) 4.1确定设计方案 .................................................... 错误!未定义书签。 4.1.1 选择换热器的类型................................ 错误!未定义书签。 4.1.2 流动空间及流速的测定........................ 错误!未定义书签。 4.2确定物性数据.................................................. 错误!未定义书签。 4

换热器原理与设计(答案)

广东海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

影响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为(C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体(A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器内流体温度高于1000℃时,应采用以下何种换热器(A )

化工原理课程设计报告样本

化工原理课程设计报告样本

《化工原理课程设计》报告 48000吨/年乙醇~水精馏装置设计 年级 专业 设计者姓名 设计单位 完成日期年月日 7

目录 一、概述 (4) 1.1 设计依据 (4) 1.2 技术来源 (4) 1.3 设计任务及要求 (5) 二:计算过程 (6) 1. 塔型选择 (6) 2. 操作条件的确定 (6) 2.1 操作压力 (6) 2.2 进料状态 (6) 2.3 加热方式 (7) 2.4 热能利用 (7) 3. 有关的工艺计算 (7) 3.1 最小回流比及操作回流比 的确定 (8) 3.2 塔顶产品产量、釜残液量及 7

加热蒸汽量的计算 (9) 3.3 全凝器冷凝介质的消耗量9 3.4 热能利用 (10) 3.5 理论塔板层数的确定 (10) 3.6 全塔效率的估算 (11) 3.7 实际塔板数P N (12) 4. 精馏塔主题尺寸的计算 (12) 4.1 精馏段与提馏段的体积流 量 (12) 4.1.1 精馏段 (12) 4.1.2 提馏段 (14) 4.2 塔径的计算 (15) 4.3 塔高的计算 (17) 5. 塔板结构尺寸的确定 (17) 5.1 塔板尺寸 (18) 5.2 弓形降液管 (18) 5.2.1 堰高 (18) 5.2.2 降液管底隙高度h019 7

5.2.3 进口堰高和受液盘 19 5.3 浮阀数目及排列 (19) 5.3.1 浮阀数目 (19) 5.3.2 排列 (20) 5.3.3 校核 (20) 6. 流体力学验算 (21) 6.1 气体通过浮阀塔板的压力 降(单板压降) h (21) p 6.1.1 干板阻力 h (21) c 6.1.2 板上充气液层阻力1h (21) 6.1.3 由表面张力引起的阻 (22) 力h 6.2 漏液验算 (22) 6.3 液泛验算 (22) 6.4 雾沫夹带验算 (23) 7. 操作性能负荷图 (23) 7.1 雾沫夹带上限线 (23) 7

化工原理课程设计列管式换热器

XXX学院 本科课程设计 题目:列管式换热器的设计 专业: XXXXXXXX 学院: XXXXXXXXXX学院 班级:XXXXXXX 姓名:XXXX 学号:XXXXXXXXXX 指导教师:XXXXXX

浮头式换热器设计说明说书 1概述 1.1课程设计学习目的及其重要性 设计是一项创造劳动,是设计者对许多构思加以综合,应用基础知识和专业知识去实现设计目标的一个过程。化工原理课程设计是化工类相关专业的本科生运用化工原理及有关先修课程的基本知识去完成某一设计任务的一次较为全面的化工设计训练,可以增强我们独立学习,独立思考,独立分析的能力。 在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备的计算,并要对自己的选择做出论证和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程实践是培养学生解决实际工程问题能力的有益实践。 通过课程设计,我们应该注重以下几个能力的训练和培养: 1.初步掌握化工单元操作设计的基本方法和程序。 2.查阅资料,选用公式和搜集数据的能力。 3.树立既考虑技术上的先进性和可行性,又考虑经济上的合理性,并注意操作时的劳动条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力。 4.提高运用工程语言表达设计思想的能力。 5.提高正确的进行工程计算和利用Auto CAD画图的能力。 6.提高用简洁明了的文字,清晰的图表来表达自己设计思想和撰写设计报告的能力。 1.2列管式换热器设计的重要性及其步骤 1.2.1重要性:换热设备是化工工业应用典型的工艺设备,主要用于实现热量传递,使热量由高温流体传给低温物体。一般来说,换热设备在化工厂装置中所占的比例在建设费用方面高达10%~40%。因此从能源节省以及工厂投资的角度来讲,合理地选择和使用换热设备,可节省投资,降低能耗,具有重要意义。 随着工业的迅速发展,能源消耗量不断增加,能源紧张已成为一个世界性问题。为缓和能源紧张的状况,世界各国竞相采取节能措施,大力发展节能技术,已成为当前工业生产和人民生活中一个重要课题。换热器在节能技术改造中具有很重要的作用,表现在两方面:一是在生产工艺流程中使用着大量的换热器,提高这些换热器效率,显然可以减少能源的消耗;另一方面,用换热器来回收工业余热,可以显著地提高设备的热效率。 1.2.2列管式换热器设计的步骤:

