2011中考数学真题解析5_近似数和有效数字(含答案)
001近似数、有效数字、科学计数法(含答案)

甲说:今天有513个人在会议室开会.乙说:今天大约有500人在会议室开会.丙说:今天大约有510人在会议室开会.513是精确数,500和510是近似数,但是他们与精确数513的接近程度是不一样的,可以用精确度表示,500精确到百位(或者精确到100);510精确到十位(或者精确到10).按四舍五入法对圆周率π取近似值时,有π≈3(精确到个位)π≈3.1(精确到0.1,或叫做精确到十分位)π≈3.14(精确到0.01,或叫做精确到百分位)π≈3.142(精确到,或叫做精确到分位)π≈3.1416(精确到,或叫做精确到分位)四舍五入到哪一位就说精确到哪一位例1按括号内的要求用四舍五入法对下列各数取近似数:(1)0.015 8(精确到0.001)(2)30 4.35(精确到个位)(3)1.804(精确到0.1)(4)1.804(精确到0.01)解:(1)0.015 8≈0.016;(2)30 4.35≈304;(3)1.804≈1.8;(4)1.804≈1.80利用四舍五入法得到一个数的近似数时,四舍五入到哪一位就说这个数精确到哪一位。
对于一个近似数,从左边第一个不是0的数字起,到精确到的数位(即最后一位四舍五入所得的数)止,所有的数字都叫这个数的有效数字。
例:1)0.025有两个有效数字:2,52)1500有4个有效数字:1,5,0,03)0.103有3个有效数字:1,0,3难点讲解:带有万、亿等单位的数;及科学记数法表示的数的有效数字问题:这种数由单位前面的数决定其有效数字(别看单位!)如:2.4万和1.60×1042.4有2和4两个有效数字!1.60×104有1、6、0三个有效数字!例1、下列各有几个有效数字?分别是哪些数字(1)43.82 有四个有效数字4,3,8,2(2)0.03086 有四个有效数字3,0,8,6(3)2.4 有二个有效数字2,4(4)2.4万有二个有效数字2,4(5)2.48万有三个有效数字2,4,8(6)0.407 有三个有效数字:4,0,7(7)0.4070 有四个有效数字:4,0,7,0(8)2.4千有二个有效数字:2,4 (8)2.4千有二个有效数字:2,4(10)2.00 有三个有效数字:2,0,0(11)6.05×105 有三个有效数字:6,0,5例2、按括号的要求,用四舍五入法对下列各数取近似数:(1)0.0158(精确到0.001) 解:(1)0.0158≈0.016(2)30435(保留三个有效数字) (2)30435≈3.04×104(3)1.804(保留两个有效数字) (3)1.804≈1.8(4)1.804(保留三个有效数字) (4)1.804≈1.80练习:1.选择:⑴下列近似数中,精确到千分位的是()A. 2.4万B. 7.030C. 0.0086D. 21.06⑵有效数字是( )A. 从右边第一个不是0的数字算起.B. 从左边第一个不是0的数字算起.C. 从小数点后的第一个数字算起.D. 从小数点前的第一个数字算起⑶近似数0.00050400的有效数字有( )A. 3个B. 4个C. 5个D. 6个2、按要求写出下列各数的近似值:(1)69.5(精确到个位);(2)3.99501(精确到0.001);(3)5803300(保留三个有效数字);(4)305万(精确到百万位).3、下列各数中各有几个有效数字?(1)345;(2)1.32;(3)0.065;(4)1020;(5)1.0×103;(6)1.5万.4、、下列各数精确到哪一位?各有几个有效数字?(1)8200;(2)630万;(3)0.090;(4)7.3×103 (5)3.0万;(6)6.50×105.一个近似数的近确度通常有以下两种表述方式1、用四舍五入法表述。
2011年河南省中考数学试卷答案与解析

2011年河南省中考数学试卷参考答案和试题分析一、选择题(每小题3分,共18分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入题后括号内.1.(3分)(2013•宁德)﹣5的绝对值是()A.5B.﹣5 C.D.﹣考点:绝对值.分析:根据绝对值的性质求解.解答:解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.点评:此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)(2011•河南)如图,直线a,b被c所截,a∥b,若∠1=35°,则∠2的大小为()A.35°B.145°C.55°D.125°考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3的度数,又由邻补角的定义,即可求得∠2的度数.解答:解:∵a∥b,∴∠3=∠1=35°,∴∠2=180°﹣∠3=180°﹣35°=145°.故选B.点评:此题考查了平行线的性质.注意两直线平行,同位角相等和数形结合思想的使用.3.(3分)(2011•河南)下列各式计算正确的是()A.B.C.2a2+4a2=6a4D.(a2)3=a6考点:二次根式的加减法;合并同类项;幂的乘方和积的乘方;零指数幂;负整数指数幂.分析:根据各选项进行分析得出计算正确的答案,注意利用幂的乘方的运算以及二次根式的加减,负整数指数幂等知识分别判断即可.解答:解:A、(﹣1)0﹣()﹣1=1﹣2=﹣1,故此选项错误;B、和不是同类项无法计算,故此选项错误;C、2a2+4a2=6a2,故此选项错误;D、(a2)3=a6,故此选项正确.故选D.点评:此题主要考查了二次根式的混合运算以及幂的乘方的运算和负整数指数幂等知识,此题难度不大注意计算要认真,保证计算的正确性.4.(3分)(2011•河南)不等式的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:计算题.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x>﹣2,由②得,x≤3,故此不等式组的解集为:﹣2<x≤3.在数轴上表示为:故选B.点评:本题考查的是在数轴上表示一元一次不等式组的解集,解答此类题目时一定要注意实心圆点和空心圆点的区别.5.(3分)(2011•河南)某农科所对甲、乙两种小麦各选用10块面积相同的试验田进行种植试验,它们的平均亩产量分别是=610千克,=608千克,亩产量的方差分别是S2甲=29.6,S2乙=2.7.则关于两种小麦推广种植的合理决策是()A.甲的平均亩产量较高,应推广甲B.甲、乙的平均亩产量相差不多,均可推广C.甲的平均亩产量较高,且亩产量比较稳定,应推广甲D.甲、乙的平均亩产量相差不多,但乙的亩产量比较稳定,应推广乙考点:方差;算术平均数.专题:压轴题.分析:本题需先根据甲、乙亩产量的平均数得出甲、乙的平均亩产量相差不多,再根据甲、乙的平均亩产量的方差即可得出乙的亩产量比较稳定,从而求出正确答案.解答:解:∵=610千克,=608千克,∴甲、乙的平均亩产量相差不多∵亩产量的方差分别是S2甲=29.6,S2乙=2.7.∴乙的亩产量比较稳定.故选D.点评:本题主要考查了方差和平均数的有关知识,在解题时要能根据方差和平均数代表的含义得出正确答案是本题的关键.6.(3分)(2011•河南)如图,将一朵小花放置在平面直角坐标系中第三象限内的甲位置,先将它绕原点O旋转180°到乙位置,再将它向下平移2个单位长到丙位置,则小花顶点A在丙位置中的对应点A′的坐标为()A.(3,1)B.(1,3)C.(3,﹣1)D.(1,1)考点:坐标和图形变化-旋转;坐标和图形变化-平移.专题:压轴题;网格型;数形结合.分析:根据图示可知A点坐标为(﹣3,﹣1),它绕原点O旋转180°后得到的坐标为(3,1),根据平移“上加下减”原则,向下平移2个单位得到的坐标为(3,﹣1).解答:解:根据图示可知A点坐标为(﹣3,﹣1),根据绕原点O旋转180°横纵坐标互为相反数∴旋转后得到的坐标为(3,1),根据平移“上加下减”原则,∴向下平移2个单位得到的坐标为(3,﹣1),故选C.点评:本题主要考查了根据图示判断坐标、图形旋转180°特点以及平移的特点,比较综合,难度适中.二、填空题(每小题3分,共27分)7.(3分)(2011•河南)27的立方根为3.考点:立方根.专题:计算题.分析:找到立方等于27的数即可.解答:解:∵33=27,∴27的立方根是3,故答案为:3.点评:考查了求一个数的立方根,用到的知识点为:开方和乘方互为逆运算.8.(3分)(2011•河南)如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为72°.