天一高考数学原创试题(理科)
2021届全国天一大联考新高考模拟试卷(一)数学(理)试题

2021届全国天一大联考新高考模拟试卷(一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(共12小题,每小题5分,共60分)1.2{|6510}M x x x =-+=,{|1}P x ax ==,若P M ⊆,则a 的取值集合为( ) A. {}2 B. {}3C. {}2,3D. {}0,2,3【答案】D 【解析】 【分析】求出11,32M ⎧⎫=⎨⎬⎩⎭,由{|1}P x ax ==,P M ⊆,可得P ∅=,13P ⎧⎫=⎨⎬⎩⎭或12P ⎧⎫=⎨⎬⎩⎭,由此能求出a 取值集合.【详解】211{|6510},32M x x x ⎧⎫=-+==⎨⎬⎩⎭,{|1}P x ax ==,P M ⊆,P ∅∴=,13P ⎧⎫=⎨⎬⎩⎭或12P ⎧⎫=⎨⎬⎩⎭,0a ∴=或3a =或2a =.a ∴的取值集合为{}0,2,3.故选D .【点睛】本题主要考查集合子集的定义,以及集合空集的定义,意在考查对基础知识的掌握与应用,属于基础题. 2.若复数()122aia R i+∈-的实部和虚部相等,则实数a 的值为( ) A. 1B. 1-C. 16D. 16-【答案】C 【解析】 【分析】直接利用复数代数形式的乘除运算化简,再结合已知条件即可求出实数a 的值.【详解】∵复数()()()()12212221422255ai i ai a ai i i i +++-+==+--+的实部和虚部相等, ∴221455a a -+=,解得a 16=. 故选C .【点睛】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题. 3.已知平面α内一条直线l 及平面β,则“l β⊥”是“αβ⊥”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【答案】B 【解析】 【分析】根据面面垂直和线面垂直的定义,结合充分条件和必要条件的定义进行判断即可. 【详解】解:由面面垂直的定义知,当“l ⊥β”时,“α⊥β”成立, 当αβ⊥时,l β⊥不一定成立, 即“l β⊥”是“αβ⊥”的充分不必要条件,故选:B.【点睛】本题考查命题充分性和必要性的判断,涉及线面垂直和面面垂直的判定,属基础题.4.在区间上随机取两个数,x y,记1p为事件“12x y+≥”的概率,2p为事件“12x y-≤”的概率,3p为事件“12xy≤”的概率,则()A. 123p p p<< B.231p p p<<C. 312p p p<< D.321p p p<<【答案】B【解析】【详解】因为,[0,1]x y∈,对事件“12x y+≥”,如图(1)阴影部分,对事件“12x y-≤”,如图(2)阴影部分,对为事件“12xy≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p<<.(1)(2)(3)考点:几何概型.5.已知数列{}n a的首项为1,第2项为3,前n项和为n S,当整数1n>时,()1112n n nS S S S+-+=+恒成立,则15S 等于 A. 210 B. 211C. 224D. 225【答案】D 【解析】 【分析】结合题目条件,计算公差,证明该数列为等差数列,计算通项,结合等差数列前n 项和公式,计算结果,即可.【详解】结合()1112n n n S S S S +-+=+可知,11122n n n S S S a +-+-=,得到1122n n a a a +-==,所以()12121n a n n =+⋅-=-,所以1529a =所以()()11515152911522522a a S ++⋅===,故选D .【点睛】本道题考查了等差数列的通项计算方法,考查了等差数列前n 项和计算方法,难度中等. 6.函数()1cos f x x x x ⎛⎫=-⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A. B. C.D.【答案】D 【解析】因为11()()cos ()cos ()f x x x x x f x x x-=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D.考点:1.函数的基本性质;2.函数的图象.7.已知椭圆C :22143x y +=的左右顶点分别为A 、B ,F 为椭圆C 的右焦点,圆224x y +=上有一个动点P ,P 不同于A 、B 两点,直线P A 与椭圆C 交于点Q ,则PBQF k k 的取值范围是( )A. 33044⎛⎫⎛⎫-∞-⋃ ⎪ ⎪⎝⎭⎝⎭,, B. ()3004⎛⎫-∞-⋃ ⎪⎝⎭,, C. ()()101-∞-,,D. ()()001-∞⋃,,【答案】D 【解析】 【分析】椭圆焦点在x 轴上,由P 在圆224x y +=,则PA PB ⊥,有11,PB PB PA QF QF PA k k k k k k =-=-⋅,设(2cos )Q θθ,求出223(1cos )4cos 2cos 2QF PAk k θθθ-⋅=+-,令cos (1,1)t θ=∈-,224223(1)PB QF k t t k t +-=--,分离常数,求解得出结论.【详解】椭圆C :22143x y +=的左右顶点分别为(2,0),(2,0)A B -,右焦点(1,0)F ,点P 圆224x y +=上且不同于,A B ,11,1,,PB PB PA PB PA QF QF PAk PA PB k k k k k k k ∴⊥⋅=-∴=-=-⋅,设(2cos )Q θθ,223(1cos )2cos 22cos 14cos 2cos 2QF PAk k θθθθθθθ-⋅=⋅=+-+- 令cos (1,1)t θ=∈-,222242222(1)14213(1)31331PB QF k t t t t k t t t +--++=-=⋅=+⋅--- 1111,210,12t t t -<<-<-<<--,(,1)PBQFk k ∈-∞且不等于0. 故选:D.【点睛】本题考查了椭圆的标准方程及其性质、相互垂直的直线斜率之间的关系、三角函数求值、函数的性质、换元方法,考查了推理能力和计算能力,属于难题.8.已知实数,x y 满足1122x y⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭,则下列关系式中恒成立的是( ) A. tan tan x y >B. ()()22ln 2ln 1x y +>+ C.11x y> D. 33x y >【答案】D 【解析】 【分析】根据题意,由指数函数的性质分析可得x >y ,据此结合函数的单调性分析选项,综合即可得答案. 【详解】根据题意,实数x ,y 满足(12)x <(12)y ,则x >y ,依次分析选项:对于A ,y=tanx 在其定义域上不是单调函数,故tanx >tany 不一定成立,不符合题意;对于B ,若0>x>y ,则x 2+2>y 2+2不成立,故ln (x 2+2)>ln (y 2+2)不一定成立,不符合题意;对于C ,当x >y>0时,1x <1y,不符合题意;对于D ,函数y=x 3在R 上为增函数,若x >y ,必有x 3>y 3,符合题意. 故选D .【点睛】本题考查函数的单调性的应用,关键是掌握并利用常见函数的单调性.9.若函数()(cos )x f x e x a =-在区间,22ππ⎛⎫- ⎪⎝⎭上单调递减,则实数a 的取值范围是( )A. ()+∞B. (1,)+∞C. [1,)+∞D. )+∞【答案】D 【解析】 【分析】求得()(cos sin )xf x e x x a =--',把函数的单调性,转化为cos sin 0x x a --≤在区间(,)22x ππ∈-上恒成立,即cos sin ,(,)22a x x x ππ≥-∈-恒成立,利用三角函数的性质,即可求解,得到答案.【详解】由题意,可得()(cos sin )xf x e x x a =--',若()f x 在区间(,)22ππ-上单调递减,则cos sin 0x x a --≤在区间(,)22ππ-上恒成立, 即cos sin ,(,)22a x x x ππ≥-∈-恒成立,令()cos sin sin(),(,)422h x x x x x πππ=-=-∈-,则3(,)444x πππ-∈-,故sin()4x π-的最大值为1,此时42x ππ-=,即4πx =-,所以()h x ,所以a ≥D.【点睛】本题主要考查了利用导数研究函数的单调及其应用,以及三角函数的图象与性质的应用,其中解答中转化为转化为cos sin ,(,)22a x x x ππ≥-∈-恒成立,再利用三角函数的图象与性质求解是解答的关键,着重考查了转化思想,以及推理与运算能力,属于中档试题.10.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别12F F 、,以线段12F F 为直径的圆与双曲线C 在第一象限交于点P ,且2PO PF =,则双曲线的离心率为( )A.1B.C.D. 2【答案】A 【解析】 【分析】由题意知,1290F PF ∠=︒,三角形2POF 为等边三角形,从而可以得到122PF PF c a -=-=,即可求出离心率.【详解】由题意知,1290F PF ∠=︒,212PO OF OF PF c ====,三角形2POF 为等边三角形,则1PF =,2PF c =,则122PF PF c a -=-=,解得1c a ==,1,答案为A. 【点睛】本题考查了双曲线离心率的求法,属于基础题.11.已知直线3402x y ππ+-=经过函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭图象相邻的最高点和最低点,则将()f x 的图象沿x 轴向左平移8π个单位后得到解析式为( )A. cos 2y x =B. cos2x y =-C. 3sin 28y x π⎛⎫=+ ⎪⎝⎭D. sin 28y x π⎛⎫=-⎪⎝⎭【答案】A 【解析】 【分析】由直线斜率求出周期,从而得ω,直线与x 轴的交点是函数()f x 的零点,由此可求得ϕ,最后由图象变换可得结论.【详解】直线3402x y ππ+-=的斜率为4k π=-,∴242T π=,T π=,22πωπ==, 直线3402x y ππ+-=与x 轴交点为3(,0)8π,根据对称性,此点是()f x 的零点. ∴33()sin(2)088f ππϕ=⨯+=,又2πϕ<,∴4πϕ=,∴()sin(2)4f x x π=+. ∴将()f x 的图象沿x 轴向左平移8π个单位后得到解析式为sin[2()]cos 284y x x ππ=++=.故选:A .【点睛】本题考查正弦型三角函数的图象与性质,考查三角函数图象变换,解题时注意正弦函数的“五点法”,求三角函数的解析式、性质常常与这五点联系起来.12.