化工原理设计原油换热器

化工原理课程设计 题目:原油加热器——固定式换热器 指导教师: 李先生院士 职称: 国家特级院士 班级: 高分子材料与工程系 学号: 学生姓名: 目录 一.绪论 (3) 二、设计条件及主要物性参数 (4) 1、设计条件 (4) 2、定性温度的确定 (4) 三. 确定设计方案 (5) 1、选择换热器的类 型 (5) 2、流程安

排 (5) 四.估算传热面积 (5) 1、热流量 (5) 2、平均传热温差 (5) 3、传热面积 (5) 五.工程结构尺寸 (6) 1、管径和管内流 速 (6) 2、管程数和传热管 数 (6) 3、平均传热温差校正及壳 数 (6) 4、传热管的排列和分程方

法······························ (7) 5、折流板 (7) 6、接管 (7) 六、换热器核算 (8) 1、壳程传热系数 (8) 2、管程传热系数 (8) 3、污垢热阻和管壁热阻 (9) 4、总传热系数K (10) 5、传热面积裕度 (10) 7、管程流动阻力 (11) 8、壳程流动阻力 (11) 七、设计计算结果汇总 (12) 一、绪论 1.加热器简介 .固定管板式 固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈(或膨胀节)。当壳体和管束热膨胀不同时,

补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。 形管式 U形管式换热器每根管子均弯成U形,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。特点:结构简单,质量轻,适用于高温和高压的场合。管程清洗困难,管程流体必须是洁净和不易结垢的物料。 .浮头式 换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。 本实验采用的是浮头式加热器,包括输油管,输油管上套有密闭的外壳,外壳的一段管道上设有加热体,该加热体用固定卡固定在外壳表面上,所述外壳的外表面上包覆有保温层。本实用新型具有传热速度快、均温性好的特点,避免了在输送过程中热损失大而导致油品凝固难以输送的问题。 2.设计目的 培养学生综合运用本门课程及有关选修课程基础理论和基础知识完成某项单元操作设备设计的实践操作能力。设计的设备必学在技术上是可行的,经济上是合理的,操作上是安全的,环境上是友好的。 二、设计条件及主要物性参数 设计条件 由设计任务书可得设计条件如下表:

换热器原理与设计(答案)

海洋大学 2013年清考试题 《换热器原理与设计》课程试题 课程号: 1420017 √ 考试 □ A 卷 □ 闭卷 □ 考查 □ B 卷 √ 考试 一.填空题(10分。每空1分) 1.相比较沉浸式换热器和喷淋式换热器,沉浸式换热器传热系数 较低。 2.对于套管式换热器和管壳式换热器来说, 套管式换热器 金属耗量多,体积大,占地面积大,多用于传热面积不大的换热器。 3.在采用先逆流后顺流<1-2>型热效方式热交换器时,要特别注意温度交叉问题,避免的方法是 增加管外程数 和两台单壳程换热器串联。 4.在流程的选择上,腐蚀性流体宜走 管程,流量小或粘度大的流体宜走壳程,因折流档板的作用可使在低雷诺数(Re >100)下即可达到湍流。 5.采用短管换热,由于有入口效应,边界层变薄,换热得到强化。 6. 相对于螺旋槽管和光管,螺旋槽管的换热系数高. 7. 根据冷凝传热的原理,层流时,相对于横管和竖管,横管 传热系数较高。 8.减小管子的支撑跨距能增加管子固有频率,在弓形折流板缺口处不排管,将 减小 管子的支撑跨距 9. 热交换器单位体积中所含的传热面积的大小大于等于700m 2/m 3,为紧凑式换热器。 10. 在廷克流动模型中ABCDE5股流体中,真正横向流过管束的流路为B 股流体,设置旁路挡板可以改善C 股流体对传热的不利影 GDOU-B-11-302 班级: 姓 名: 学号: 试题共 4 页 加白纸3 张 密 封 线

