容斥原理习题加答案
完整版容斥原理习题加答案

1. 现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有()【答案】B【解析】直接代入公式为:50=31+40+4- A H B得A H B=25,所以答案为B。
2. 某服装厂生产出来的一批衬衫大号和小号各占一半。
其中25%是白色的, 75%是蓝色的。
如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A 、15B、25C 、35D40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A H B,本题设小号和蓝色分别为两个事件A和B,小号占50%蓝色占75%直接代入公式为:100=50+75+10- A H B,得:A H B=353. 某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,【解析】本题画图按中路突破原则,先填充三集合公共部分数字 24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47— {(x+24)+(z+24)+(y+24)}+24+15=199— { (x+z+y ) +24+24+24}+24+15根据上述含义分析得到:x+z+y 只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以 x+z+y 的值为46人;得本题答案为120.4. 对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜 欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有 12人,则只喜欢看电影的有多少人( )A.22 人B.28 人C.30 人D.36 人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字 12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100= 58+38+52- {18+16+ (12+ x ) }+12+0,因为该题中,没有三种都不喜 欢的人,所以三集合之外数为 0,解方程得到:x = 14。
小学四年级奥数第35讲 容斥原理(含答案分析)

第35讲容斥原理一、专题简析:容斥问题涉及到一个重要原理——包含与排除原理,也叫容斥原理。
即当两个计数部分有重复包含时,为了不重复计数,应从它们的和中排除重复部分。
容斥原理:对n个事物,如果采用不同的分类标准,按性质a分类与性质b 分类(如图),那么具有性质a或性质b的事物的个数=N a+N b-N ab。
Nab NbNa二、精讲精练:例1:一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手。
又问:“谁做完数学作业?请举手!”有42人举手。
最后问:“谁语文、数学作业都没有做完?”没有人举手。
求这个班语文、数学作业都完成的人数。
练习一1、五年级有122名学生参加语文、数学考试,每人至少有一门功课取得优秀成绩。
其中语文成绩优秀的有65人,数学优秀的有87人。
语文、数学都优秀的有多少人?2、四年级一班有54人,订阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订《小学生优秀作文》的有45人,每人至少订一种读物,订《数学大世界》的有多少人?例2:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的有23人,两题都答对的有15人。
问多少个同学两题都答得不对?练习二1、五(1)班有40个学生,其中25人参加数学小组,23人参加科技小组,有19人两个小组都参加了。
那么,有多少人两个小组都没有参加?2、一个班有55名学生,订阅《小学生数学报》的有32人,订阅《中国少年报》的有29人,两种报纸都订阅的有25人。
两种报纸都没有订阅的有多少人?例3:某班有56人,参加语文竞赛的有28人,参加数学竞赛的有27人,如果两科都没有参加的有25人,那么同时参加语文、数学两科竞赛的有多少人?练习三1、一个旅行社有36人,其中会英语的有24人,会法语的有18人,两样都不会的有4人。
两样都会的有多少人?2、一个俱乐部有103人,其中会下中国象棋的有69人,会下国际象棋的有52人,这两种棋都不会下的有12人。
容斥原理练习题解析版