我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线2:C y x =,直线l 为曲线C 在点(1,1)处的切线.如图所示,阴影部分为曲线C 、直线l 以及x 轴所围成的平面图形,记该平面图形绕y 轴旋转一周所得的几何体为T .给出以下四个几何体:① ② ③ ④图①是底面直径和高均为1的圆锥;图②是将底面直径和高均为1的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体; 图③是底面边长和高均为1的正四棱锥;图④是将上底面直径为2,下底面直径为1,高为1的圆台挖掉一个底面直径为2,高为1的倒置圆锥得到的几何体.根据祖暅原理,以上四个几何体中与T 的体积相等的是( ) A. ① B. ②C. ③D. ④【答案】A 【解析】 【分析】将题目中的切线写出来,然后表示出水平截面的面积,因为是阴影部分旋转得到,所以水平界面面积为环形面积,整理后,与其他四个几何体进行比较,找到等高处的水平截面的面积相等的,即为所求. 【详解】几何体T 是由阴影旋转得到,所以横截面为环形,且等高的时候,抛物线对应的点的横坐标为1x ,切线对应的横坐标为2x()()2,2f x x f x x '==,()12k f '∴==切线为()121y x -=-,即21y x =-,2121,2y x y x +∴==横截面面积2221s x x ππ=-()2211=42y y y ππ⎡⎤+-⎛⎫-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦图①中的圆锥高为1,底面半径为12,可以看成由直线21y x =+绕y 轴旋转得到 横截面的面积为2212y s x ππ-⎛⎫== ⎪⎝⎭.所以几何体T 和①中的圆锥在所有等高处的水平截面的面积相等,所以二者体积相等, 故选A 项.【点睛】本题考查对题目条件的理解和转化,在读懂题目的基础上,表示相应的截面面积,然后进行比较.属于难题.二、填空题(共4小题,每小题5分,共20分)13.261()(21)x x x-+的展开式中4x 项的系数为__________. 【答案】-132 【解析】分析:由题意结合二项式展开式的通项公式首先写出展开式,然后结合展开式整理计算即可求得最终结果.详解:()621x +的展开式为:()66616622rrr r rr T C x C x ---+==,当62r -=,4r =时,644642416260T C xx --+==, 当65r -=,1r =时,6116154162192T C x x --+==,据此可得:展开式中4x 项的系数为60192132-=-.点睛:(1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项. (2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.14.在锐角ABC ∆中,角A 、B 、C 所对的边分别为,,a b c ,且A 、B 、C成等差数列,b =则ABC∆面积的取值范围是__________.【答案】 【解析】分析:由A 、B 、C 成等差数列可得3B π=,然后根据正弦定理可得2sin a A =,2sin c C =,在此基础上求得ABC ∆的面积后再根据三角变换可得ABC S ∆=)6A π-+再根据锐角三角形求得62A ππ<<,于是可得面积的取值范围.详解:∵ABC ∆中A 、B 、C 成等差数列, ∴3B π=.由正弦定理得2sin sin sin sin3a cb A C B π====,∴2sin ,2sin a A c C ==, ∴132sin 3sin sin 3sin sin()23ABC S ac B ac A C A A π∆====-23133331cos 23sin (cos sin )sin cos sin sin 22222422A A A A A A A A -=+=+=+⋅ 33333sin 2cos 2sin(2)444264A A A π=++=-+, ∵ABC ∆为锐角三角形,∴022032A A πππ⎧<<⎪⎪⎨⎪<-<⎪⎩,解得62A ππ<<. ∴52666A πππ<-<, ∴1sin(2)126A π<-≤, ∴33333sin(2)22644A π<-+≤, 故ABC ∆面积的取值范围是333(,]. 点睛:(1)解决三角形中的范围问题的常用方法:①利用余弦定理并结合基本不等式求解;②结合正弦定理将问题转化为形如sin()y A x ωϕ=+的形式后根据三角函数的有关知识求解.(2)解答本题时容易出现的错误时忽视“锐角ABC ∆”这一条件,从而扩大了角A 的范围.15.如图所示,已知直线AB 的方程为1x y a b+=,⊙C ,⊙D 是相外切的等圆.且分别与坐标轴及线段AB 相切,||AB c =,则两圆半径r =__________(用常数,,a b c 表示).【答案】()2()c a b c a b +-+ 【解析】 【详解】分析:由题得△CDM ∽△BAO ,得2b x r a y r r b a c----==,再利用等式的性质得到两圆半径r . 详解:如图所示,作CM ⊥DM,CE ⊥AB,由△CDM ∽△BAO,得2,.CM DM CD b x r a y r r OB OA AB b a c----==∴== (2)2(),.2()a b x y r a b c r c a b c r a b a b c a b +-+++-+-∴==∴=+++ 故答案为()()2c a b c a b +-+ 点睛:(1)本题主要考查直线和圆的位置关系,考查几何选讲,意在考查学生对这些知识的掌握能力和计算能力. (2)解答本题的关键是得到2b x r a y r r b a c----==的化简,这里利用到了合比的性质,(2)2.a b x y r a b c r a b a b c+-+++-==++ 16.已知两平行平面αβ、间的距离为3A B α∈、,点C D β∈、,且4,3AB CD ==,若异面直线AB 与CD 所成角为60°,则四面体ABCD 的体积为__________.【答案】6【解析】设平面ABC 与平面β交线为CE ,取CE AB = ,则0//,4,60AB CE CE ECD =∠=0112343sin 60 6.32A BCD A CDE V V --==⨯⨯⨯⨯=三、解答题(本大题共6小题,共70分.解答应写需给出文字说明,证明过程或演算步骤.) 17.在ABC ∆中,边a b c 、、所对的角分别为、、A B C ,sin sin sin 23sin a A b B c C C a B +-= (1)求角C 的大小;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值【答案】(1)3C π∠=(2)面积的最大值为33【解析】【分析】 (1)由已知及正弦定理可得:22223a b c ab +-=C ,由余弦定理,同角三角函数基本关系式可求tan C 的值,结合范围C ∈(0,π),可得C 的值.(2)由三角形中线长定理得:2(a 2+b 2)=4+c 2,由三角形余弦定理得:c 2=a 2+b 2﹣ab ,消去c 2,结合基本不等式可求ab 43≤,利用三角形面积公式即可计算得解. 【详解】(1)∵由已知及正弦定理可得:22223a b c ab +-=C , ∴由余弦定理可得:22232a b c cosC sinC ab +-==, 即3tanC =∴由C ∈(0,π),可得3C π=.(2)由三角形中线长定理得:2(a 2+b 2)=22+c 2=4+c 2,由三角形余弦定理得:c 2=a 2+b 2﹣ab ,消去c 2得:224423ab a b ab ab -=+≥≤,(当且仅当a =b 时,等号成立), 即1143322323ABC S absinC =≤⨯⨯=. 【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式,三角形中线长定理的综合应用,三角形中线长定理主要表述三角形三边和中线长度关系,定理内容为:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍,属于中档题.18.如图,在四面体ABCD 中,平面ABC ⊥平面BCD ,DC BC ⊥,3AB =,2BC =,1AC =.(1)求证:AB AD ⊥;(2)设E 是BD 的中点,若直线CE 与平面ACD 的夹角为30︒,求四面体ABCD 外接球的表面积.【答案】(1)见解析;(2)12π.【解析】试题分析:(1)利用线面垂直的判断定理结合题意(2)利用题意首先求得外接球的半径,然后利用球的表面积公式计算表面积即可.试题解析:(1)由平面ABC ⊥平面BCD ,DC BC ⊥,得DC ⊥平面ABC ,AB CD ∴⊥又由3AB =2BC =,1AC =,得222BC AB AC =+,所以AB AC ⊥故AB ⊥平面ADC ,所以AB AD ⊥(2)取AD 的中点F ,连接EF ,则EF BA //,因为AB ⊥平面ADC EF ∴⊥平面ADC连接FC ,则30ECF ︒∠=,23CE EF AB ∴===又90BAD BCD ︒∠=∠=,所以四面体ABCD 的外接球的半径3R CE ==故四面体ABCD 的外接球的表面积=24312ππ=(向量解法酌情给分). 19.已知过抛物线()2:20E x py p =>焦点F 且倾斜角的60直线l 与抛物线E 交于点,M N OMN ∆的面积为4.(I )求抛物线E 的方程;(II )设P 是直线2y =-上的一个动点,过P 作抛物线E 的切线,切点分别为,A B 直线AB 与直线,OP y 轴的交点分别为,Q R 点,C D 是以R 为圆心RQ 为半径的圆上任意两点,求CPD ∠最大时点P 的坐标.【答案】(I )24x y =;(II )()22,2±-. 【解析】试题分析:(I )抛物线焦点为(,0)2p F ,写出直线l 方程,与抛物线方程联立,消元后可得1212,x x x x +,其中1122(,),(,)M x y N x y ,可再求出原点O 到直线l 的距离d ,由12S MN d =求得p ,也可由1212S x x OF =-求得p ; (II )首先设出点坐标,设()221212,2,,,,44x x P t A x B x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,利用导数几何意义得出两切线方程,代入P 点坐标,从而得直线AB 方程为240tx y -+=,从而可得,R Q 坐标,得QR 的长,而要使CPD ∠最大,则,PC PD 与圆R 相切,这样可求得sin2CPD ∠,最后由基本不等式可得最大值.也可用正切函数求最大值.