考点:等腰三角形的性质.分析:由AB=AC,CD平分∠ACB,∠A=36°,根据三角形内角和180°可求得∠B等于∠ACB,并能求出其角度,在△DBC求得所求角度.解答:解:∵AB=AC,CD平分∠ACB,∠A=36°,∴∠B=(180°﹣36°)÷2=72°,∠DCB=36°.∴∠BDC=72°.故答案为:72°.点评:本题考查了等腰三角形的性质,本题根据三角形内角和等于180度,在△CDB中从而求得∠BDC的角度.9.(3分)(2011•河南)已知点P(a,b)在反比例函数的图象上,若点P关于y轴对称的点在反比例函数的图象上,则k的值为﹣2.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.分析:本题需先根据已知条件,求出ab的值,再根据点P关于y轴对称并且点P关于y轴对称的点在反比例函数的图象上即可求出点K的值.解答:解:∵点P(a,b)在反比例函数的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(﹣a,b),∴k=﹣ab=﹣2.故答案为:﹣2.点评:本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活使用反比例函数图象上点的坐标的特征求出k的值是本题的关键.10.(3分)(2011•河南)如图,CB切⊙O于点B,CA交⊙O于点D且AB为⊙O的直径,点E是上异于点A、D的一点.若∠C=40°,则∠E的度数为40°.考点:切线的性质;圆周角定理.专题:常规题型;压轴题.分析:连接BD,根据直径所对的圆周角是直角,利用切线的性质得到∠ABD的度数,然后用同弧所对的圆周角相等,求出∠E的度数.解答:解:如图:连接BD,∵AB是直径,∴∠ADB=90°,∵BC切⊙O于点B,∴∠ABC=90°,∵∠C=40°,∴∠BAC=50°,∴∠ABD=40°,∴∠E=∠ABD=40°.故答案为:40°.点评:本题考查的是切线的性质,利用切线的性质和圆周角定理求出∠E的度数.11.(3分)(2011•河南)点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,则y1和y2的大小关系为y1<y2(填“>”、“<”、“=”).考点:二次函数图象上点的坐标特征.分析:本题需先根据已知条件求出二次函数的图象的对称轴,再根据点A、B的横坐标的大小即可判断出y1和y2的大小关系.解答:解:∵二次函数y=x2﹣2x+1的图象的对称轴是x=1,在对称轴的右面y随x的增大而增大,∵点A(2,y1)、B(3,y2)是二次函数y=x2﹣2x+1的图象上两点,2<3,∴y1<y2.故答案为:<.点评:本题主要考查了二次函数图象上点的坐标特征,在解题时要能灵活使用二次函数的图象和性质以及点的坐标特征是本题的关键.12.(3分)(2011•河南)现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其它均相同,从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是.考点:列表法和树状图法.分析:首先根据题意画树状图,然后由树状图求得所有等可能的结果和两球标号恰好相同的情况,即可根据概率公式求解.解答:解:画树状图得:∴一共有6种等可能的结果,两球标号恰好相同的有1种情况,∴两球标号恰好相同的概率是.点评:此题考查了树状图法和列表法求概率.树状图法和列表法适合两步完成的事件,可以不重不漏的表示出所有等可能的情况.用到的知识点为:概率=所求情况数和总情况数之比.13.(3分)(2011•河南)如图,在四边形ABCD中,∠A=90°,AD=4,连接BD,BD⊥CD,∠ADB=∠C.若P 是BC边上一动点,则DP长的最小值为4.考点:角平分线的性质;垂线段最短.专题:压轴题.分析:根据垂线段最短,当DP垂直于BC的时候,DP的长度最小,则结合已知条件,利用三角形的内角和定理推出∠ABD=∠CBD,由角平分线性质即可得AD=DP,由AD的长可得DP的长.解答:解:根据垂线段最短,当DP⊥BC的时候,DP的长度最小,∵BD⊥CD,即∠BDC=90°,又∠A=90°,∴∠A=∠BDC,又∠ADB=∠C,∴∠ABD=∠CBD,又DA⊥BA,BD⊥DC,∴AD=DP,又AD=4,∴DP=4.故答案为:4.点评:本题主要考查了直线外一点到直线的距离垂线段最短、全等三角形的判定和性质、角平分线的性质,解题的关键在于确定好DP垂直于BC.14.(3分)(2011•河南)如图是一个几何体的三视图,根据图示的数据可计算出该几何体的表面积为90π.考点:圆锥的计算;由三视图判断几何体.专题:压轴题.分析:根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积为,即可得出表面积.解答:解:∵如图所示可知,圆锥的高为12,底面圆的直径为10,∴圆锥的母线为:13,∴根据圆锥的侧面积公式:πrl=π×5×13=65π,底面圆的面积为:πr2=25π,∴该几何体的表面积为90π.故答案为:90π.点评:此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)(2011•河南)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=2,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为3+.考点:直角梯形;等边三角形的性质;解直角三角形.专题:几何综合题;压轴题.分析:首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.解答:解:已知AD∥BC,∠ABC=90°,点E是BC边的中点,即AD=BE=CE=,∴四边形ABED为矩形,∴∠DEC=90°,∠A=90°,又∠C=60°,∴DE=CE•tan60°=×=3,又∵△DEF是等边三角形,∴DF=DE=AB=3,∠AGD=∠EDF=60°,∠ADG=30°∴AG=AD•tan30°=×=1,∴DG=2,FG=DF﹣DG=1,BG=3﹣1=2,∴AG=FG=1,∠AGD=∠FGB,BG=DG=2,∴△AGD≌△BGF,∴BF=AD=,∴△BFG的周长为2+1+=3+,故答案为:3+.点评:此题考查的知识点是直角梯形、等边三角形的性质及解直角三角形,解题的关键是先由已知推出直角三角形CED,再通过△DEF是等边三角形,解直角三角形证明三角形全等求解.三、解答题(本大题共8个小题,满分75分)16.(8分)(2011•河南)先化简,然后从﹣2≤x≤2的范围内选取一个合适的整数作为x的值代入求值.考点:分式的化简求值.专题:开放型.分析:首先对分式进行化简、把除法转化为乘法、在进行混合运算,把分式转化为最简分式,然后确定x的整数值,把合适的值代入求值,x的值不可使分式的分母为零.解答:原式==.x满足﹣2≤x≤2且为整数,若使分式有意义,x只能取0,﹣2.∴当x=0时,原式=(或:当x=﹣2时,原式=).点评:本题主要考查分式的化简、分式的性质,解题的关键在于找到x的合适的整数值,x的取值不可是分式的分母为零.17.(9分)(2011•河南)如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.考点:梯形;全等三角形的判定和性质.专题:计算题;证明题.分析:(1)找出全等的条件:BE=AD,∠A=∠ABE,∠E=∠ADE,即可证明;(2)首先证得MN是三角形的中位线,根据MN=(BE+BC),又BE=2,即可求得.解答:(1)证明:∵AD∥BC,∴∠A=∠MBE,∠ADM=∠E,在△AMD和△BME中,,∴△AMD≌△BME(ASA);(2)解:∵△AMD≌△BME,∴MD=ME,ND=NC,∴MN=EC,∴EC=2MN=2×5=10,∴BC=EC﹣EB=10﹣2=8.答:BC的长是8.点评:本题考查了全等三角形的判断及三角形中位线定理的使用,熟记其性质、定理是证明、解答的基础.18.(9分)(2011•河南)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).在随机调查了某市全部5 000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m=20;(2)该市支持选项B的司机大约有多少人?(3)若要从该市支持选项B的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?