容斥原理练习题【练习 1】47 名学生参加数学和语文考试,其中语文得分 95 分以上的 14 人, 数学得分 95 分以上的 21 人,两门都不在 95 分以上的有 22 人.问:两门都在 95 分以上的有多少人?【解析】如图,用长方形表示这47 名学生, A 圆表示语文得分95 分以上的人数,B 圆表示数学得95 分以上的人数,A 与B 重合的部分表示两门都在95 分以上的人数,长方形内两圆外的部分表示两门都不在95 分以上的人数.由图中可以看出,全体人数是至少一门在95 分以上的人数与两门都不在95 分以 上的人数之和,则至少一门在95 分以上的人数为: 47 - 22 = 25 (人).根据包含排除法,两门都在95 分以上的人数为:14 + 21 - 25 = 10 (人).【练习 2】某班有 42 人,其中 26 人爱打篮球,17 人爱打排球,19 人爱踢足球, 9 人既爱打篮球又爱踢足球,4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【解析】由于全班42 人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42 人.根据包含排除法, 42 =(26 + 17 + 19)-(9 + 4 + 既爱打篮球又爱打排球的人数)+ 0 ,得到既爱打篮球又爱打排球的人数为: 49 - 42 = 7 (人).95分以上的 数学95分以上的 B不在两门95分以上的 语文95分以上的 A 两门都【练习 3】四(二)班有48 名学生,在一节自习课上,写完语文作业的有30 人,写完数学作业的有20 人,语文数学都没写完的有6 人.(1)问语文数学都写完的有多少人?(2)只写完语文作业的有多少人?【解析】(1)由题意,有48 - 6 = 42 (人)至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:30 + 20 - 42 = 8 (人).(2)只写完语文作业的人数=写完语文作业的人数-语文数学都写完的人数,即30 - 8 = 22 (人)【练习 4】某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有蓝旗的共有18 人.其中手中有红、黄、蓝三种小旗的有6 人.而手中只有红、黄两种小旗的有9 人,手中只有黄、蓝两种小旗的有4 人,手中只有红、蓝两种小旗的有3 人,那么这个班共有多少人?【解析】如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:(34+ 26 +18)-(9+ 4 + 3)- 6 ⨯ 2 = 50 (人).A BC。
(完整版)容斥原理习题加答案

1.现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( )A、27人B、25人C、19人D、10人【答案】B【解析】直接代入公式为:50=31+40+4-A∩B得A∩B=25,所以答案为B。
2.某服装厂生产出来的一批衬衫大号和小号各占一半。
其中25%是白色的,75%是蓝色的。
如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。
3.某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。
问接受调查的学生共有多少人?()A.120B.144C.177D.192【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+z+y)+24+24+24}+24+15根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.4.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()A.22人B.28人C.30人D.36人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。
容斥原理(二)(含答案)-

容斥原理(二)【例题分析】例1. 有25人参加跳远达标赛,每人跳三次,每人至少有一次达到优秀。
第一次达到优秀的有10人,第二次达到优秀的有13人,第三次达到优秀的有15人,三次都达到优秀的只有1人。
只有两次达到优秀的有多少人?例2. 在一个炎热的夏日,几个小朋友去冷饮店,每人至少要了一样冷饮,其中有6人要了冰棍,6人要了汽水,4人要了雪碧,只要冰棍和汽水的有3人,只要冰棍和雪碧的++---⨯=(人)方法二:664311210答:共有10个小朋友去了冷饮店。