试题解析:(I )依题意,0,2p F ⎛⎫ ⎪⎝⎭,所以直线l的方程为2p y =+;由2{22p y x py =+=得220x p --=,()222212124160,,p p x x x x p ∆=+=>+==-所以)1212127,8y y x x p p MN y y p p +=++==++=,O 到MN 的距离21,442OMN p d S MN d p ∆=====, 2p ∴=,抛物线方程为24x y =(II )设()221212,2,,,,44x x P t A x B x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由24x y =得2,'42x x y y ==, 则切线PA 方程为()211142x x y x x -=-即21111242x x x y x x y =-=-, 同理,切线PB 方程为222x y x y =-, 把P 代入可得112222{22x t y x t y -=--=-故直线AB 的方程为21x t y -=-即240tx y -+= ()0,2R ∴由240{2tx y y x t -+=-=得2244{84Q Q t x t y t -=+=+,r RQ ∴====,当,PC PD 与圆R 相切时角CPD ∠最大,此时1sin 23CPD r PR ∠===≤,等号当t =± ∴当()2P ±-时,所求的角CPD ∠最大.综上,当CPD ∠最大时点P的坐标为()2±-点睛:在解析几何中由于OMN ∆的边MN 过定点F ,因此其面积可表示为1212S OF x x =-,因此可易求p ,同样在解解析几何问题时如善于发现平面几何的性质可以帮助解题,第(II )小题中如能发现OP AB ⊥则知OP 是圆R 的切线,因此CPD ∠取最大值时,,PC PD 中一条与PO 重合,另一条也是圆的切线,从而易得解.另解:(I )依题意,0,2p F ⎛⎫ ⎪⎝⎭,所以直线l的方程为2p y =+;由2{22p y x py =+=得220x p --=,()222212124160,,p p x x x x p ∆=+=>+==-124x x p -==, 2121422OMN S OF x x p p ∆=-==⇒=,抛物线方程为24x y =. (II )设()221212,2,,,,44x x P t A x B x ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,由24x y =得2,'42x x y y ==, 则切线PA 方程为()211142x x y x x -=-即21111242x x x y x x y =-=-, 同理,切线PB 方程为222x y x y =-, 把P 代入可得112222{22x t y x t y -=--=-故直线AB 的方程为21x t y -=-即240tx y -+=()0,2R∴由240{2tx yy xt-+=-=得2244{84QQtxtyt-=+=+,()()()22222222216822444Q Qttr RQ x yt tt⎛⎫∴==+-=+-=⎪+⎝⎭++,注意到OP AB⊥2284tPQt+∴=+,2222tan2822RQ tCPD tPQ t t∠∴==≤=+当且仅当28t+即22t=±时等号成立.20.2016年某市政府出台了“2020年创建全国文明城市(简称创文)”的具体规划,今日,作为“创文”项目之一的“市区公交站点的重新布局及建设”基本完成,市有关部门准备对项目进行调查,并根据调查结果决定是否验收,调查人员分别在市区的各公交站点随机抽取若干市民对该项目进行评分,并将结果绘制成如图所示的频率分布直方图,相关规则为:①调查对象为本市市民,被调查者各自独立评分;②采用百分制评分,[)60,80内认定为满意,80分及以上认定为非常满意;③市民对公交站点布局的满意率不低于60%即可进行验收;④用样本的频率代替概率.()1求被调查者满意或非常满意该项目的频率;()2若从该市的全体市民中随机抽取3人,试估计恰有2人非常满意该项目的概率;()3已知在评分低于60分的被调查者中,老年人占13,现从评分低于60分的被调查者中按年龄分层抽取9人以便了解不满意的原因,并从中选取2人担任群众督察员,记ξ为群众督查员中老年人的人数,求随机变量ξ的分布列及其数学期望E ξ.【答案】(1)0.78;(2)12125;(3)23. 【解析】试题分析:(1)根据直方图的意义,求出后四个小矩形的面积和即可求得被调查者满意或非常满意该项目的频率;(2)根据频率分布直方图,被调查者非常满意的频率是 ()10.0160.004100.25+⨯==,根据独立重复试验n 次发生k 次的概率公式可得结果;(3)随机变量ξ的所有可能取值为0,1,2,利用组合知识根据古典概型概率公式分别求出各随机变量的概率,即可得分布列,根据期望公式可得结果. 试题解析:(1)根据题意:60分或以上被认定为满意或非常满意,在频率分布直方图中,评分在[]60,100的频率为: ()0.0280.030.0160.004100.78+++⨯=;(2)根据频率分布直方图,被调查者非常满意的频率是()10.0160.004100.25+⨯==, 用样本的频率代替概率,从该市的全体市民中随机抽取1人, 该人非常满意该项目的概率为15, 现从中抽取3人恰有2人非常满意该项目的概率为:223141255125P C ⎛⎫=⋅⋅= ⎪⎝⎭; (3)∵评分低于60分的被调查者中,老年人占13, 又从被调查者中按年龄分层抽取9人,∴这9人中,老年人有3人,非老年人6人,随机变量ξ的所有可能取值为0,1,2,()023********C C P C ξ⋅=== ()1136291811362C C P C ξ⋅==== ()2036293123612C C P C ξ⋅====ξ的分布列为:ξ的数学期望E ξ 15112012362123=⨯+⨯+⨯=. 21.设函数()ln x f x ae x x =-,其中R a ∈,e 是自然对数的底数.(Ⅰ)若()f x 是0,上的增函数,求a 的取值范围; (Ⅱ)若22ea ≥,证明:()0f x >. 【答案】(Ⅰ)1,e ⎡⎫+∞⎪⎢⎣⎭;(Ⅱ)见解析. 【解析】试题分析:(I )由于函数单调递增,故导函数恒为非负数,分离常数后利用导数求得a 的最小值,由此得到a 的取值范围;(II )将原不等式()0f x >,转化为e ln 0x a x x ->,令()e ln x a F x x x=-,求出()F x 的导数,对x 分成01,1x x ≤两类,讨论函数的最小值,由此证得()0F x >,由此证得()0f x >. 试题解析:(Ⅰ)()()e 1ln x f x a x '=-+,()f x 是()0,+∞上的增函数等价于()0f x '≥恒成立.令()0f x '≥,得1ln e x x a +≥,令()1ln e x x g x +=(0x >).以下只需求()g x 的最大值. 求导得()1e1ln x g x x x -⎛⎫=-'- ⎪⎝⎭, 令()11ln h x x x =--,()2110h x x x'=--<,()h x 是()0,+∞上的减函数, 又()10h =,故1是()h x 的唯一零点,当()0,1x ∈,()0h x >,()0g x '>,()g x 递增;当()1,x ∈+∞,()0h x <,()0g x '<,()g x 递减; 故当1x =时,()g x 取得极大值且为最大值()11e g =,所以1e a ≥,即a 的取值范围是1,e ⎡⎫+∞⎪⎢⎣⎭. (Ⅱ)()0f x >⇔ e ln 0xa x x->. 令()e ln xa F x x x=-(0x >),以下证明当22e a ≥时,()F x 的最小值大于0. 求导得()()21e 1xa x F x x x='-- ()211e x a x x x ⎡⎤=--⎣⎦. ①当01x <≤时,()0F x '<,()()1F x F ≥ e 0a =>;②当1x >时,()()21a x F x x ='- ()e 1x x a x ⎡⎤-⎢⎥-⎢⎥⎣⎦,令()()e 1x x G x a x =--, 则()e x G x '= ()2101a x +>-,又()222e G a =- 2e 20a a-=≥, 取()1,2m ∈且使()2e 1m a m >-,即22e 1e 1a m a <<-,则()()e 1m m G m a m =-- 22e e 0<-=, 因为()()20G m G <,故()G x 存在唯一零点()01,2x ∈,即()F x 有唯一的极值点且为极小值点()01,2x ∈,又()0000e ln x a F x x x =-, 且()()0000e 01x x G x a x =-=-,即()000e 1x x a x =-,故()0001ln 1F x x x =--, 因为()()02001101F x x x =--<-',故()0F x 是()1,2上的减函数. 所以()()02F x F >= 1ln20->,所以()0F x >. 综上,当22ea ≥时,总有()0f x >. 点睛:本题主要考查导数与单调性的关系及恒成立问题,考查利用导数证明不等式的方法,考查化归与转化的数学思想方法.第一问由于已知函数在区间上单调递增,故其导函数在这个区间上恒为非负数,若函数在区间上单调递减,则其导函数在这个区间上恒为非正数.分离常数后可求得a 的取值范围.22.选修4-4:坐标系与参数方程在平面直角坐标系中,直线l 经过点()0,1P ,倾斜角为6π.在以原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为4sin ρθ=.(1)写出直线l 的参数方程和曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A B 、两点,求11PA PB+的值. 【答案】(1)直线l的参数方程为112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数);曲线C 的直角坐标方程为()2224x y +-=;(2)3. 【解析】【详解】试题分析:(1)先根据直线参数方程标准式写直线l 的参数方程,利用y sin ,x cos ρθρθ==化简极坐标方程为直角坐标方程;(2)将直线参数方程代入圆方程,再根据参数几何意义化简11PA PB+,最后根据韦达定理代入化简求值试题解析:(1)直线l的参数方程为0611162x tcos y tsin t ππ⎧=+=⎪⎪⎨⎪=+=+⎪⎩(t 为参数).即直线l的参数方程为2112x y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数); ∵4sin ρθ=,∴24sin ρρθ=,∴224x y y +=,即()2224x y +-=, 故曲线C 的直角坐标方程为()2224x y +-=.