考点:条形统计图;用样本估计总体;扇形统计图;概率公式.专题:压轴题.分析:(1)先算出C组里的人数,根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数.(2)全市所以司机的人数×支持选项B的人数的百分比可求出结果.(3)根据(2)算出的支持B的人数,以及随机选择100名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少.解答:解:(1)69÷23%﹣60﹣69﹣36﹣45=90(人).C选项的频数为90,m%=60÷(69÷23%)=20%.所以m=20;(2分)(2)支持选项B的人数大约为:5000×23%=1150.(6分)(3)∵总人数=5000×23%=1150人,∴小李被选中的概率是:=.(9分)点评:本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.19.(9分)(2011•河南)如图所示,中原福塔(河南广播电视塔)是世界第﹣高钢塔.小明所在的课外活动小组在距地面268米高的室外观光层的点D处,测得地面上点B的俯角α为45°,点D到AO的距离DG为10米;从地面上的点B沿BO方向走50米到达点C处,测得塔尖A的仰角β为60°.请你根据以上数据计算塔高AO,并求出计算结果和实际塔高388米之间的误差.(参考数据:≈1.732,≈1.414.结果精确到0.1米)考点:解直角三角形的使用-仰角俯角问题.专题:探究型.分析:先作DF⊥BO于点F,根据DE∥BO,α=45°可判断出△DBF是等腰直角三角形,进而可得出BF的值,再根据四边形DFOG是矩形可求出FO和CO的值,在Rt△ACO中利用锐角三角函数的定义及特殊角的三角函数值可求出AO的长,进而可得出其误差.解答:解:作DF⊥BO于点F,∵DE∥BO,α=45°,∴∠DBF=α=45°,∴Rt△DBF中,BF=DF=268,(2分)∵BC=50,∴CF=BF﹣BC=268﹣50=218,由题意知四边形DFOG是矩形,∴FO=DG=10,∴CO=CF+FO=218+10=228,(5分)在Rt△ACO中,β=60°,∴AO=CO•tan60°≈228×1.732=394.896,(7分)∴误差为394.896﹣388=6.896≈6.9.(米).即计算结果和实际高度的误差约为6.9米.(9分)点评:本题考查的是解直角三角形的使用﹣仰角俯角问题,涉及到的知识点为:等腰直角三角形的判定和性质、矩形的性质、锐角三角函数的定义及特殊角的三角函数值,熟知以上知识是解答此题的关键.20.(9分)(2011•河南)如图,一次函数y1=k1x+2和反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),和y轴交于点C.(1)k1=,k2=16;(2)根据函数图象可知,当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP和线段AD交于点E,当S四边形ODAC:S△ODE=3:1时,求点P的坐标.考点:反比例函数综合题.专题:代数几何综合题;数形结合.分析:(1)本题须把B点的坐标分别代入一次函数y1=k1x+2和反比例函数的分析式即可求出K2、k1的值.(2)本题须先求出一次函数y1=k1x+2和反比例函数的图象的交点坐标,即可求出当y1>y2时,x 的取值范围.(3)本题须先求出四边形OCAD的面积,从而求出DE的长,然后得出点E的坐标,最后求出直线OP的分析式即可得出点P的坐标.解答:解:(1)∵一次函数y1=k1x+2和反比例函数的图象交于点A(4,m)和B(﹣8,﹣2),∴K2=(﹣8)×(﹣2)=16,﹣2=﹣8k1+2∴k1=(2)∵一次函数y1=k1x+2和反比例函数的图象交于点A(4,4)和B(﹣8,﹣2),∴当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)由(1)知,.∴m=4,点C的坐标是(0,2)点A的坐标是(4,4).∴CO=2,AD=OD=4.∴.∵S梯形ODAC:S△ODE=3:1,∴S△ODE=S梯形ODAC=×12=4,即OD•DE=4,∴DE=2.∴点E的坐标为(4,2).又点E在直线OP上,∴直线OP的分析式是.∴直线OP和的图象在第一象限内的交点P的坐标为().故答案为:,16,﹣8<x<0或x>4点评:本题主要考查了反比例函数的综合问题,在解题时要综合使用反比例函数的图象和性质以及求一次函数和反比例函数交点坐标是本题的关键.21.(10分)(2011•河南)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m 0<m≤100 100<m≤200 m>200收费标准(元/人)90 85 75甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?考点:二元一次方程组的使用.专题:压轴题;方程思想.分析:(1)由已知分两种情况讨论,即a>200和100<a≤200,得出结论;(2)根据两种情况的费用,即x>200和100<x≤200分别设未知数列方程组求解,讨论得出答案.解答:解:(1)这两所学校报名参加旅游的学生人数之和超过200人,理由为:设两校人数之和为a,若a>200,则a=18000÷75=240;若100<a≤200,则a=18000÷85=211>200,不合题意,则这两所学校报名参加旅游的学生人数之和等于240人,超过200人.(2)设甲学校报名参加旅游的学生有x人,乙学校报名参加旅游的学生有y人,则①当100<x≤200时,得解得(6分)②当x>200时,得解得不合题意,舍去.答:甲学校报名参加旅游的学生有160人,乙学校报名参加旅游的学生有80人.点评:此题考查的是二元一次方程组的使用,关键是把不符合题意的结论舍去.22.(10分)(2011•河南)如图,在Rt△ABC中,∠B=90°,BC=5,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(t>0).过点D作DF⊥BC 于点F,连接DE、EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.考点:菱形的性质;含30度角的直角三角形;矩形的性质;解直角三角形.专题:几何图形问题;动点型.分析:(1)在△DFC中,∠DFC=90°,∠C=30°,由已知条件求证;(2)求得四边形AEFD为平行四边形,若使▱AEFD为菱形则需要满足的条件及求得;(3)①∠EDF=90°时,四边形EBFD为矩形.在直角三角形AED中求得AD=2AE即求得.②∠DEF=90°时,由(2)知EF∥AD,则得∠ADE=∠DEF=90°,求得AD=AE•cos60°列式得.③∠EFD=90°时,此种情况不存在.解答:(1)证明:在△DFC中,∠DFC=90°,∠C=30°,DC=2t,∴DF=t.又∵AE=t,∴AE=DF.(2)解:能.理由如下:∵AB⊥BC,DF⊥BC,∴AE∥DF.又AE=DF,∴四边形AEFD为平行四边形.∵AB=BC•tan30°=5=5,∴AC=2AB=10.∴AD=AC﹣DC=10﹣2t.若使▱AEFD为菱形,则需AE=AD,即t=10﹣2t,t=.即当t=时,四边形AEFD为菱形.(3)解:①∠EDF=90°时,四边形EBFD为矩形.在Rt△AED中,∠ADE=∠C=30°,∴AD=2AE.即10﹣2t=2t,t=.②∠DEF=90°时,由(2)四边形AEFD为平行四边形知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°﹣∠C=60°,∴AD=AE•cos60°.即10﹣2t=t,t=4.③∠EFD=90°时,此种情况不存在.综上所述,当t=秒或4秒时,△DEF为直角三角形.点评:本题考查了菱形的性质,考查了菱形是平行四边形,考查了菱形的判定定理,以及菱形和矩形之间的联系.难度适宜,计算繁琐.23.(11分)(2011•河南)如图,在平面直角坐标系中,直线和抛物线交于A、B两点,点A在x轴上,点B的横坐标为﹣8.(1)求该抛物线的分析式;(2)点P是直线AB上方的抛物线上一动点(不和点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB 于点D,作PE⊥AB于点E.①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F 或G恰好落在y轴上时,直接写出对应的点P的坐标.