响。

二.选择题(20分。每空2分) 1.管外横向冲刷换热所遵循侧传热准则数为 (C ) A. 努赛尔准则数 B. 普朗特准则数 C. 柯尔本传热因子 D. 格拉肖夫数 2.以下哪种翅片为三维翅片管( C ) A. 锯齿形翅片 B. 百叶窗翅片 C. C管翅片 D. 缩放管 3.以下换热器中的比表面积最小( A ) A.大管径换热器B.小管径换热器 C.微通道换热器 D. 板式换热器 4. 对于板式换热器,如何减小换热器的阻力(C ) A.增加流程数B.采用串联方式 C.减小流程数 D. 减小流道数。 5.对于板翅式换热器,下列哪种说法是正确的( C ) A.翅片高度越高,翅片效率越高 B.翅片厚度越小,翅片效率越高 C.可用于多种流体换热。 D. 换热面积没有得到有效增加。 6.对于场协同理论,当速度梯度和温度梯度夹角为( A ),强化传热效果最好。 A.0度B.45度 C.90度 D. 120度 7. 对于大温差加热流体 (A ) A.对于液体,粘度减小B.对于气体,粘度减小 C.对于液体,传热系数减小 D. 对于气体,传热系数增大 8. 对于下列管壳式换热器,哪种换热器不能进行温差应力补偿( B ) A.浮头式换热器B.固定管板式换热器 C.U型管换热器 D. 填料函式换热器。 9. 对于下列管束排列方式,换热系数最大的排列方式为( A ) A.正三角形排列B.转置三角形排列 C.正方形排列 D. 转正正方形排列。 10. 换热器流体温度高于1000℃时,应采用以下何种换热器(A )

化工原理课程设计(换热器的设计)

目录 一、设计题目及原始数据(任务书) (3) 二、设计要求 (3) 三、列管式换热器形式及特点的简述 (3) 四、论述列管式换热器形式的选择及流体流动空间的选择 (8) 五、换热过程中的有关计算(热负荷、壳层数、总传热系数、传热 面积、压强降等等) (10) ①物性数据的确定 (14) ②总传热系数的计算 (14) ③传热面积的计算 (16) ④工艺结构尺寸的计算 (16) ⑤换热器的核算 (18) 六、设计结果概要表(主要设备尺寸、衡算结果等等) (22) 七、主体设备计算及其说明 (22) 八、主体设备装置图的绘制 (33) 九、课程设计的收获及感想 (33) 十、附表及设计过程中主要符号说明 (37) 十一、参考文献 (40)

一、设计题目及原始数据(任务书) 1、生产能力:17×104吨/年煤油 2、设备形式:列管式换热器 3、设计条件: 煤油:入口温度140o C,出口温度40 o C 冷却介质:自来水,入口温度30o C,出口温度40 o C 允许压强降:不大于105Pa 每年按330天计,每天24小时连续运行 二、设计要求 1、选择适宜的列管式换热器并进行核算 2、要进行工艺计算 3、要进行主体设备的设计(主要设备尺寸、横算结果等) 4、编写设计任务书 5、进行设备结构图的绘制(用420*594图纸绘制装置图一张:一主视图,一俯视图。一剖面图,两个局部放大图。设备技术要求、主要参数、接管表、部件明细表、标题栏。) 三、列环式换热器形式及特点的简述 换热器概述 换热器是将热流体的部分热量传递给冷流体的设备,以实现不同温度流体间的热能传递,又称热交换器。换热器是实现化工生产过程中热量交换和传递不可缺少的设备。 在换热器中,至少有两种温度不同的流体,一种流体温度较

热交换器原理与设计

绪论 1. 2.热交换器的分类: 1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等 2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式 4)按照传送热量的方法来分:间壁式,混合式,蓄热式 恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。 过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。 第一章 1.Mc1℃是所需的热量,用W表示。两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。 2.W—对应单位温度变化产生的流动流体的能量存储速率。 4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。 5.P(定义式P12) 物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。 6.R—冷流体的热容量与热流体的热容量之比。(定义式P12) 7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。 (P22 例1.1) 8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。 9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。意义:以温度形式反映出热、冷流体可用热量被利用的程度。 10.根据ε的定义,它是一个无因次参数,一般小于1。其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。 11.带翅片的管束,在管外侧流过的气体被限制在肋片之间形成各自独立的通道,在垂直于 流动方向上(横向)不能自由运动,也就不可能自身进行混合,

化工原理课程设计样本

成绩 化工原理课程设计 设计说明书 设计题目:万吨/年苯—甲苯连续精馏装置工艺设计 。 姓名陈端 班级化工07-2班 学号 006 】 完成日期 2009-10-30 指导教师梁伯行