(2)将l 的参数方程代入曲线C 的直角坐标方程,得230t t --=,显然>0∆, ∴2121,3l t t t t +==-, ∴123PA PB t t ⋅==,12t t PA PB +=-==∴113PA PB PA PB PA PB ++==⋅. 23.已知函数()|1|f x x =+(1)求不等式()|21|1f x x <+-的解集M(2)设,a b M ∈,证明:()()()f ab f a f b >--.【答案】(1){1M x x =<-或 }1x >;(2)证明见解析. 【解析】【分析】(1)先根据绝对值定义将不等式化为三个不等式组,分别求交集,最后求并集(2)利用分析法证明,先根据绝对值三角不等式将不等式转化为证明1ab a b +>+,再两边平方,因式分解转化为证明()()22110a b -->,最后根据条件221,1a b >>确定()()22110a b -->成立.【详解】(1)∵()211f x x <+-,∴12110x x +-++<.当1x <-时,不等式可化为()12110x x --+++<,解得1x <-,∴1x <-; 当112x -≤≤-,不等式可化为()12110x x ++++<,解得1x <-, 无解; 当12x >-时,不等式可化为()12110x x +-++<,解得1x >,∴1x >. 综上所述,{1M x x =<-或}1x >.(2)∵()()()1111f a f b a b a b a b --=+--++--+=+≤,要证()()()f ab f a f b >--成立, 只需证1ab a b +>+, 即证221ab a b +>+,即证222210a b a b --+>,即证()()22110a b -->.由(1)知,{1M x x =<-或}1x >,∵a b M ∈、,∴221,1a b >>,∴()()22110a b -->成立.综上所述,对于任意的a b M ∈、都有()()()f ab f a f b >--成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
2021届全国天一大联考新高三原创预测试卷(十一)理科数学

2021届全国天一大联考新高三原创预测试卷(十一)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}11A x x =-<<,{}220B x x x =--<,则()A B =R( )A .(1,0]-B .[1,2)-C .[1,2)D .(1,2]2.已知i 为虚数单位,则复数13i 1iz -=+的共轭复数是( )A .1i +B .1i -C .1i -+D .2i +3.已知平面向量(1,)x =a ,(4,2)=b ,若向量2+a b 与向量b 共线,则x =( ) A .13B .12C .25D .274.执行如图所示的程序框图,若输入的14πx =,则输出的y 的值为( )A .12B .12-C .32D .32-5.在新一轮的高考改革中,一名高二学生在确定选修地理的情况下,想从历史、政治、化学、生物、物理中再选择两科学习,则所选的两科中一定有生物的概率是( ) A .310B .710C .25D .356.等差数列{}n a 的前n 项和为n S ,若82a =,798S =,则39a a +=( ) A .16B .14C .12D .107.已知直线l 过点(2,0)-且倾斜角为θ,若l 与圆22(3)20x y -+=相切,则3sin(π2)2θ-=( ) A .35B .35-C .45D .45-8.已知实数,x y 满足约束条件104400x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩,则22y z x +=-的取值范围是( )A .3(,][1,)2-∞-+∞ B .1(,][2,)2-∞-+∞ C .1[,2]2-D .(,1][2,)-∞-+∞9.已知函数π()sin()(0,0,)2f x A x A ωϕωϕ=+>><的部分图象如图所示,则π()6f -=( )A .12-B .1-C .12D .3-平行的平面截三棱锥成表面积相等的两部分,则OMOA=( ) A .12B .13 C .32D .3311.如图,已知双曲线2222:1(0,0)x y C a b a b-=>>,过右顶点A 作一条渐近线的垂线交另一条渐近线于点B ,若3OB OA =,则双曲线的离心率为( )A .233或3 B .2 C .3D .33212.定义函数348,122()1(),222x x f x x f x ⎧--≤≤⎪⎪=⎨⎪>⎪⎩,则函数()()6g x xf x =-在区[1,2]()n n *∈N 内所有零点的和为( ) A .n B .2n C .3(21)4n-D .3(21)2n-第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.已知曲线31433y x =+,则曲线在点(2,4)处的切线方程是 . 14.某空间几何体的三视图如图所示,且该几何体的体积为1,则该几何体的所有面中最大面的面积为 .15.设数列{}n a 满足1(1)()2n n n na n a n n *+-+=∈+N ,112a =,n a = . 16.已知()f x 是定义在R 上的奇函数,且图象关于直线2x =对称,在区间[0,2]上,()x xf x e=,(8ln 7ln 3)a f =+-,(24ln172ln 2)b f =+-,1c e=,则a ,b ,c 的大小关系是 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,E 是BC 的中点,3AC =,7AE =213cos ABE ∠-27cos 60AEB ∠-=.(1)求AB ; (2)求C .18.(12分)如图,在长方体1111ABCD A B C D-中,点E,F分别在棱1DD,1BB上且12DE ED=,12BF FB=.(1)证明:点1C在平面AEF内;(2)若12,1,3AB AD AA===,求二面角1A EF A--的正弦值.19.(12分)2019年非洲猪瘟在东北三省出现,为了防控,某地生物医药公司派出技术人员对当地甲、乙两个养殖场提供技术服务,两种方案如下:的不收费;方案二:公司每天收取养殖场技术服务费120元,若需要用药的猪不超过45头,不另外收费,若需要用药的猪超过45头,超过的部分每头猪收费标准为8元.(1)设日收费为y(单位:元),每天需要用药的猪的数量为n(单位:头),试写出两种方案中y与n的函数关系式;(2)若该生物医药公司从10月1日起对甲养殖场提供技术服务,10月31日该养殖场对其中一个猪舍9月份和10月份的猪的发病数量(单位:头)进行了统计,得到了如下的22⨯列联表:9月份10月份合计未发病4085125发病652085合计105105210根据以上列联表判断是否有99.9%的把握认为猪未发病与该生物医药公司提供技术服务有关.附:2()P k k≥0.0500.0100.001k 3.841 6.63510.828(3)当地的丙养殖场对过去100天的猪的发病情况进行了统计,得到如图所示的条形图.依据该统计数据,把频率视为概率,从节约养殖成本的角度去考虑,若丙养殖场计划结合以往经验,从两个方案中选择一个,那么选择哪个方案更合适,请说明理由.20.(12分)已知抛物线21:2(0)C y px p =>的焦点是椭圆22222:1(0)x y C a b a b+=>>的右焦点,且两条曲线相交于点2(3. (1)求椭圆2C 的方程;(2)过椭圆2C 右顶点的两条直线12,l l 分别与抛物线1C 相交于点,A C 和点,B D ,且12l l ⊥,设M 是AC 的中点,N 是BD 的中点,证明:直线MN 恒过定点.21.(12分)已知函数()ln ()f x x ax a =-∈R . (1)讨论函数()f x 在(0,)+∞上的单调性; (2)证明:2ln 0x e e x ->恒成立.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】在直角坐标系xOy 中,曲线1C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4sin ρθ=.(1)求曲线1C 的普通方程和2C 的直角坐标方程;(2)已知曲线3C 是过坐标原点且倾斜角为α的直线,点A 是曲线3C 与1C 的交点,点B 是曲线3C 与2C 的交点,且点,A B 均异于坐标原点O,AB =,求α的值. 23.(10分)【选修4-5:不等式选讲】 已知函数()f x x =.(1)解关于x 的不等式(2)(1)2f x f x --+<;(2)存在0x ∈R ,使得不等式00(2)()(1)2f x f x a f a -++<--,求实数a 的取值范围.理 科 数 学答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】C 【解析】由题意知,{1A x x =≥R或}1x ≤-,又{}{}22012B x x x x x =--<=-<<,{}()12A B x x ∴=≤<R,故选C .2.【答案】A【解析】2(1i)1i (1i)(1i)z -===-+-,z ∴的共轭复数为1i +,故选A .3.【答案】B【解析】由题意,得2(6,22)x +=+a b ,又向量2+a b 与向量b 共线,4(22)12x ∴⨯+=,解得12x =. 4.【答案】D【解析】2π4π3x =+,22sin(ππ4π)sin π33y ∴=++=-=D . 5.【答案】C【解析】学生在确定选修地理的情况下,从历史、政治、化学、生物、物理中再选择两科的方法有:(历史,政治),(历史,化学),(历史,生物),(历史,物理),(政治,化学),(政治,物理),(政治,生物),(化学,生物),(化学,物理),(生物,物理),共10种,其中含有生物的选择方法有:(历史,生物),(政治,生物),(化学,生物),(生物,物理),共4种,则所选的两科中一定有生物的概率42105P ==,故选C . 6.【答案】A【解析】由74798S a ==,解得414a =,又82a =,394816a a a a ∴+=+=. 7.【答案】A【解析】由题意可设直线:tan (2)l y x θ=+,因为l 与圆22(3)20x y -+=相切,25tan 201tan θθ∴=+,2tan 4θ∴=,2222223sin cos tan 1413sin(π2)cos 22cos sin 1tan 145θθθθθθθθ---∴-=-====+++,故选A .8.【答案】A【解析】作出约束条件104400x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩表示的平面区域如图中阴影部分所示.22y z x +=-的几何意义是可行域内的点(,)x y 与点(2,2)P -连线所在直线的斜率, 易知(4,0)A ,(0,1)B ,1PA k =,32PB k =-,由图可知23(,][1,)22y x +∈-∞-+∞-,故选A .9.