考点:二次函数综合题.专题:代数几何综合题;压轴题;数形结合;待定系数法.分析:(1)利用待定系数法求出b,c即可;(2)①根据△AOM∽△PED,得出DE:PE:PD=3:4:5,再求出PD=y P﹣y D求出二函数最值即可;②当点G落在y轴上时,由△ACP≌△GOA得PC=AO=2,即,解得,所以得出P点坐标,当点F落在y轴上时,x=﹣﹣x+,解得x=,可得P点坐标.解答:解:(1)对于,当y=0,x=2.当x=﹣8时,y=﹣.∴A点坐标为(2,0),B点坐标为.由抛物线经过A、B两点,得解得.∴.(2)①设直线和y轴交于点M,当x=0时,y=.∴OM=.∵点A的坐标为(2,0),∴OA=2.∴AM=.∵OM:OA:AM=3:4:5.由题意得,∠PDE=∠OMA,∠AOM=∠PED=90°,∴△AOM∽△PED.∴DE:PE:PD=3:4:5.∵点P是直线AB上方的抛物线上一动点,∵PD⊥x轴,∴PD两点横坐标相同,∴PD=y P﹣y D=﹣﹣x+﹣(x﹣)=﹣x2﹣x+4,∴=.∴.∴x=﹣3时,l最大=15.②当点G落在y轴上时,如图2,由△ACP≌△GOA得PC=AO=2,即,解得,所以,如图3,过点P作PN⊥y轴于点N,过点P作PS⊥x轴于点S,由△PNF≌△PSA,PN=PS,可得P点横纵坐标相等,故得当点F落在y轴上时,x=﹣﹣x+,解得x=,可得,(舍去).综上所述:满足题意的点P有三个,分别是.点评:此题主要考查了二次函数的综合使用以及相似三角形的判定以及待定系数法求二次函数分析式,利用数形结合进行分析以及灵活使用相似三角形的判定是解决问题的关键.。
2011年广东省中考数学试卷解析

点关注,每天更新全国各区真题详解版和经典中考题型、考点、知识点2011年广东省中考数学试卷参考答案与试题解析一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.(3分)﹣2的倒数是( ) A . 2 B . ﹣2 C . D.考点: 难度: M112 倒数 容易题. 分析: 这道题需要我们清楚倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.而以上四个选项中,只有﹣2×()=1,所以﹣2的倒数是﹣.其余均选项不符合提议。
故选D 解答: D .点评:本题主要考查倒数的概念及性质,属于中考的一个高频考点,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数2.(3分)据中新社北京2010年12月8日电,2010年中国粮食总产量达到546400000吨,用科学记数法表示为( )A . 5.464×107吨B . 5.464×108吨C . 5.464×109吨D . 5.464×1010吨考点: 难度: M11C 科学记数法 容易题.分析: 首先我们要知道,什么是科学计数法:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.那么本题中将546400000用科学记数法可表示为5.464×108.故选B解答: B .点评: 本题我们需要注意科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(3分)将下图中的箭头缩小到原来的,得到的图形是( )A .B.C.D .考点:难度:M32I 相似图形的应用 容易题.分析:本题需要我们根据相似图形的定义,并且结合图形,然后对选项一一分析,即可排除错误答案.∵图中的箭头要缩小到原来的,∴箭头的长、宽都要缩小到原来的;选项B箭头大小不变;选项C箭头扩大;选项D的长缩小、而宽没变.故选A解答:A.点评:本题较简单,主要考查了相似图形的定义,注意:即两个图形的形状相同,但大小不一定相同的变换就是相似变换.4.(3分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为()A .B.C.D.考点:难度:M222 概率的计算容易题.分析:解决本题,我们需要先求出所有球的个数与红球的个数,然后再根据概率公式便可求出答案.即,共8球在袋中,其中5个红球,故摸到红球的概率为,故选C.解答:C.点评:这道题需要掌握概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.5.(3分)正八边形的每个内角为()A .120°B.135°C.140°D.144°考点:难度:M331 多边形的内(外)角和中等题.分析:此题我们要根据正多边形的内角求法,得出每个内角的表示方法,便可求出答案.即:[(n﹣2)×180]÷n=[(8﹣2)×180]÷8=135°,故选B解答:B.点评:本题主要考查了多边形的内(外)角和,属于中考中频考点,注意正n边形的内角ɑ=[(n﹣2)×180]÷n.正确的记忆正多边形的内角求法公式是解决问题的关键.二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上. 6.(4分)已知反比例函数解析式的图象经过(1,﹣2),则k=.考点:难度:M137 用待定系数法求函数关系式容易题.分析:根据待定系数法,将(1﹣2)代入式即可得出k的值.具体解法如下:∵反比例函数解析式的图象经过(1,﹣2),∴k=xy=﹣2,解答: ﹣2.点评:本题比较简单,考查了用待定系数法求反比例函数的解析式,属于中考高频考点,对以此类题型只需要将已知点带入函数即可求出答案。
2011年北京中考数学试题+答案+解析

2011年北京中考暂时告一段落。
网校老师对今年的北京中考试题与初三强化提高班的课程、模拟题进行了一些分析和对比。
对比发现:网校课程及讲义与今年中考的考查知识点完全契合,95%左右的题目与课程讲义中给出的题目所考查的知识点完全相同,约有65%的题目与讲义中老师给出的题目只差一些具体数字(解题方法完全相同)。
这其中,函数图像的交点问题、常见辅助线的构造问题、平移旋转问题、中心对称与轴对称问题、二次函数图像与解析式、函数(二次函数)与圆综合题等都结合近年的中考真题做了专题讲解与复习。
可以这样说,学过这个班级的同学,对考题中90%的题目不陌生,甚至个别题目老师还"讲过"。
下面是网校老师对2011年北京中考数学试卷的分析及原题解析,供大家参考。
一、题型、题量及分值比例分布基本涵盖了《考试说明》所要求的所有知识点,如:数与代数、函数、三角形、圆、统计与概率等等。
真题与考试说明相比,题量上有所减少。
共25道题目,共72分。
难度比约为:5:3:2填空题选择题解答题4道16分8道32分13道72分二、总体特点1、重视基础,紧扣教材和考试说明。
绝大多说题目都非常注重对基本知识、方法、思想等的考查,很多题目源于书本或者以书本为基础;此类题目分值约占总分的75%2、理论与实际生活相结合。
真题中出现了人口普查、温度统计、京通公交快速通道、汽车保有量与尾气排放等问题。
3、出现新题型。
第12题是新出现的一个找规律的题目,难度不是很大;4、压轴题相对较难,与2010年相比难度有所下降。
但对同学抽象思维能力、分类讨论思想等的能力要求较高。
里面出现了一个容易被忽略的问题--半圆应该不包括直径。
三、真题详解及讲义相似度对比一、选择题(本题共32分,每小题4分)下面各题均有4个选项,其中只有一个是符合题意的.1、﹣的绝对值是()A、﹣B、C、﹣D、【考点】绝对值。
【难度】容易【解析】解:数轴上某个数与原点的距离叫做这个数的绝对值,在数轴上,点﹣到原点的距离是,所以﹣的绝对值是.故本题答案选D.【点评】本题考查绝对值的基本概念:数轴上某个数与原点的距离叫做这个数的绝对值.本题在北京近年中考一般会考相反数或者绝对值。
2011上海市中考数学试卷【答案+解析】知识讲解