例3. 有28人参加田径运动会,每人至少参加两项比赛。
已知有8人没参加跑的项目,参加投掷项目的人数与参加跑和跳两项的人数都是17人。
问:只参加跑和投掷两项的有多少人?30人参的有3人,既参加数学又参加英语和既参加英语又参加语文的人数均为质数,而三种全参7。
答:既参加英语又参加数学小组的为2人或7人。
例5. 某班同学参加升学考试,得满分的人数如下:数学20人,语文20人,英语20人,数学、英语两科满分者8人,数学、语文两科满分者7人,语文、英语两科满分者9人,三科都没得满分者3人。
问这个班最多多少人?最少多少人?满分的人数,即x x ≤≤78,且x ≤9,由此我们得到x ≤7。
另一方面x 最小可能是0,即没有三科都得满分的。
当x 取最大值7时,全班有()39746+=人,当x 取最小值0时,全班有()390+=39人。
答:这个班最多有46人,最少有39人。
【模拟试题】(答题时间:30分钟)1. 六年级共有96人,两种刊物每人至少订其中一种,有23的人订《少年报》,有12的人订《数学报》,两种刊物都订的有多少人?2. 小明和小龙两家合住一套房子,门厅、厨房和厕所为公用,在登记住房面积时,两家他们住的一套房子共有多少平方米?3. 某班45名同学参加体育测试,其中百米得优者20人,跳远得优者18人,又知百米、跳远都得优者7人,跳高、百米得优者6人,跳高、跳远均得优者8人,跳高得优者22人,全班只有1名同学各项都没达优秀,求三项都是优秀的人数。
容斥原理练习答案

容斥原理1.一个俱乐部,会下象棋的有69人,会下围棋的有58人,两种棋都不会下的人有12人,两种棋都会下的有30人,问这个俱乐部一共有多少人?【答案】109人.2.一个班有48人,班主任在班会上问:“谁做完语文作业?请举手!”有37人举手.又问:“谁做完数学作业?请举手!”有42人举手.最后问:“谁语文、数学作业都没有做完?”没有人举手.求这个班语文、数学作业都完成的人数.【答案】31人.3.调查一群小朋友最喜欢吃的水果中,有三种水果最喜欢(苹果、香蕉、草莓),每人都有自己喜欢吃的。
其中喜欢吃苹果的有20人,喜欢吃香蕉的有25人,喜欢吃草莓的有30人,既喜欢苹果又喜欢香蕉的有8人,既喜欢苹果又喜欢草莓的有7人,既喜欢香蕉又喜欢草莓的有6人,三种都喜欢的有4人,请问一共有多少个小朋友?【答案】58个.4.对39种食物中是否含有甲、乙、丙三种维生素进行调查,结果如下:含甲的有17种,含乙的有18种,含丙的含有15种,含甲、乙的有7种,含甲、丙的有6种,含乙、丙的有9种,三种维生素都不含的有7种,则三种维生素都含的有多少种?【答案】4种.5.一次考试共有两题,第一题做对有20人,其中5人第二题错了;第二题总共30人做对,有3人一道题都没做对,请问一共有多少人报名参加?【答案】38人.6.光明小学举办学生书法展览.学校的橱窗里展出了每个年级学生的书法作品,其中有24幅不是五年级的,有22幅不是六年级的,五、六年级参展的书法作品共有10幅,其他年级参展的书法作品共有多少幅?【答案】18幅.7.在某个风和日丽的日子,10个同学相约去野餐,每个人都带了吃的,其中6个人带了汉堡,6个人带了鸡腿,4个人带了芝士蛋糕,有3个人既带了汉堡又带了鸡腿,1个人既带了鸡腿又带了芝士蛋糕。
2个人既带了汉堡又带了芝士蛋糕.问:(1)三种都带了的有几人?(2)只带了一种的有几个?【答案】(1)0人(2)4人.8.有100名学生,按照1-100编号,面对老师站成一排,第一次让编号是2的倍数的学生向后转,第二次让编号为5的学生向后转,那么最后面对老师的学生有多少名?【答案】50名.9.某学校五年二班参加语文、数学、英语三科考试,语文90分以上的有21人,数学有19人,英语有20人,语文数学都在90分以上的有9人,数学英语在90分以上的有7人,语文英语都在90分以上的有8人,另外有5人三科都在90分以下,这个班最多有多少人?【答案】48人.10.一小偷藏匿于某商场,三名警察甲、乙、丙分头行动搜查商场的100家商铺.已知甲检查过80家,乙检查过70家,丙检查过60家,则三人都检查过的商铺至少有多少家?【答案】10家.。
2024小升初专项训练容斥原理练习及答案解析