【答案】B【解析】由题意及()f x 的图象得,2A =,411π(π)π3126T =⨯-=,2ω∴=. 易知ππ262ϕ⨯+=,π6ϕ∴=,π()2sin(2)6f x x ∴=+,ππππ()2sin[2()]2sin()16666f ∴-=⨯-+=-=-,故选B .10.【答案】C【解析】设过点M 且与平面ABC 平行的平面分别交,OB OC 于点,N T , 则被截得的上下两部分的表面积各去掉TMN S △之后仍相等,都等于正三棱锥O ABC -表面积的12. 对于正三棱锥O ABC -,易知其表面积为21132sin 6022⨯⨯+⨯︒=侧面积为O MNT -,23()42OM OM OA OA ==⇒=. 11.【答案】A【解析】不妨设点(,)B x y 在渐近线b y x a =-上,易知直线AB 的方程为()ay x a b=--, 联立得()b y x a a y x a b ⎧=-⎪⎪⎨⎪=--⎪⎩,解得322222a x a ba b y a b ⎧=⎪⎪-⎨⎪=-⎪-⎩,3OB OA =,223OB OA =,即322222222()()3a a b a a b a b+-=--,化简得4222223()a a b a b +=-,得223a b =或222a b =,22222413c b e a a ∴==+=或3,e ∴=A .12.【答案】D【解析】由函数()()60g x xf x =-=,得6()f x x=, 故函数()g x 的零点即函数()y f x =和函数6y x=图象交点的横坐标. 由函数()f x 的解析式知,可将()f x 的定义区间分段为2231[1,2],(2,2],(2,2],,(2,2]n n -,并且()f x 在1(2,2](2,)n n n n -*≥∈N 上的图象是将()f x 在21(2,2]n n --上的图象上所有点的横坐标伸长为原来的2倍,纵坐标缩短为原来的12后得到的. 作出函数()y f x =在区间[1,2]上的图象,再依次作出在区间1(2,4],(4,8],,(2,2]n n -上的图象,并作出函数6(1)y x x=≥的图象,如图,结合图象可得两图象交点的横坐标是函数()y f x =的极大值点,由此可得函数()g x 在区间1(2,2]n n-上的零点为1222322n nn --+=⨯, 则函数()g x 在区间[1,2]()n n *∈N 内所有零点的和为3(12)32(21)122n n -=--,故选D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】440x y --= 【解析】2y x '=,∴曲线31433y x =+在点(2,4)处切线的斜率为4, ∴切线的方程为44(2)y x -=⨯-,即440x y --=. 14.【答案】3【解析】由三视图可知,该几何体为如图所示的四棱锥,记为P ABCD -,其中PA ⊥平面ABCD ,22AB AD BC ===, 设PA x =,由题意可得1(12)2132x +⨯⨯⋅=,解得1x =,故5PB CD PD ===6PC =易得PCD PAB S S >△△,11212PAD S =⨯⨯=△,151522PBC S =⨯=△,1(12)232ABCD S =⨯+⨯=四边形,122PCD S ==△, 故该几何体中最大面的面积为3.15.【答案】21n n +【解析】∵1(1)()2n n nna n a n n *+-+=∈+N ,11111(1)(2)12n n a a n n n n n n +-==-+++++, ∴11111n n a a n n n n --=--+,,21112123a a -=-, 累加可得11121n a a n n -=-+,112a =,1111n a nn n n ∴=-=++,21n n a n ∴=+. 16.【答案】c a b >>【解析】由题意得()()f x f x -=-,(4)()f x f x -=,(4)()f x f x ∴-=--, 令t x =-,则(4)()f t f t +=-,(8)[4(4)](4)()f t f t f t f t ∴+=++=-+=, ∴()f x 是以8为周期的函数,故7(ln )3a f =,17(ln)4b f =, 易知717ln,ln 34均在区间[0,2]上, ∵在区间[0,2]上,()x x f x e=,()(1)xf x x e -'∴=-,令()0f x '=,解得1x =,故当[0,1)x ∈时,()0f x '>;当(1,2]x ∈时,()0f x '<,()f x ∴在1x =处取得极大值.又7ln 2(ln )(ln 2)32f f >=,17ln 4ln 2(ln )(ln 4)442f f <==,且(1)c f =为最大值,故c a b >>.三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)13;(2)π3C =. 【解析】(1)2213cos 7cos 60ABE AEB ∠-∠-=,2213(1cos )7(1cos )0ABE AEB ∴-∠--∠=,即2213sin 7sin ABE AEB ∠=∠,13sin 7sin ABE AEB ∠=∠,由正弦定理得137AE AB =, 又7AE =,13AB ∴=.(2)设EC a =,则2Bc a =,由余弦定理得22979413cos 23232a a C a a+-+-==⨯⨯⨯⨯,2a ∴=,9471cos 2322C +-∴==⨯⨯,(0,π)C ∈,π3C ∴=.18.【答案】(1)证明见解析;(2)427. 【解析】(1)在1AA 上取一点M ,使得12A M AM =,分别连接EM ,1B M ,1EC ,1FC .在长方体1111ABCD A B C D -中,有111DD AA BB ∥∥,且111 DD AA BB ==, 又12DE ED =,12A M AM =,12BF FB =, 所以1DE AM FB ==,所以四边形1B FAM 和四边形EDAM 都是平行四边形. 所以1AF MB ∥且1AF MB =,AD ME ∥且AD ME =,又在长方体1111ABCD A B C D -中,有11AD B C ∥,且11AD B C =, 所以11B C ME ∥且11B C ME =,则四边形11B C EM 为平行四边形,所以11EC MB∥,所以1AF EC∥,所以点1C在平面AEF内.(2)在长方形1111ABCD A B C D-中,以1C为原点,11C D所在直线为x轴,11C B的直线为y轴,1C C所在直线为z轴,建立如图所示的空间直角坐标系1C xyz-,因为2AB=,1AD=,13AA=,12DE ED=,12BF FB=,所以(2,1,3)A,(2,0,2)E,(0,1,1)F,1(2,1,0)A,则(2,1,1)EF=--,(0,1,1)AE=--,1(0,1,2)A E=-,设平面AEF的一个法向量为1111(,,)x y z=n,则1111111020EF x y zy zAE⎧⋅=-+-=⎧⎪⇒⎨⎨--=⋅=⎩⎪⎩nn,取法向量1(1,1,1)=-n,设平面1A EF的一个法向量为2222(,,)x y z=n,则2222222102020EF x y zy zA E⎧⋅=-+-=⎧⎪⇒⎨⎨-+=⋅=⎩⎪⎩nn,取法向量2(1,4,2)=n,所以1212127cos,||||321⋅<>===⋅⋅n nn nn n,设二面角1A EF A--为θ,则142sin17θ=-=,即二面角1A EF A--42.19.【答案】(1)方案一:402,y n n*=+∈N,方案二:120,45,8240,45,n nyn n n**⎧≤∈⎪=⎨->∈⎪⎩NN;(2)有99.9%的把握认为;(3)选择方案二,详见解析.【解析】(1)由题意得,方案一中的日收费y(单位:元)与需要用药的猪的数量n(单位:头)的函数关系式为402,y n n *=+∈N ;方案二中的日收费y (单位:元)与需要用药的猪的数量n (单位:头)的函数关系式为:120,45,8240,45,n n y n n n **⎧≤∈⎪=⎨->∈⎪⎩N N. (2)由列联表计算可得22210(85654020)40.0212585105105k ⨯⨯-⨯=≈⨯⨯⨯, 40.0210.828>,所以有99.9%的把握认为猪未发病与该生物医药公司提供技术服务有关. (3)设方案一中的日收费为X ,由条形图可得X 的分布列为:()1240.21280.41320.21360.11400.1130E X ∴=⨯+⨯+⨯+⨯+⨯=;设方案二中的日收费为Y ,由条形图可得Y 的分布列为:()1200.61280.21440.11600.1128E Y ∴=⨯+⨯+⨯+⨯=,()()E X E Y =,所以从节约养殖成本的角度去考虑,丙养殖场应该选择方案二. 20.【答案】(1)22143x y +=;(2)证明见解析. 【解析】(1)∵2(3在抛物线1C 上,2223p ∴=⨯,解得2p =, ∴抛物线1C 的焦点坐标为(1,0),则221a b -=①,易知22222()331a b+=②,∴由①②可得2243a b ⎧=⎪⎨=⎪⎩,∴椭圆2C 的方程为22143x y +=. (2)设直线11:2l x k y =+,直线22:2l x k y =+,由2142y x x k y ⎧=⎨=+⎩,得21480y k y --=, 设11(,)A x y ,22(,)C x y ,则1214y y k +=,12M y k ∴=,则2122M x k =+,即211(22,2)M k k +,同理得222(22,2)N k k +,∴直线MN 的斜率21222112221(22)(22)MN k k k k k k k -==+-++,则直线MN 的方程为2111212(22)y k x k k k -=--+,即12121[2(1)]y x k k k k =--+,∵12l l ⊥,∴12111k k ⋅=-,即121k k =-, ∴直线MN 的方程为121(4)y x k k =-+,即直线MN 恒过定点(4,0).21.【答案】(1)见解析;(2)证明见解析. 【解析】(1)由题意得11()(0)axf x a x x x-'=-=>, 当0a ≤时,()0f x '>恒成立,所以函数()f x 在(0,)+∞上单调递增; 当0a >时,令()0f x '=,得到1x a=, 所以当1(0,)x a∈时,()0f x '>,()f x 单调递增;当1(,)x a∈+∞,()0f x '<,()f x 单调递减.综上所述,当0a ≤时,函数()f x 在(0,)+∞上单调递增;当0a >时,函数()f x 在1(0,)a 上单调递增,在1(,)a+∞上单调递减.