化工原理课程设计任务书 (化工07-1,2,3,4适用) 一、设计说明书题目: — (万吨/年) 苯 - 甲苯连续精馏装置工艺设计说明书 二、设计任务及条件 (1).处理量: (3000+本班学号×300) Kg/h (每年生产时间按7200小时计); (2). 进料热状况参数:( 2班)为, (3). 进料组成: ( 2班) 含苯为25%(质量百分数), (4).塔底产品含苯不大于2%(质量百分数); (5). 塔顶产品中含苯为99%(质量百分数)。 装置加热介质为过热水蒸汽(温度及压力由常识自行指定), 装置冷却介质为25℃的清水或35℃的循环清水。 三、【 四、设计说明书目录(主要内容) 要求 1)前言(说明设计题目设计进程及自认达到的目的), 2)装置工艺流程(附图) 及工艺流程说明 3)装置物料衡算 4)精馏塔工艺操作参数确定 5)适宜回流比下理论塔板数及实际塔板数计算 6)精馏塔主要结构尺寸的确定 7)精馏塔最大负荷截面处T-1型浮阀塔板结构尺寸的确定 8)、 9)装置热衡算初算确定全凝器、再沸器型号及其他换热器型号 10)装置配管及机泵选型 11)适宜回流比经济评价验算(不少于3个回流比比较) 12)精馏塔主要工艺和主要结构尺寸参数设计结果汇总及评价 13)附图 : 装置工艺流程图、装置布置图、精馏塔结构简图(手绘图)。 五、经济指标及参考书目 1)6000元/(平方米塔壁)(塔径~乘, 塔径~乘, 塔径以上乘, 2)4500元/(平方米塔板), 3)# 4)4000元/(平方米传热面积), 5)16元/(吨新鲜水), 8元/(吨循环水), 6)250元/(吨加热水蒸汽), 设备使用年限10年, 7)装置主要固定资产年折旧率为10% , 银行借贷平均年利息%。 8)夏清陈常贵主编《化工原理》(上. 下) 册修订本【M】天津; 天津大学 出版社2005 9)贾绍文《化工原理课程设计》【M】天津; 天津大学出版社2002

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

《化工原理课程设计》指南(doc 8页)

《化工原理课程设计》指导书 一、课程设计的目的与性质 化工原理课程设计是化工原理课程的一个实践性、总结性和综合性的教学环节,是学生进一步学习、掌握化工原理课程的重要组成部分,也是培养学生综和运用课堂所学知识分析、解决实际问题所必不可少的教学过程。 现代工业要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备和生产线的选型配套及工程设计能力。化工原理课程设计对学生进行初步的工程设计能力的培养和训练,为后续专业课程的学习及进一步培养学生的工程意识、实践意识和创新意识打下基础。 二、课程设计的基本要求 (1)在设计过程中进一步掌握和正确运用所学基本理论和基本知识,了解工程设计的基本内容,掌握设计的程序和方法,培养发现问题、分析问题和解决问题的独立工作能力。 (2)在设计中要体现兼顾技术上的先进性、可行性和经济上的合理性,注意劳动条件和环境保护,树立正确的设计思想,培养严谨、求实和科学的工作作风。 (3)正确查阅文献资料和选用计算公式,准确而迅速地进行过程计算及主要设备的工艺设计计算。 (4)用简洁的文字和清晰的图表表达设计思想和计算结果。 三、设计题目 题目Ⅰ:在生产过程中需将3000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅱ:在生产过程中需将5000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。 题目Ⅲ:在生产过程中需将7000kg/h的某种油(在90℃时,密度为825kg/m3;定压比容为2.22kJ/kg·℃;导热系数为0.140W/m·℃;粘度为0.000715Pa·s;污垢热阻为0.000172m2·℃/W)从140℃冷却至40℃,压力为0.3MPa,冷却介质采用循环水,循环冷却水的压力为0.4MPa,循环水的入口温度为35℃,出口温度为45℃。设计一列管式换热器满足上述生产需要。