第3讲容斥原理第一关两量重叠问题【知识点】在日常生活中,人们常常需要统计一些数量,在统计的过程中,往往会发现有些数量重复出现,为了使重复出现的部分不致被重复计算,人们研究出一种新的计数方法,既先不考虑重复的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排除出去,使计算的结果既无遗漏又无重复.这种计数方法称为包含排除法,也叫做容斥原理或重叠问题.一般方法:在解答有关包含排除问题时,我们常常利用圆圈图(韦恩图)来帮助分析思考.容斥原理1:两量重叠问题A类与B类元素个数的总和=A类元素的个数+B类元素个数-既是A类又是B类的元素个数用符号可表示成:A∪B=A+B-A∩B (其中符号“∪”读作“并”,相当于中文“和”或者“或”的意思,符号“∩”读作“交”,相当于中文“且”的意思).【例1】“两会”是“全国人民代表大会”和“中国人民政治协商会议”的简称,如果2017年“人大会议”和“政协会议”均历时11天,并且两个会议有9天同时进行.那么,2017年的“两会”将一共进行多少天?【答案】13【例2】三(1)班同学给“手拉手”小伙伴捐物品,捐衣物的有26人,捐文具的有32人,两样都捐的有18人.捐物品的同学一共有几人?【答案】40【例3】同学们去动物园游玩,每人至少参观一个馆.参观大象馆的有10人,参观猴子馆的有15人,两个馆都参加的有6人,一共有多少人去动物园?【答案】19【例4】某班老师建议学生读A、B两本课外读物,结果有25人没有读A,有19人没有读B,20人只读了1本书,11人读过2本书,那么该班共有多少人?【答案】43【例5】假期中,王老师给三(1)班同学推荐了《冰雪奇缘》和《疯狂原始人》两部动画片供大家选择观看.两部电影都看的有36人,两部电影都没看的只有2人;看了《冰雪奇缘》的有40人,看了《疯狂原始人》的有38人.三(1)班一共有多少人?【答案】44【例6】光辉小学六年级在一次语、数联赛中,语文及格的有24人,数学及格的有27人,其中语、数都及格的有14人,另外还有8人语、数都没及格,六年级共有学生多少人?【答案】45【例7】三(5)班同学参加了音乐、美术这两个课外兴趣小组,已知参加音乐小组的有32人,参加美术组的有30人,两个小组都参加的有10人,三(5)班共有学生多少人?【答案】52【例8】四(1)班每个同学至少参加一项兴趣小组,参加美术小组的有32人,参加书法小组的有36人,两项都参加的有15人,四(1)班有多少人?【答案】53【例9】五年级(1)班每人都至少参加一个兴趣小组,参加语文兴趣小组的有45人,参加数学兴趣小组的有37人,有20人两个小组都参加.这个班共有多少人?【答案】62【例10】一次竞赛有2题,答对第一题的有186人,答对第二题的有143人,全错的有21人,全对的51人,问参加竞赛的共有多少人?【答案】299【例11】新东方在“五一劳动节”即将发行新版积分卡.如果旧版积分卡上共出现300位老师,新版积分卡上共出现400位老师,其中有150位老师在新旧两版积分卡中都出现了,那么,在新旧两版积分卡上共出现了多少位老师?【答案】550【例12】六年级一班春游,带矿泉水的有18人,带水果的有16人,这两种至少带一种的有28人,求两种都带的有多少人?【答案】6【例13】空军突击队共有25名士兵,每个人都擅长射击和武术中的一项或者两项,如果士兵中擅长射击的有20人,擅长武术的有12人,则两项均擅长的士兵有多少人?【答案】7【例14】某天的放学路上,甲和乙交流起各自玩过的电子游戏,他们回想起了20个不同的游戏,其中甲玩过8个,乙玩过16个,那么他们都玩过的游戏有几个?【答案】4【例15】三(2)班第一小组共有8人,在一次语文和数学测验中,他们均至少有一门得了95分以上,其中语文得95分以上的有5人,数学得95分以上的有7人,语文和数学均得95分以上的有多少人?【答案】4【例16】一次考试,语文得100分的有5人,数学得100分的8人,老师发现这次考试得100分的只有10人,那么,得双100分的有多少人?【答案】3【例17】某校五年一班有40人,其中有28人参加了数学小组,30人参加了外语小组,有6人两个小组都没有参加,两个小组都参加的有多少人?【答案】24【例18】六(3)班同学有23人参加了舞蹈和击剑兴趣小组,其中参加舞蹈兴趣小组的有17人,参加击剑兴趣小组的有20人,两个兴趣小组都参加的有多少人?【答案】14【例19】五(1)班40名同学采集标本,每个同学至少要采集一种标本.采集昆虫标本的有28人,采集植物标本的有19人,两种标本都采集的有多少人?【答案】7【例20】学校开运动会,某班有30名学生,其中20人报名参加赛跑项目,11人报名参加跳跃项目,两项都没有报名的有4人,问两项都参加的有几人?【答案】5【例21】全班50人做2道数学题,其中第一道做对的有40人,第二道做对的有30人,两道都做错的有5人,则两道都做对的有多少人?【答案】25【例22】六(1)班有45名同学,17人参加了象棋兴趣小组,22人参加了围棋兴趣小组,13人两个小组都没有参加,两个小组都参加的有多少人,多少人只参加了象棋兴趣小组?【答案】7;10【例23】一个班有48个人,班主任在班会上问:“谁完成了语文作业?请举手!”有37人举手,又问:“谁完成了数学作业?请举手!”有42人举手,最后问:“谁语文、数学作业都没有完成?”没有人举手,求这个班语文、数学作业都完成的人数。