(2)记函数22()ln ln xx e x e x x eϕ-=-=-,则21()x x exϕ-'=-,可知()x ϕ'在(0,)+∞上单调递增, 由(1)0ϕ'<,(2)0ϕ'>知,()x ϕ'在(0,)+∞上有唯一零点0x ,且012x <<, 则02001()x x ex ϕ-'=-,即021x e x -=①当0(0,)x x ∈时,()0x ϕ'<,()x ϕ单调递减; 当0(,)x x ∈+∞时,()0x ϕ'>,()x ϕ单调递增, 所以0200()()ln x x x e x ϕϕ-≥=-,由①式021x ex -=,知002ln x x -=-, 所以022000000(1)1()()ln 20x x x x e x x x x ϕϕ--≥=-=+-=>,则2()ln 0x x ex ϕ-=->,所以有2ln 0x e e x ->恒成立.22.【答案】(1)221:(2)4C x y -+=,222:(2)4C x y +-=;(2)3π4α=. 【解析】(1)由22cos 2sin x y ϕϕ=+⎧⎨=⎩,消去参数ϕ,可得1C 的普通方程为22(2)4x y -+=, ∵4sin ρθ=,∴24sin ρρθ=,∴曲线2C 的直角坐标方程为22(2)4x y +-=.(2)由(1)得,曲线221:(2)4C x y -+=,其极坐标方程为4cos ρθ=,由题意设1(,)A ρα,2(,)B ρα,则12π4sin cos )4AB ρρααα=-=-=-=πsin()14α∴-=±,πππ()42k k α∴-=+∈Z ,3ππ()4k k α∴=+∈Z ,0πα<<,3π4α∴=. 23.【答案】(1)1(,)2-+∞;(2)3(,)2-∞-.【解析】原不等式可化为212x x --+<, 作出函数2y x =-与1y x =+的图象如图所示,当212x x --+=时,12x =, ∵直线12y x =-与21y x =+的斜率相等, ∴结合图象可知,原不等式的解集为1(,)2-+∞. (2)原不等式可化为00212x x a a -++<--,00002(2)()2x x a x x a a -++≥--+=+, 212a a ∴+<--,即122a a --+>,上式可化为(1)2(1)12a a +--++>,由(1)得112a +<-,解得32a <-, 故a 的取值范围为3(,)2-∞-.。
2021届全国天一大联考新高考模拟试卷(一)理科数学试题

2021届全国天一大联考新高考模拟试卷(一)数学试题(理科)★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
第Ⅰ卷(满分60分)一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只一项是符合题目要求的.1.已知集合A ={x |x <1},B ={x |31x <},则 A. {|0}A B x x =< B. A B R = C. {|1}AB x x =>D. AB =∅【答案】A 【解析】∵集合{|31}xB x =< ∴{}|0B x x =< ∵集合{|1}A x x =<∴{}|0A B x x ⋂=<,{}|1A B x x ⋃=< 故选A2.已知函数1()3()3x xf x =-,则()f xA. 是奇函数,且在R 上是增函数B. 是偶函数,且在R 上是增函数C. 是奇函数,且在R 上是减函数D. 是偶函数,且在R 上是减函数【答案】A 【解析】分析:讨论函数()133xxf x ⎛⎫=- ⎪⎝⎭的性质,可得答案. 详解:函数()133xx f x ⎛⎫=- ⎪⎝⎭的定义域为R ,且()()111333,333xx xx x xf x f x --⎡⎤⎛⎫⎛⎫⎛⎫-=-=-+=--=-⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦即函数()f x 是奇函数,又1y 3,3xx y ⎛⎫==- ⎪⎝⎭在R 都是单调递增函数,故函数()f x 在R 上是增函数.故选A.点睛:本题考查函数的奇偶性单调性,属基础题.3.z 是z 的共轭复数,若()2,2(z z z z i i +=-=为虚数单位) ,则z =( ) A. 1i + B. 1i --C. 1i -+D. 1i -【答案】D 【解析】【详解】试题分析:设,,,z a bi z a bi a b R =+=-∈,依题意有22,22a b =-=, 故1,1,1a b z i ==-=-. 考点:复数概念及运算.【易错点晴】在复数四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.4.已知当[0,1]x ∈ 时,函数2(1)y mx =- 的图象与y m = 的图象有且只有一个交点,则正实数m 的取值范围是A. (0,1])⋃+∞B. (0,1][3,)⋃+∞C. )⋃+∞D. [3,)⋃+∞【答案】B 【解析】当01m <≤时,11m≥ ,2(1)y mx =- 单调递减,且22(1)[(1),1]y mx m =-∈-,y m =单调递增,且[,1]y m m m =+∈+ ,此时有且仅有一个交点;当1m 时,101m<< ,2(1)y mx =-在1[,1]m 上单调递增,所以要有且仅有一个交点,需2(1)13m m m -≥+⇒≥ 选B. 【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解. 5.若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) A. sin y x = B. ln y x =C. xy e =D. 3y x =【答案】A 【解析】 【分析】若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【详解】解:函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直, 则函数y =f (x )的导函数上存在两点,使这点的导函数值乘积为﹣1, 当y =sin x 时,y ′=cos x ,满足条件; 当y =lnx 时,y ′1x=>0恒成立,不满足条件; 当y =e x 时,y ′=e x >0恒成立,不满足条件; 当y =x 3时,y ′=3x 2>0恒成立,不满足条件;故选A .考点:导数及其性质.6.若3cos()45πα-=,则sin 2α=( ) A. 725 B. 15C. 15-D. 725-【答案】D 【解析】试题分析:2237cos 22cos 12144525ππαα⎡⎤⎛⎫⎛⎫⎛⎫-=--=⨯-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,且cos 2cos 2sin 242ππααα⎡⎤⎛⎫⎡⎤-=-= ⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦,故选D. 【考点】三角恒等变换【名师点睛】对于三角函数的给值求值问题,关键是把待求角用已知角表示: (1)已知角为两个时,待求角一般表示为已知角的和或差.(2)已知角为一个时,待求角一般与已知角成“倍的关系”或“互余、互补”关系.7.已知曲线C 1:y =cos x ,C 2:y =sin (2x +2π3),则下面结论正确的是( ) A. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2B. 把C 1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2C. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线C 2D. 把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线C 2 【答案】D 【解析】把C 1上各点的横坐标缩短到原来的12倍,纵坐标不变,得到函数y=cos2x 图象,再把得到的曲线向左平移π12个单位长度,得到函数y=cos2(x+π12)=cos(2x+π6)=sin(2x+2π3)的图象,即曲线C2,故选D.点睛:三角函数的图象变换,提倡“先平移,后伸缩”,但“先伸缩,后平移”也常出现在题目中,所以也必须熟练掌握.无论是哪种变形,切记每一个变换总是对字母x而言. 函数sin()()y A x x Rωϕ=+∈是奇函数π()k k Zϕ⇔=∈;函数sin()()y A x x Rωϕ=+∈是偶函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是奇函数ππ+()2k k Zϕ⇔=∈;函数cos()()y A x x Rωϕ=+∈是偶函数π()k k Zϕ⇔=∈.8.设x,y满足约束条件2330233030x yx yy+-≤⎧⎪-+≥⎨⎪+≥⎩则z=2x+y的最小值是()A. -15B. -9C. 1D. 9【答案】A【解析】【分析】作出不等式组表示的可行域,平移直线z=2x+y,当直线经过B(-6,-3)时,取得最小值.【详解】作出不等式组表示的可行域,结合目标函数的几何意义得函数在点B(-6,-3)处取得最小值z min=-12-3=-15.故选:A【点睛】此题考查二元一次不等式组表示平面区域,解决线性规划问题,通过平移目标函数表示的直线求得最值.9.已知F为抛物线2:4C y x=的焦点,过F作两条互相垂直的直线12,l l,直线1l与C交于A B、两点,直线2l与C交于D E、两点,则|||||AB DE+的最小值为()A. 16B. 14C. 12D. 10【答案】A 【解析】 【分析】根据12l l ⊥,要使|||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1时,取得最小值.【详解】解法一:如图所示因为12l l ⊥,直线1l 与C 交于A B 、两点,直线2l 与C 交于D E 、两点,要使||||AB DE +最小,则A 与D ,B 与E 关于x 轴对称,即直线2l 的斜率为1, 又直线2l 过点()1,0,所以直线2l 的方程为1y x =-,联立方程组241y x y x ⎧=⎨=-⎩,得2440y y --=,12124,4y y y y +==-,所以()212121222111148DE y y y y y y k k=+-=++-=,所以|||||AB DE +的最小值为16. 故选:A解法二:设AB 为(1)y k x =-,DE 为1(1)y x k=--.分别代入抛物线方程得:2222(24)0k x k k -++=⋯(1),22(24)10x k x -++=⋯(2).由于21234242()2()44482416AB DE x x x x k k+=+++++=+++>=+⨯=.此时2244k k=,1k =或1k =-,故选:A .【点睛】本题主要考查抛物线的几何性质直线与抛物线的位置关系,弦长公式等,还考查了运算求解的能力,属于中档题.10.