2011年上海市中考数学试卷一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.2.(2011•上海)如果a>b,c<0,那么下列不等式成立的是()A.a+c>b+c B.c﹣a>c﹣b C.ac>bc D.3.(2011•上海)下列二次根式中,最简二次根式是()A.B.C.D.4.(2011•上海)抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3)B.(﹣2,3)C.(2,3)D.(﹣2,﹣3)5.(2011•上海)下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等6.(2011•上海)矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P为圆心,PD 为半径的圆,那么下列判断正确的是()A.点B、C均在圆P外B.点B在圆P外、点C在圆P内C.点B在圆P内、点C在圆P外D.点B、C均在圆P内二、填空题(本大题共12题,每题4分,共48分)7.(2011•上海)计算:a2•a3=_________.8.(2011•上海)因式分解:x2﹣9y2=_________.9.(2011•上海)如果关于x的方程x2﹣2x+m=0(m为常数)有两个相等实数根,那么m=_________.10.(2011•上海)函数的定义域是_________.11.(2011•上海)如果反比例函数(k是常数,k≠0)的图象经过点(﹣1,2),那么这个函数的解析式是_________.12.(2011•上海)一次函数y=3x﹣2的函数值y随自变量x值的增大而_________(填“增大”或“减小”).13.(2011•上海)有8只型号相同的杯子,其中一等品5只,二等品2只和三等品1只,从中随机抽取1只杯子,恰好是一等品的概率是_________.14.(2011•上海)某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________.15.(2011•上海)如图,AM是△ABC的中线,设向量,,那么向量=_________(结果用、表示).16.(2011•上海)如图,点B、C、D在同一条直线上,CE∥AB,∠ACB=90°,如果∠ECD=36°,那么∠A=_________.17.(2011•上海)如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=3,那么BC= _________.18.(2011•上海)Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D 逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=_________.三、解答题(本大题共7题,满分78分)19.(2011•上海)计算:.20.(2011•上海)解方程组:.21.(2011•上海)如图,点C、D分别在扇形AOB的半径OA、OB的延长线上,且OA=3,AC=2,CD平行于AB,并与弧AB相交于点M、N.(1)求线段OD的长;(2)若tan∠C=,求弦MN的长.22.(2011•上海)据报载,在“百万家庭低碳行,垃圾分类要先行”活动中,某地区对随机抽取的1000名公民的年龄段分布情况和对垃圾分类所持态度进行调查,并将调查结果分别绘成条形图(图1)、扇形图(图2).(1)图2中所缺少的百分数是_________;(2)这次随机调查中,如果公民年龄的中位数是正整数,那么这个中位数所在年龄段是_________(填写年龄段);(3)这次随机调查中,年龄段是“25岁以下”的公民中“不赞成”的有5名,它占“25岁以下”人数的百分数是_________;(4)如果把所持态度中的“很赞同”和“赞同”统称为“支持”,那么这次被调查公民中“支持”的人有_________名.23.(2011•上海)如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证:四边形ABFC是矩形.24.(2011•上海)已知平面直角坐标系xOy(如图),一次函数的图象与y轴交于点A,点M在正比例函数的图象上,且MO=MA.二次函数y=x2+bx+c的图象经过点A、M.(1)求线段AM的长;(2)求这个二次函数的解析式;(3)如果点B在y轴上,且位于点A下方,点C在上述二次函数的图象上,点D在一次函数的图象上,且四边形ABCD是菱形,求点C的坐标.25.(2011•上海)在Rt△ABC中,∠ACB=90°,BC=30,AB=50.点P是AB边上任意一点,直线PE⊥AB,与边AC或BC相交于E.点M在线段AP上,点N在线段BP上,EM=EN,.(1)如图1,当点E与点C重合时,求CM的长;(2)如图2,当点E在边AC上时,点E不与点A、C重合,设AP=x,BN=y,求y关于x的函数关系式,并写出函数的定义域;(3)若△AME∽△ENB(△AME的顶点A、M、E分别与△ENB的顶点E、N、B对应),求AP的长.2011年上海市中考数学试卷参考答案与试题解析一、选择题(本大题共6题,每题4分,共24分)1.(2011•上海)下列分数中,能化为有限小数的是()A.B.C.D.考点:有理数的除法。
2011年安徽省中考数学试题及详细解析

2011年安徽省中考试题数 学(本试卷共8大题,计23小题,满分150分,考试时间120分钟.)题号 一 二 三 四 五 六 七 八 总分 得分一.选择题(本大题10小题,每小题4分,满分40分)每一个小题都给出代号为A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.(2011安徽,1,4分)-2,0,2,-3这四个数中最大的是……………………………………【 】A .2B .0C .-2D .-3 【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 2.(2011安徽,2,4分)安徽省2010年末森林面积为3804.2千公顷,用科学计数法表示3804.2千.正确的是………………………………………………………………………………………………………【 】A .3102.3804⨯ B .41042.380⨯ C .6108042.3⨯ D .7108042.3⨯【分析】.【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆ 【典型错误】 3.(2011安徽,3,4分)下图是五个相同的小正方体搭成的几何体,其左视图为………………………【 】【分析】. 【答案】A【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】4.(2011安徽,4,4分)设119-=a ,a 在两个相邻整数之间,则这两个整数是……………………【 】 A .1和2 B .2和3 C .3和4 D .4和5 【分析】. 【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 5.(2011安徽,5,4分)从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是…………………………………………………………【 】 A .事件M 是不可能事件 B .事件M 是必然事件 C .事件M 发生的概率为51D .事件M 发生的概率为52 【分析】 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 6.(2011安徽,6,4分)如图,D 是△ABC 内一点,BD ⊥CD ,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是AB 、AC 、CD 、BD 的中点,则四边形EFGH 的周长是…【 】A .7B .9C .10D .11 【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】 7.(2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点, ∠BAC=36°,则劣弧BC 的长为………………………………………【 】 B第6题图 G HF EDC B A第10题图PM N D CBAA .5π B .52πC .53πD .54π 【分析】. 【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】8.(2011安徽,8,4分)一元二次方程x x x -=-2)2(的根是………………【 】 A .1- B .2C .1和2D .1-和2【分析】. 【答案】D【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】9.(2011安徽,9,4分)如图,四边形ABCD 中,∠BAD=∠ADC=90°,AB=AD=22,CD=2,点P 在四边形ABCD 的边上.若P 到BD 的距离为23,则点P 的个数为………………………【 】 A .1 B .2C .3D .4 【分析】A 到BD 的距离为2,故在AB 、AD 存在, .【答案】B【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 10.