化工原理课程设计说明书.doc

前言 化工生产中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其中大部分都是均相物质。生产中为了满足储存,运输,加工和使用的需求,时常需要将这些混合物分离为较纯净或几乎纯态的物质。 精馏是分离液体混合物最常用的一种单元操作,在化工,炼油,石油化工等工业得到广泛应用。精馏过程在能量计的驱动下,使气,液两相多次直接接触和分离,利用液相混合物中各相分挥发度的不同,使挥发组分由液相向气相转移,难挥发组分由气相向液相转移。实现原料混合物中各组成分离该过程是同时进行传质传热的过程。本次设计任务为设计一定处理量的分离四氯化碳和二硫化碳混合物精馏塔。 板式精馏塔也是很早出现的一种板式塔,20世纪50年代起对板式精馏塔进行了大量工业规模的研究,逐步掌握了筛板塔的性能,并形成了较完善的设计方法。与泡罩塔相比,板式精馏塔具有下列优点:生产能力(2 0%——40%)塔板效率(10%——50%)而且结构简单,塔盘造价减少40%左右,安装,维修都较容易。 化工原理课程设计是培养学生化工设计能力的重要教学环节,通过课程设计使我们初步掌握化工设计的基础知识、设计原则及方法;学会各种手册的使用方法及物理性质、化学性质的查找方法和技巧;掌握各种结果的校核,能画出工艺流程、塔板结构等图形。在设计过程中不仅要考虑理论上的可行性,还要考虑生产上的安全性、经济合理性。 在设计过程中应考虑到设计的业精馏塔具有较大的生产能力满足工艺要求,另外还要有一定的潜力。节省能源,综合利用余热。经济合理,冷却水进出口温度的高低,一方面影响到冷却水用量。另一方面影响到所需传热面积的大小。即对操作费用和设备费用均有影响,因此设计是否合理的利用热能R等直接关系到生产过程的经济问题。 本课程设计的主要内容是过程的物料衡算,工艺计算,结构设计和校核。 【精馏塔设计任务书】 一设计题目 精馏塔及其主要附属设备设计 二工艺条件

化工原理课程设计换热器的设计

中南大学《化工原理》课程设计说明书 题目:煤油冷却器的设计 学院:化学化工学院 班级:化工0802 学号: 1505080802 姓名: ****** 指导教师:邱运仁 时间:2010年9月

目录 §一.任务书 (2) 1.1.题目 1.2.任务及操作条件 1.3.列管式换热器的选择与核算 §二.概述 (3) 2.1.换热器概述 2.2.固定管板式换热器 2.3.设计背景及设计要求 §三.热量设计 (5) 3.1.初选换热器的类型 3.2.管程安排(流动空间的选择)及流速确定 3.3.确定物性数据 3.4.计算总传热系数 3.5.计算传热面积 §四. 机械结构设计 (9) 4.1.管径和管内流速 4.2.管程数和传热管数 4.3.平均传热温差校正及壳程数 4.4.壳程内径及换热管选型汇总 4.4.折流板 4.6.接管 4.7.壁厚的确定、封头 4.8.管板 4.9.换热管 4.10.分程隔板 4.11拉杆 4.12.换热管与管板的连接 4.13.防冲板或导流筒的选择、鞍式支座的示意图(BI型) 4.14.膨胀节的设定讨论 §五.换热器核算 (21) 5.1.热量核算 5.2.压力降核算 §六.管束振动 (25) 6.1.换热器的振动 6.2.流体诱发换热器管束振动机理 6.3.换热器管束振动的计算 6.4.振动的防止与有效利用 §七. 设计结果表汇 (28) §八.参考文献 (29) §附:化工原理课程设计之心得体会 (30)

§一.化工原理课程设计任务书 1.1.题目 煤油冷却器的设计 1.2.任务及操作条件 1.2.1处理能力:40t/h 煤油 1.2.2.设备形式:列管式换热器 1.2.3.操作条件 (1).煤油:入口温度160℃,出口温度60℃ (2).冷却介质:循环水,入口温度17℃,出口温度30℃ (3).允许压强降:管程不大于0.1MPa,壳程不大于40KPa (4).煤油定性温度下的物性数据ρ=825kg/m3,黏度7.15×10-4Pa.s,比热容2.2kJ/(kg.℃),导热系数0.14W/(m.℃) 1.3.列管式换热器的选择与核算 1.3.1.传热计算 1.3. 2.管、壳程流体阻力计算 1.3.3.管板厚度计算 1.3.4.膨胀节计算 1.3.5.管束振动 1.3.6.管壳式换热器零部件结构 §二.概述 2.1.换热器概述 换热器是化工、炼油工业中普遍应用的典型的工艺设备。在化工厂,换热器的费用约占总费用的10%~20%,在炼油厂约占总费用35%~40%。换热器在其他部门如动力、原子能、冶金、食品、交通、环保、家电等也有着广泛的应用。因此,设计和选择得到使用、高效的换热器对降低设备的造价和操作费用具有十分重要的作用。 在不同温度的流体间传递热能的装置称为热交换器,即简称换热器,是将热流体的部分热量传递给冷流体的设备。 换热器的类型按传热方式的不同可分为:混合式、蓄热式和间壁式。其中间壁式换热器应用最广泛,如表2-1所示。 表2-1 传热器的结构分类

相关文档
最新文档