若2x =-是函数21()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( ). A. 1- B. 32e -- C. 35e - D. 1【答案】A 【解析】由题可得()()()()121212121x x x f x x a ex ax e x a x a e ---⎡⎤=+++-=+++-⎣⎦', 因为()20f '-=,所以1a =-,()()211x f x x x e -=--,故()()212x f x x x e --'=+,令()0f x '>,解得2x <-或1x >,所以()f x 在()(),2,1,-∞-+∞上单调递增,在()2,1-上单调递减, 所以()f x 的极小值为()()1111111f e-=--=-,故选A .【名师点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同;(2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.11.已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a = A. 12-B.13C.12D. 1【答案】C 【解析】函数()f x 的零点满足()2112e e x x x x a --+-=-+,设()11eex x g x --+=+,则()()21111111e 1eeee ex x x x x x g x ---+----'=-=-=,当()0g x '=时,1x =;当1x <时,()0g x '<,函数()g x 单调递减; 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数()g x 取得最小值,为()12g =.设()22h x x x =-,当1x =时,函数()h x 取得最小值,为1-,若0a ->,函数()h x 与函数()ag x -没有交点;若0a -<,当()()11ag h -=时,函数()h x 和()ag x -有一个交点, 即21a -⨯=-,解得12a =.故选C. 【名师点睛】利用函数零点的情况求参数的值或取值范围的方法: (1)利用零点存在性定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两个熟悉的函数图像的上、下关系问题,从而构建不等式求解.12.在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP =λ AB +μAD ,则λ+μ的最大值为 A. 3 B. 22C. 5D. 2【答案】A 【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y , 易得圆半径5r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=,若满足AP AB AD λμ=+,则21x y μλ=⎧⎨-=-⎩ ,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(2,0)到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤,所以z 的最大值是3,即λμ+的最大值是3,故选A.【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题、第(23)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,满分20分.第16题第一空2分,第二空3分.把答案填在答题卡上的相应位置.13.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于y 轴对称.若1sin 3α=,则cos()αβ-=___________.【答案】79- 【解析】试题分析:因为α和β关于y 轴对称,所以2,k k Z αβππ+=+∈,那么1sin sin 3βα==,cos cos αβ=-=cos cos βα=-=, 所以()2227cos cos cos sin sin cos sin 2sin 19αβαβαβααα-=+=-+=-=- 【考点】同角三角函数,诱导公式,两角差的余弦公式【名师点睛】本题考查了角的对称关系,以及诱导公式,常用的一些对称关系包含:若α与β的终边关于y 轴对称,则2,k k Z αβππ+=+∈ ,若α与β的终边关于x 轴对称,则2,k k Z αβπ+=∈,若α与β的终边关于原点对称,则π2π,k k αβ-=+∈Z .14.已知函数f (x )=23,12,1x x x x x x ⎧-+≤⎪⎨+>⎪⎩,设a ∈R ,若关于x 的不等式f(x)2x a ≥+在R 上恒成立,则a 的取值范围是__ 【答案】﹣4716≤a ≤2 【解析】 【分析】先求画出函数()f x 的图像,然后对2y x a =+的图像进行分类讨论,使得2y x a =+的图像在函数()f x 的图像下方,由此求得a 的取值范围.【详解】画出函数()f x 的图像如下图所示,而,22222xa x a x y a x a a ⎧+≥-⎪⎪=+=⎨⎛⎫⎪-+<- ⎪⎪⎝⎭⎩,是两条射线组成,且零点为2x a =-.将2x y a =+向左平移,直到和函数()f x 图像相切的位置,联立方程22x y a y x x ⎧=+⎪⎪⎨⎪=+⎪⎩消去y 并化简得2240x ax -+=,令判别式24160a ∆=-=,解得2a =.将2xy a =+向右平移,直到和函数()f x 图像相切的位置,联立方程223x y a y x x ⎧⎛⎫=-+⎪ ⎪⎝⎭⎨⎪=-+⎩消去y 并化简得2302x x a -++=,令判别式()14304a ∆=-+=,解得4716a =-.根据图像可知47,216a ⎡⎤∈-⎢⎥⎣⎦【点睛】本小题主要考查分段函数的图像与性质,其中包括二次函数的图像、对勾函数的图像,以及含有绝对值函数的图像,考查恒成立问题的求解方法,考查数形结合的数学思想方法以及分类讨论的数学思想方法,属于中档题.形如y ax b =+函数的图像,是,0b a ⎛⎫-⎪⎝⎭引出的两条射线. 15.设抛物线22{2x pt y pt==(0p >)的焦点为F ,准线为l ,过抛物线上一点A 作l 的垂线,垂足为B ,设7(,0)2C p ,AF 与BC 相交于点E ,若||2||CF AF =,且ACE ∆的面积为32则p 的值为__________. 6 【解析】试题分析:抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=, 又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则2A y =,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==, 所以262CEFCEAS S==92ACFAECCFESSS=+=所以132922p ⨯=6p =【考点】抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点的距离时,一般运用定义转化为到准线的距离进行处理. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF|=x 0+2p;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长|AB|=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.16.如图,在圆柱O 1 O 2 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1 O 2 的体积为V 1 ,球O 的体积为V 2 ,则12V V 的值是_____【答案】32【解析】设球半径为r ,则213223423V r r V r π⨯==π.故答案为32. 点睛:空间几何体体积问题的常见类型及解题策略:①若给定的几何体是可直接用公式求解的柱体、锥体或台体,则可直接利用公式进行求解;②若所给定的几何体的体积不能直接利用公式得出,则常用转换法、分割法、补形法等方法进行求解.三、解答题:本大题共6小题,满分70分,解答应写出文字说明、证明过程或演算步骤.17.已知函数()()22f x sin x cos x 23sin x cos x x R =--∈(I )求2f 3π⎛⎫⎪⎝⎭的值 (II )求()f x 的最小正周期及单调递增区间.【答案】(I )2;(II )()f x 的最小正周期是π,2+k +k k 63Z ππππ⎡⎤∈⎢⎥⎣⎦,.【解析】 【分析】(Ⅰ)直接利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步求出函数的值. (Ⅱ)直接利用函数的关系式,求出函数的周期和单调区间. 【详解】(Ⅰ)f (x )=sin 2x ﹣cos 2x 23-sin x cos x , =﹣cos2x 3-sin2x , =﹣226sin x π⎛⎫+ ⎪⎝⎭, 则f (23π)=﹣2sin (436ππ+)=2, (Ⅱ)因为()2sin(2)6f x x π=-+.所以()f x 的最小正周期是π. 由正弦函数的性质得3222,262k x k k Z πππππ+≤+≤+∈, 解得2,63k x k k Z ππππ+≤≤+∈, 所以,()f x 的单调递增区间是2[,]63k k k ππ+π+π∈Z ,. 【点睛】本题主要考查了三角函数的化简,以及函数的性质,是高考中的常考知识点,属于基础题,强调基础的重要性;三角函数解答题中,涉及到周期,单调性,单调区间以及最值等考点时,都属于考查三角函数的性质,首先应把它化为三角函数的基本形式即,然后利用三角函数的性质求解.18. 一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求: (1)取出1球是红球或黑球的概率; (2)取出1球是红球或黑球或白球的概率.【答案】(1)取出1球为红球或黑球的概率为3.4(2)取出1球为红球或黑球或白球的概率为11.12【解析】试题分析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的球是红球或黑球,根据古典概型和互斥事件的概率公式得到结果;(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球,满足条件的事件是取出的一球是红球或黑球或白球,根据古典概型公式得到结果试题解析:(1)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的球是红球或黑球共有9种结果,∴概率为.