(2011安徽,10,4分)如图所示,P 是菱形ABCD 的对角线AC 上一点,过P 垂直于AC 的直线交菱形ABCD 的边于M 、N 两点,设AC=2,BD=1,AP=x ,△AMN 的面积为y ,则y 关于x 的函数图象的大致形状是…………………………………………………………………【 】第9题图D CBAA .B .C .D .【分析】⎪⎪⎩⎪⎪⎨⎧<<-≤<=)21(),2(2)10(,212x x x x x y .【答案】C【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】二、填空题(本大题4小题,每小题5分,满分20分)11.(2011安徽,11,5分)因式分解b ab b a ++22=_______________.【分析】.【答案】2)1(+a ab【涉及知识点】因式分解,提公因式法,公式法(完全平方公式)【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 12.(2011安徽,12,5分)根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:n E 10=,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是_______________.【分析】.【答案】100【涉及知识点】数的乘方,整式除法. 【点评】本题考查,属于基础题. 【推荐指数】☆☆ 【典型错误】 13.(2011安徽,13,5分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB=CD ,已知CE=1,ED=3,则⊙O 的半径是_______________ 【分析】过O 作AB 、CD 的垂线垂足分别为M 、N ,则OM=ON=1.【答案】5【涉及知识点】勾股定理,圆的对称性. 【点评】本题考查,属于基础题. 【推荐指数】☆☆☆ 【典型错误】14.(2011安徽,14,5分)定义运算)1(b a b a -=⊗,下面给出了关于这种运算的几个结论: ①6)2(2=-⊗;②a b b a ⊗=⊗;第13题图③若0=+b a ,则ab b b a a 2)()(=⊗+⊗; ④若0=⊗b a ,则0=a其中正确结论的序号是_______________.(在横线上填上你认为所有正确结论的序号) 【分析】.ab ab b a b a b b a a b b a a 22)()()()(22222=++-=+-=-+-=⊗+⊗ 【答案】①③ 【涉及知识点】【点评】本题考查,属于基础题. 【推荐指数】☆☆☆☆ 【典型错误】 三、(本大题共2小题,每小题8分,共16分)15.(2011安徽,15,8分)先化简,再求值:12112---x x ,其中2-=x . 【分析】. 【答案】原式=11)1)(1(1)1)(1(2)1)(1(21+=+--=+--+--+x x x x x x x x x …………………………(6分)当2-=x 时,原式、1121-=+-……………………………………………………(8分)【涉及知识点】分式、分式的运算与化简,简单题。
2011年北京市中考数学真题及答案

A OBCD CE 2011年北京市高级中等学校招生考试数 学 试 卷学校 姓名 准考证号一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.- 34的绝对值是( )A .- 4 3B . 4 3C .- 3 4D . 342.我国第六次全国人口普查数据显示,居住在城镇的人口总数达到665 575 306人.将665 575 306用科学记数法表示(保留三个有效数字)约为( )A .66.6×107B .0.666×108C .6.66×108D .6.66×107 3.下列图形中,即是中心对称又是轴对称图形的是( )A .等边三角形B .平行四边形C .梯形D .矩形 4.如图,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O , 若AD =1,BC =3,则OAOC的值为( ) A . 1 2 B . 1 3 C . 1 4 D . 195则这10个区县该日最高气温的人数和中位数分别是( )A .32,32B .32,30C .30,32D .32,316.一个不透明的盒子中装有2个白球,5个红球和8个黄球,这些球除颜色外,没有任何其他区别,现从这个盒子中随机摸出一个球,摸到红球的概率为( ) A .5 18 B . 1 3 C . 2 15 D . 1157.抛物线y =x 2-6x +5的顶点坐标为( )A .(3,-4)B .(3,4)C .(-3,-4)D .(-3,4)8.如图,在△ABC 中,∠ACB =90°,∠BAC =30°,AB =2,D 是 AB 边上的一个动点(不与点A 、B 重合),过点D 作CD 的垂线FEx二、填空题(本题共16分,每小题4分) 9.若分式x ―8x的值为0,则x 的值等于________. 10.分解因式:a 3―10a 2+25a =______________.11.若右图是某几何体的表面展开图,则这个几何体是__________. 12.在右表中,我们把第i 行第j 列的数记为a ij (其中i ,j 都是不大于5的正整数),对于表中的每个数a ij ,规定如下:当i ≥j 时,a ij =1;当i <j 时,a ij =0.例如:当i =2,j =1时,a ij =a 21=1.按此规定,a 13=_____;表中的25个数中,共有_____个1;计算:a 11·a i 1+a 12·a i 2+a 13·a i 3+a 14·a i 4+a 15·a i 5的值为________. 三、解答题(本题共30分,每小题5分)13.计算:01)2(2730cos 221π-++-⎪⎭⎫ ⎝⎛- .14.解不等式:4(x -1)>5x -6.15.已知a 2+2ab +b 2=0,求代数式a (a +4b )-(a +2b )(a -2b )的值.16.如图,点A 、B 、C 、D 在同一条直线上,BE ∥DF ,∠A =∠F ,AB =FD .求证:AE =FC .17.如图,在平面直角坐标系xOy 中,一次函数y =-2x 的图象与反比例函数y = kx的图象的一个交点为A (-1,n ).(1)求反比例函数y = kx的解析式;(2)若P 是坐标轴上一点,且满足P A =OA ,直接写出点P 的坐标.A .B .C .D .A B C DAOBF CDE 18.列方程或方程组解应用题:京通公交快速通道开通后,为响应市政府“绿色出行”的号召,家住通州新城的小王上班由自驾车改为乘坐公交车.已知小王家距上班地点18千米.他用乘公交车的方式平均每小时行驶的路程比他自用驾车的方式平均每小时行驶的路程的2倍还多9千米,他从家出发到达上班地点,乘公交车方式所用时间是自驾车方式所用时间的 37.小王用自驾车方式上班平均每小时行驶多少千米?四、解答题(本题共20分,每小题5分) 19.如图,在△ABC 中,∠ACB =90°,D 是BC 的中点,DE ⊥BC ,CE ∥AD .若AC =2,CE =4,求四边形ACEB 的周长.20.如图,在△ABC ,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF = 12∠CAB .(1)求证:直线BF 是⊙O 的切线; (2)若AB =5,sin ∠CBF =55,求BC 和BF 的长.A BD CEF21.以下是根据北京市国民经济和社会发展统计公报中的相关数据,绘制统计图的一部分.请根据以上信息解答下列问题:(1)2008年北京市私人轿车拥有是多少万辆(结果保留三个有效数字)? (2)补全条形统计图;(3)汽车数量增多除造成交通拥堵外,还增加了碳排放量,为了了解汽车碳排放量的情况,小明同学通过网络了解到汽车的碳排放量与汽车排量有关.如:一辆排量为1.6L 的轿车,如果一年行驶1万千米,这一年,它碳排放量约为2.7吨.于是他调查了他所居住小区的150辆如果按照小明的统计数据,请你通过计算估计,2010年北京市仅排量为1.6L 的这类私人轿车(假设每辆车平均一行行驶1万千米)的碳排放总量约为多少万吨?22.阅读下面材料:小伟遇到这样一个问题:如图1,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 相交于点O .若梯形ABCD 的面积为1,试求以AC 、BD 、AD +BC 的长度为三边长的三角形的面积.