容斥原理练习题解析版

容斥原理练习题【练习 1】47 名学生参加数学和语文考试,其中语文得分 95 分以上的 14 人, 数学得分 95 分以上的 21 人,两门都不在 95 分以上的有 22 人.问:两门都在 95 分以上的有多少人?【解析】如图,用长方形表示这47 名学生, A 圆表示语文得分95 分以上的人数,B 圆表示数学得95 分以上的人数,A 与B 重合的部分表示两门都在95 分以上的人数,长方形内两圆外的部分表示两门都不在95 分以上的人数.由图中可以看出,全体人数是至少一门在95 分以上的人数与两门都不在95 分以 上的人数之和,则至少一门在95 分以上的人数为: 47 - 22 = 25 (人).根据包含排除法,两门都在95 分以上的人数为:14 + 21 - 25 = 10 (人).【练习 2】某班有 42 人,其中 26 人爱打篮球,17 人爱打排球,19 人爱踢足球, 9 人既爱打篮球又爱踢足球,4 人既爱打排球又爱踢足球,没有一个人三种球都爱好,也没有一个人三种球都不爱好.问:既爱打篮球又爱打排球的有几人?【解析】由于全班42 人没有一个人三种球都不爱好,所以全班至少爱好一种球的有42 人.根据包含排除法, 42 =(26 + 17 + 19)-(9 + 4 + 既爱打篮球又爱打排球的人数)+ 0 ,得到既爱打篮球又爱打排球的人数为: 49 - 42 = 7 (人).95分以上的 数学95分以上的 B不在两门95分以上的 语文95分以上的 A 两门都【练习 3】四(二)班有48 名学生,在一节自习课上,写完语文作业的有30 人,写完数学作业的有20 人,语文数学都没写完的有6 人.(1)问语文数学都写完的有多少人?(2)只写完语文作业的有多少人?【解析】(1)由题意,有48 - 6 = 42 (人)至少完成了一科作业,根据包含排除原理,两科作业都完成的学生有:30 + 20 - 42 = 8 (人).(2)只写完语文作业的人数=写完语文作业的人数-语文数学都写完的人数,即30 - 8 = 22 (人)【练习 4】某班学生手中分别拿红、黄、蓝三种颜色的小旗,已知手中有红旗的共有34 人,手中有黄旗的共有26 人,手中有蓝旗的共有18 人.其中手中有红、黄、蓝三种小旗的有6 人.而手中只有红、黄两种小旗的有9 人,手中只有黄、蓝两种小旗的有4 人,手中只有红、蓝两种小旗的有3 人,那么这个班共有多少人?【解析】如图,用A 圆表示手中有红旗的,B 圆表示手中有黄旗的,C 圆表示手中有蓝旗的.如果用手中有红旗的、有黄旗的与有蓝旗的相加,发现手中只有红、黄两种小旗的各重复计算了一次,应减去,手中有三种颜色小旗的重复计算了二次,也应减去,那么,全班人数为:(34+ 26 +18)-(9+ 4 + 3)- 6 ⨯ 2 = 50 (人).A BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( )
A、27人
B、25人
C、19人
D、10人
【答案】B
【解析】直接代入公式为:50=31+40+4-A∩B
得A∩B=25,所以答案为B。
2.某服装厂生产出来的一批衬衫大号和小号各占一半。
其中25%是白色的,75%是蓝色的。
如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件()
A、15
B、25
C、35
D、40
【答案】C
【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。
3.某高校对一些学生进行问卷调查。
在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,
不参加其中任何一种考试的都15人。
问接受调查的学生共有多少人()A.120
B.144
C.177
D.192
【答案】A
【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字:
根据每个区域含义应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15
=199-{(x+z+y)+24+24+24}+24+15
根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.