小伟是这样思考的:要想解决这个问题,首先应想办法移动这些分散的线段,构造一个三角形,再计算其面积即可.他先后尝试了翻折、旋转、平移的方法,发现通过平移可以解决这个问题.他的方法是过点D 作AC 的平行线交BC 的延长线于点E ,得到的△BDE 即是以AC 、BD 、AD +BC 的长度为三边长的三角形(如图2).请你回答:图2中△BDE 的面积等于____________. 参考小伟同学的思考问题的方法,解决下列问题:如图3,△ABC 的三条中线分别为AD 、BE 、CF .(1)在图3中利用图形变换画出并指明以AD 、BE 、CF 的长度为三边长的一个三角形(保留画图痕迹); (2)若△ABC 的面积为1,则以AD 、BE 、CF 的长度为 BBCADOADCEO图2图1北京市2001~2010年私人轿车拥有量的年增长率统计图 北京市2001~2010年 私人轿车拥有量统计图五、解答题(本题共22分)23.(7分)在平面直角坐标系xOy 中,二次函数y =mx 2+(m ―3)x ―3(m >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求点A 的坐标;(2)当∠ABC =45°时,求m 的值;(3)已知一次函数y =kx +b ,点P (n ,0)是x 轴上的一个动点,在(2)的条件下,过点P 垂直于x 轴的直线交这个一次函数的图象于点M ,交二次函数y =mx 2+(m ―3)x ―3(m >0)的图象于N .若只有当-2<n <2时,点M 位于点N 的上方,求这个一次函数的解析式.24.(7分)在□ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F .(1)在图1中,证明:CE =CF ; (2)若∠ABC =90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数; (3)若∠ABC =120°,FG ∥CE ,FG =CE ,分别连结DB 、DG (如图3),求∠BDG 的度数.B BADADC C EFE G FABC DE GF 图1图2图3的图形叫作图形C (注:不含AB 线段).已知A (-1,0),B (1,0),AE ∥BF ,且半圆与y 轴的交点D 在射线AE 的反向延长线上.(1)求两条射线AE 、BF 所在直线的距离;(2)当一次函数y =x +b 的图象与图形C 恰好只有一个公共点时,写出b 的取值范围; 当一次函数y =x +b 的图象与图形C 恰好只有两个公共点时,写出b 的取值范围;(3)已知□AMPQ (四个顶点A 、M 、P 、Q 按顺时针方向排列)的各顶点都在图形C 上,且不都在两条射线上,求点M 的横坐标x 的取值范围.2011年北京市高级中等学校招生考试一、选择题三、解答题解:()1012cos302π2-⎛⎫-︒+- ⎪⎝⎭221=-+21= 3=.解:去括号,得4456x x ->-. 移项,得4546x x ->-. 合并,得2x ->-. 解得2x <.所以原不等式的解集是2x <. 解:()()()422a a b a b a b +-+-()22244a ab a b =+--244ab b =+. ∵2220a ab b ++=,∴0a b +=. ∴原式()40b a b =+=.证明:∵BE DF ,∥ ∴ABE D ∠=∠. 在ABE △和FDC △中,EFA B ED A B F DA F ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴ABE FDC ≅△△. ∴AE FC =. 解:⑴ ∵点()1A n -,在一次函数2y x =-的图象上,∴()212n =-⨯-=.∴点A 的坐标为()12-,.∵点A 的反比例函数k y x =的图象上, ∴2k =-.∴反比例函数的解析式为2y x =-.⑵ 点P 的坐标为()20-,或()04,.解:设小王用自驾车方式上班平均每小时行驶x 千米.依题意,得18318297x x =⨯+. 解得27x =.经检验,27x =是原方程的解,且符合题意. 答:小王用自驾车方式上班平均每小时行驶27千米. 四、解答题解:∵90ACB DE BC ∠=︒,,⊥ ∴AC DE ∥.又∵CE AD ,∥∴四边形ACED 是平行四边形. ∴2DE AC ==.在Rt CDE △中,由勾股定理得CD .∵D 是BC 的中点,AC BD∵D 是BC 的中点,DE BC ,⊥ ∴4EB EC ==.∴四边形ACEB的周长10AC CE EB BA =+++=+⑴ 证明:连结AE .∵AB 是O 的直径, ∴90AEB ∠=︒. ∴1290∠+∠=︒. ∵AB AC =, ∴112CAB∠=∠. ∵12CBF CAB ∠=∠,∴1CBF ∠=∠. ∴290CBF ∠+∠=︒. 即90ABF ∠=︒. ∵AB 是O 的直径, ∴直线BF 是O 的切线. ⑵ 解:过点C 作CG AB ⊥于点G .∵sin 1CBF CBF ∠=∠=∠,∴sin 1∠=.∵905AEB AB ∠=︒=,,∴sin 1BE AB =⋅∠=. ∵90AB AC AEB =∠=︒,,F∴sin 2cos 2∠=∠=.在Rt CBG △中,可求得42GC GB ==,. ∴3AG =. ∵GC BF ∥, ∴AGC ABF △△. ∴GC AG BF AB =. ∴203GC AB BF AG ⋅==. 解:⑴()146119%⨯+173.74= 174≈(万辆).所以2008年北京市私人轿车拥有量约是174万辆. ⑵ 如右图.⑶ 75276 2.7372.6150⨯⨯=(万吨). 估计2010年北京市仅排量为1.6L 的这类私人轿车的碳排放总量约为372.6万吨.解:BDE △的面积等于 1 . ⑴ 如图.以AD 、BE 、CF 的长度为三边长的一个三角形是CFP △. ⑵ 以AD 、BE 、CF 的长度为三边长的三角形的面积等于34. 五、解答题解:⑴ ∵点A B 、是二次函数()()2330y mx m x m =+-->的图象与x 轴的交点, ∴令0y =,即()2330mx m x +--=.解得1231x x m =-=,.又∵点A 在点B 左侧且0m >,北京市2006-2010年私人轿车拥有量统计图APEFCDB⑵ 由⑴可知点B 的坐标为30m⎛⎫ ⎪⎝⎭,. ∵二次函数的图象与y 轴交于点C , ∴点C 的坐标为()03-,.∵45ABC ∠=︒, ∴33m =.∴1m =.⑶ 由⑵得,二次函数解析式为223y x x =--. 依题意并结合图象可知,一次函数的图象与二次函数的 图象交点的横坐标分别为2-和2,由此可得交点坐标为()25-,和()23-,.将交点坐标分别代入一次函数解析式y kx b =+中, 得252 3.k b k b -+=⎧⎨+=-⎩,解得21.k b =-⎧⎨=⎩,∴一次函数的解析式为21y x =-+.⑴ 证明:如图1.∵AF 平分BAD ∠, ∴BAF DAF ∠=∠.∵四边形ABCD 是平行四边形, ∴AD BC AB CD ,∥∥. ∴DAF CEF BAF F ∠=∠∠=∠,. ∴CEF F ∠=∠. ∴CE CF =.DEFCBA图1321GA BCFED⑵ BDC ∠=45︒.⑶ 解:分别连结GB 、GE 、GC (如图2). ∵120AB DC ABC ∠=︒,,∥ ∴120ECF ABC ∠=∠=︒ ∵FG CE ∥且FG CE =, ∴四边形CEGF 是平行四边形. 由⑴得CE CF =, ∴CEGF 是菱形.∴1602EG EC GCF GCE ECF =∠=∠=∠=︒,.∴ECG △是等边三角形. ∴EG CG =, ① 60GEC EGC ∠=∠=︒. ∴GEC GCF ∠=∠.∴BEG DCG ∠=∠. ②由AD BC ∥及AF 平分BAD ∠可得BAE AEB ∠=∠. ∴AB BE =.在ABCD 中,AB DC =. ∴BE DC =. ③ 由①②③得BEG DCG ≅△△. ∴BG DE =,12∠=∠.∴132360BGD EGC ∠=∠+∠=∠+∠=∠=︒. ∴180602BGDBDG ︒-∠∠==︒.解:⑴ 分别连结AD 、DB ,则点D 在直线AE 上,如图1. ∵点D 在以AB 为直径的半圆上, ∴90ADB ∠=︒.∴BD AD ⊥.在Rt DOB △中,由勾股定理得BD ∵AE BF ,∥∴两条射线AE 、BF⑵ 当一次函数y x b =+的图象与图形C 恰好只有一个公共点时,b的取值是b 或11b -<<; ⑶ 假设存在满足题意的AMPQ ,根据点M 的位置,分以下四种情况讨论:①当点M 在射线AE 上时,如图2. ∵A M P Q 、、、四点按顺时针方向排列, ∴直线PQ 必在直线AM 的上方.