4.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。
其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()
人人人人
【答案】A
【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字:
根据各区域含义及应用公式得到:
总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数
100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。
52=x+12+4+Y=14+12+4+Y,得到Y=22人。
5.某班统计考试成绩,数学得90分上的有25人;语文得90分以上的有21人;两科中至少有一科在90分以上的有38人。
问两科都在90分以上的有多少人
解:设A={数学成绩90分以上的学生}
B={语文成绩90分以上的学生}
那么,集合A∪B表示两科中至少有一科在90分以上的学生,由题意知,
∣A∣=25,∣B∣=21,∣A∪B∣=38
现要求两科均在90分以上的学生人数,即求∣A∩B∣,由容斥原理得
∣A∩B∣=∣A∣+∣B∣-∣A∪B∣=25+21-38=8
点评:解决本题首先要根据题意,设出集合A,B,并且会表示A∪B,A∩B,再利用容斥原理求解。
6. 某班同学中有39人打篮球,37人跑步,25人既打篮球又跑步,问全班参加篮球、跑步这两项体育活动的总人数是多少
解:设A={打篮球的同学};B={跑步的同学}
则A∩B={既打篮球又跑步的同学}
A∪B={参加打篮球或跑步的同学}
应用容斥原理∣A∪B∣=∣A∣+∣B∣-∣A∩B∣=39+37-25=51(人)
7. 某年级的课外学科小组分为数学、语文、外语三个小组,参加数学小组的有23人,参加语文小组的有27人,参加外语小组的有18人;同时参加数学、语文两个小组的有4人,同时参加数学、外语小组的有7人,同时参加语文、外语小组的有5人;三个小组都参加的有2人。
问:这个年级参加课外学科小组共有多少人
解1:设A={数学小组的同学},B={语文小组的同学},C={外语小组的同学},A∩B={数学、语文小组的同学},A∩C={参加数学、外语小组的同学},B∩C={参加语文、外语小组的同学},A∩B∩C={三个小组都参加的同学}
由题意知:∣A∣=23,∣B∣=27,∣C∣=18
∣A∩B∣=4,∣A∩C∣=7,∣B∩C∣=5,∣A∩B∩C∣=2
根据容斥原理二得:
∣A∪B∪C∣=∣A∣+∣B∣+∣C∣-∣A∩B∣-∣A∩C|-∣B∩C|+|A∩B∩C∣
=23+27+18-(4+5+7)+2
=54(人)
山东公务员行测:数量关系之容斥问题解题原理及方法
解2:利用图示法逐个填写各区域所表示的集合的元素的个数,然后求出最后结果。
设A、B、C分别表示参加数学、语文、外语小组的同学的集合,其图分割成七个互不相交的区域,区域Ⅶ(即A∩B∩C)表示三个小组都参加的同学的集合,由题意,应填2。
区域Ⅳ表示仅参加数学与语文小组的同学的集合,其人数为4-2=2(人)。
区域Ⅵ表示仅参加数学与外语小组的同学的集合,其人数为7-2=5(人)。
区域Ⅴ表示仅参加语文、外语小组的同学的集合,其人数为5-2=3(人)。
区域Ⅰ表示只参加数学小组的同学的集合,其人数为
23-2-2-5=14(人)。
同理可把区域Ⅱ、Ⅲ所表示的集合的人数逐个算出,分别填入相应的区域内,则参加课外小组的人数为;
14+20+8+2+5+3+2=54(人)
点评:解法2简单直观,不易出错。
由于各个区域所表示的集合的元素个数都计算出来了,因此提供了较多的信息,易于回答各种方式的提问。
8.某车间有工人100人,其中有5个人只能干电工工作,有77人能干车工工作,86人能干焊工工作,既能干车工工作又能干焊工工作的有多少人
解:工人总数100,只能干电工工作的人数是5人,除去只能干电工工作的人,这个车间还有95人。
利用容斥原理,先多加既能干车工工作又能干焊工工作的这一部分,其总数为163,然后找出这一公共部分,即163-95=68
9.某次语文竞赛共有五道题(满分不是100分),丁一只做对了(1)、(2)、(3)三题得了16分;于山只做对了(2)、(3)、(4)三题,得了25分;王水只做对了(3)、(4)、(5)三题,得了28分,张灿只做对了(1)、(2)、(5)三题,得了21分,李明五个题都对了他得了多少分
解:由题意得:前五名同学合在一起,将五个试题每个题目做对了三遍,他们的总分恰好是试题总分的三倍。
五人得分总和是16+25+30+28+21=120。
因此,五道题满分总和是120÷3=40。
所以李明得40分。
10.某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既教日语又教法语,有4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名
解:本题只有求出至少教英、日、法三门课中一种的教师人数,才能求出不教这三门课的外语教师的人数。
至少教英、日、法三门课中一种教师人数可根据容斥原理求出。
根据容斥原理,至少教英、日、法三门课中一种的教师人数为50+45+40-15-10-8+4=106(人)不教这三门课的外语教师的人数为120-106=14(人)。