∴P Q 、两点都在AD 上,且不与点A D 、重合.∴0PQ <<.∵AM PQ ∥且AM PQ =,∴0AM < ∴21x -<<-.②当点M 在AD (不包括点D )上时,如图3.∵A M P Q 、、、四点按顺针方向排列, ∴直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ③当点M 在DB 上时,设DB 的中点为R ,则OR BF ∥. 当点M 在DR (不包括点R )上时,如图4.过点M 作OR 的垂线交DB 于点Q ,垂足为点S ,可得S 是MQ 的中点.图2图3图4连结AS 并延长交直线BF 于点P . ∵O 为AB 的中点,可证S 为AP 的中 点.∴四边形AMPQ 为满足题意的平行四 边形.∴0x <≤.2)当点M 在RB 上时,如图5.直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. ④当点M 的射线BF (不包括点B )上时,如 图6.直线PQ 必在直线AM 的下方. 此时,不存在满足题意的平行四边形. 综上,点M 的横坐标x 的取值范围是21x -<<-或0x ≤.2011年北京中考数学试题答案一.选择题1.D2. C3.D4. B5. A6. B7. A8. B 二.填空题9.8 10. 2(5)a a - 11. 圆柱 12. 0 ;15 ;1三.计算题13.3+ 14. x<2 15. 0 16. ABE FDA ∆≅∆(SAS)17. (1)2y x -=(2)0 ) 或P(-2 , 0 )18. x = 27km/h19. 10+20. (1)略BF=20/3 21. (1)174 (2) 略 (3) 372.6图5图622. 1(1)(2) 3/423. (1) A(—1 , 0 ) (2)m=1 (3)y= —2x+124. (2)GDF GCB ∆≅∆, GBD ∆为等腰直角三角形,45BDG ︒∠=; (3) GDF GCB ∆≅∆, GBD ∆为等边三角形,60BDG ︒∠=。
2011年安徽省中考数学试题及详细解析

2011 年安徽省中考数学试题及详尽分析一、选择题(共10 小题,每题 4 分,满分40 分)1、在﹣ 1, 0, 1, 2 这四个数中,既不是正数也不是负数的是()A、﹣ 1B、0C、 1D、 2考点:有理数。
剖析:正数是大于 0 的数,负数是小于 0 的数,既不是正数也不是负数的是 0 .解答:解: A、﹣ 1< 0,是负数,故 A 错误;B、既不是正数也不是负数的是 0,正确;C、 1>0,是正数,故C错误;D、 2> 0,是正数,故 D 错误.应选 B.评论:理解正数和负数的观点是解答本题的要点.2、计算( 2x)3÷x的结果正确的选项是)(A、 8x 2B、 6x 2C、 8x3D、 6x3考点:整式的除法;幂的乘方与积的乘方;同底数幂的除法。
剖析:依据积的乘方等于各因式乘方的积和单项式的除法法例解答.解答:解:( 2x)332.÷ x=8x÷ x=8x应选 A.评论:本题主要考察积的乘方的性质,单项式的除法,娴熟掌握运算性质是解题的要点.3、如图,直线l1∥l 2,∠ 1=55°,∠ 2=65°,则∠ 3 为()A、 50°B、 55°C、 60°D、 65°考点:平行线的性质;对顶角、邻补角;三角形内角和定理。
专题:计算题。
剖析:先依据平行线的性质及对顶角相等求出∠ 3 所在三角形其他两角的度数,再依据三角形内角和定理即可求出∠ 3 的度数.解答:解:以下图:∵l1∥ l2,∠ 2=65°,∴∠ 6=65°,∵∠ 1=55°,∴∠ 1=∠ 4=55°,在△ ABC中,∠ 6=65°,∠ 4=55°,∴∠ 3=180°﹣ 65°﹣ 55°=60°.应选 C.评论:本题要点考察了平行线的性质、对顶角相等及三角形内角和定理,是一道较为简单的题目.4、 2010 年一季度,全国城镇新增就业人数为289 万人,用科学记数法表示289 万正确的是()7 6A、 2.89 × 10B、 2.89 × 105 4C、 2.89 × 10D、 2.89 × 10考点:科学记数法—表示较大的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2012年1月最新最细)2011全国中考真题解析120考点汇编
近似数和有效数字
一、选择题
1.(2011内蒙古呼和浩特,4,3)用四舍五入法按要求对0.05049分别取近似值,其中错误的是()
A、0.1(精确到0.1)
B、0.05(精确到百分位)
C、0.05(精确到千分位)
D、0.050(精确到0.001)
考点:近似数和有效数字.
专题:探究型.
分析:根据近似数与有效数字的概念对四个选项进行逐一分析即可.解答:解:A、0.05049精确到0.1应保留一个有效数字,故是0.1,故本选项正确;
B、0.05049精确到百分位应保留一个有效数字,故是0.05,故本选项正确;
C、0.05049精确到千分位应是0.050,故本选项错误;
D、0.05049精确到0.001应是0、050,故本选项正确.
故选C.
点评:本题考查的是近似数与有效数字,即从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2.(2011湖北天门,3,3分)第六次人口普查的标准时间是2010
年11月1日零时.普查登记的大陆31个省、自治区、直辖市和现役军人的人口共1 339 724 852人.这个数用科学记数法表示为(保留三个有效数字)()
A、1.33×1010
B、1.34×1010
C、1.33×109
D、
1.34×109
考点:科学记数法与有效数字.
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于1 048 576有7位,所以可以确定n=7-1=6.
有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.
解答:解:1339724852=1.339724852×109≈1.34×109.
故选D.
点评:此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.
3.2011山东青岛,5,3分)某种鲸的体重约为1.36×105kg.关于这个近似数,下列说法正确的是()
A.精确到百分位,有3个有效数字B.精确到个位,有6
个有效数字
C.精确到千位,有6个有效数字D.精确到千位,有3个有效数字
考点:近似数和有效数字。
专题:常规题型。
分析:有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.
用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.
解答:解:1.36×105kg最后一位的6表示6千,共有1、3、6三个有效数字.
故选D.
点评:此题考查了科学记数法表示的数的有效数字的确定方法,要注意10的n次方限定的乘号前面的最后一位数表示的数位.
4.(2011贵州遵义,8,3分)若a、b均为正整数,且32
a则
,7<
>b
是
a+的最小值
b
...
A. 3
B. 4
C. 5
D. 6
【考点】估算无理数的大小.
【分析】本题需先根据已知条件分别求出a、b的最小值,即可求出a+b的最小值.
【解答】解:a、b均为正整数,且,
∴a的最小值是3,
b的最小值是:1,
则a+b的最小值4.
故选B.
【点评】本题主要考查了如何估算无理数的大小,在解题时要能根据题意求出a、b的值是本题的关键.
二、填空题
1.(2011•玉林,14,3分)近似数0.618有3个有效数字.
考点:近似数和有效数字。
专题:常规题型。
分析:根据有效数字的定义,从左起,第一个不为0的数字算起,到右边精确到的那一位为止.
解答:解:0.618的有效数字为6,1,8,共3个.
故答案为:3.
点评:本题考查了近似数和有效数字,是基础知识比较简单,有效数字的计算方法以及是需要识记的内容,经常会出错.
2.(2011广西防城港14,3分)近似数0.618有个有效数字.
考点:近似数和有效数字
专题:有理数
分析:根据有效数字的定义,从左起,第一个不为0的数字算起,到右边精确到的那一位为止.0.618的有效数字为6,1,8,共3个,故答案为:3.
解答:3
点评:本题考查了近似数和有效数字,是基础知识比较简单,只要掌握有效数字的定义,就不难得到正确答案.
三、解答题
1.。