(2)由题意知本题是一个古典概型,试验包含的基本事件是从12个球中任取一球共有12种结果;满足条件的事件是取出的一球是红球或黑球或白球共有11种结果,∴概率为.即取出的1球是红球或黑球的概率为;取出的1球是红球或黑球或白球的概率为.考点:等可能事件的概率19.(2017新课标全国Ⅲ理科)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C 的余弦值.【答案】(1)见解析;(2)7 .【解析】试题分析:(1)利用题意证得二面角的平面角为90°,则可得到面面垂直;(2)利用题意求得两个半平面的法向量,然后利用二面角的夹角公式可求得二面角D–AE–C的余弦值7试题解析:(1)由题设可得,ABD CBD ≌△△,从而AD DC =. 又ACD 是直角三角形,所以=90ADC ∠︒. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又由于ABC 是正三角形,故BO AC ⊥. 所以DOB ∠为二面角D AC B --的平面角. 在Rt AOB 中,222BO AO AB +=.又AB BD =,所以222222BO DO BO AO AB BD +=+==, 故90DOB ∠=. 所以平面ACD ⊥平面ABC .(2)由题设及(1)知,,,OA OB OD 两两垂直,以O 为坐标原点,OA 的方向为x 轴正方向,OA 为单位长,建立如图所示的空间直角坐标系O xyz -.则()()()()1,0,0,0,3,0,1,0,0,0,0,1A B C D -.由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得312E ⎛⎫ ⎪ ⎪⎝⎭. 故()()311,0,1,2,0,0,2AD AC AE ⎛⎫=-=-=- ⎪ ⎪⎝⎭. 设(),,n x y z =是平面DAE 的法向量,则00n AD n AE ⎧⋅=⎨⋅=⎩,,即0,310.2x z x y z -+=⎧⎪⎨-+=⎪⎩可取3⎛⎫= ⎪ ⎪⎝⎭n .设m是平面AEC的法向量,则m ACm AE⎧⋅=⎨⋅=⎩,,同理可取()0,1,3=-m.则7cos,⋅==n mn mn m.所以二面角D-AE-C的余弦值为7.【名师点睛】(1)求解本题要注意两点:一是两平面的法向量的夹角不一定是所求的二面角,二是利用方程思想进行向量运算时,要认真细心,准确计算.(2)设m,n分别为平面α,β的法向量,则二面角θ与,m n互补或相等,故有cos cos,m nm nm nθ⋅==.求解时一定要注意结合实际图形判断所求角是锐角还是钝角.20.如图,已知抛物线2x y=.点A1139-2424B⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,,,抛物线上的点P(x,y)13-x22⎛⎫⎪⎝⎭<<,过点B作直线AP的垂线,垂足为Q(I)求直线AP斜率的取值范围;(II)求PA?PQ的最大值【答案】(I)(-1,1);(II)2716.【解析】试题分析:本题主要考查直线方程、直线与抛物线位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.满分15分.(Ⅰ)由斜率公式可得AP的斜率为12x-,再由1322x-<<,得直线AP的斜率的取值范围;(Ⅱ)联立直线AP与BQ的方程,得Q的横坐标,进而表达||PA与||PQ的长度,通过函数3()(1)(1)f k k k=--+求解||||PA PQ⋅的最大值.试题解析:(Ⅰ)设直线AP 的斜率为k ,2114122x k x x -==-+, 因为1322x -<<,所以直线AP 斜率的取值范围是(1,1)-.(Ⅱ)联立直线AP 与BQ 的方程110,24930,42kx y k x ky k ⎧-++=⎪⎪⎨⎪+--=⎪⎩解得点Q 的横坐标是22432(1)Q k k x k -++=+.因为|PA1)2x +1)k +, |PQ2)Q x x -=所以3(1)(1)k k PA PQ ⋅--+=. 令3()(1)(1)f k k k =--+, 因为2'()(42)(1)f k k k =--+,所以 f (k )在区间1(1,)2-上单调递增,1(,1)2上单调递减, 因此当k =12时,||||PA PQ ⋅取得最大值2716. 【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3()(1)(1)f k k k =--+求解||||PA PQ ⋅的最大值.21.已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥. (Ⅰ)讨论()f x 的单调性;(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+- 【答案】(Ⅰ) 当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减. (Ⅱ)见解析; (Ⅲ)见解析. 【解析】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥, 下面分两种情况讨论: (1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增. (2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增; 当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x',可得202.a x x n n'=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1ax n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101ax x x x x n''-<-=+-. 因为2n ≥,所以11112(11)111n n n Cn n ---=+≥+=+-=,故1102n nx -≥=,所以2121ax x n-<+-. 考点:1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B 铅笔在答题卡上,将所选题号对应的方框涂黑. 选修4-4:坐标系与参数方程22.11,23x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)被曲线cos ,3x y θθ=⎧⎪⎨=⎪⎩(θ为参数)所截得的弦长.【答案】2 【解析】 【分析】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得到直角坐标方程,然后将11,22x t y t⎧=-⎪⎪⎨⎪=⎪⎩代入曲线的直角坐标方程,再利用直线参数方程的几何意义求弦长.【详解】由cos ,x y θθ=⎧⎪⎨=⎪⎩消去θ得2213y x +=,将11,2x t y ⎧=-⎪⎪⎨⎪=⎪⎩代入2213y x +=并整理得:220t t -=,解得120,2t t ==, 所截得的弦长为122t t -=【点睛】本题主要考查参数方程与直角坐标方程的转化,以及直线参数方程的几何意义,还考查了运算求解的能力,属于中档题.选修4-5:不等式选讲23.设0,0x y >>,已知1x y +=,求2223x y +的最小值. 【答案】65【解析】 【分析】根据柯西不等式的性质求解.【详解】由柯西不等式得()()222222231x yx y ⎡⎤+⋅+≥=+=⎢⎥⎢⎥⎣⎦所以226235x y +≥,当且仅当23x y =,即32,55x y ==时,取等号.所以2223x y +的最小值为65【点睛】本题主要考查柯西不等式的性质,还考查了转化化归的思想和运算求解的能力,属于基础题.。
2020届河南省高三天一大联考高中毕业班阶段性测试(一)数学(理)试题(解析版)

2019-2020学年天一大联考高中毕业班阶段性测试(一)数学(理)试题一、单选题1.已知集合{}|3A x y x ==-, {}2|76<0B x x x =-+,则()R C A B ⋂=( )A .{}|1<<3x xB .{}|1<<6x xC .{}|13x x ≤≤D .{}|16x x ≤≤【答案】A【解析】要使根式有意义,则需30x -≥,可求集合A ,再求R C A , 解二次不等式2760x x -+<,可求得集合B ,从而求得()R C A B I 即可. 【详解】 解:{}|3A x y x ==-={}|30x x -≥={}|3x x ≥,即{}|3R C A x x =<,又{}2|76<0B x x x =-+={}|(1)(6)<0x x x --={}|16x x <<,即()R C A B ⋂={}|1<<3x x , 故选A. 【点睛】本题考查了含根式函数的定义域的求法及二次不等式的解法,重点考查了集合的混合运算,属基础题. 2.已知,,且复数z 满足,则z 的虚部为( )A .B .C .D .【答案】B 【解析】把,代入,再由复数代数形式的乘除运算化简得答案. 【详解】,,,的虚部为.故选. 【点睛】本题考查复数代数形式的乘除运算、复数虚部的概念,考查基本运算求解能力. 3.某单位共有老年、中年、青年职工320人,其中有青年职工150人,老年职工与中年职工的人数之比为7∶10.为了了解职工的身体状况,现采用分层抽样方法进行调查,抽取的样本中有青年职工30人,则抽取的老年职工的人数为() A .14 B .20C .21D .70【答案】A【解析】先计算总体中老年职工的人数70,再根据青年职工的数据求出抽样比,把抽样比乘以老年职工人数,得到抽取老年职工的人数. 【详解】由题意知,老年职工与中年职工的人数之和为170, 故老年职工人数为70,中年职工人数100, 抽样比为3011505=, 则抽取的老年职工的人数为170145⨯=, 故选A . 【点睛】本题考查随机抽样中的分层抽样,考查基本数据处理能力.4.设等差数列|{}n a 的前n 项和为n S ,若2372a a a =,540S =,则7a =( ) A .13 B .15C .20D .22【答案】C【解析】由等差数列前5项和求得3a ,设等差数列{}n a 的公差为d ,由2372a a a =得到关于d 的方程,再由等差数列的通项公式求7a . 【详解】由题意,53540S a ==,得38a =. 设等差数列{}n a 的公差为d ,由2372a a a =,得(8)82(84)d d -⨯=⨯+,解得3d =.73484320a a d ∴=+=+⨯=.故选:C . 【点睛】本题考查等差数列的性质、通项公式及前n 项和公式的应用,考查基本量法求解数列问题.5.已知向上满足||2,a =r||1b =r,()a b b -⊥r rr,则向量a r与b r的夹角为( ) A .6π B .3π C .2π D .23π 【答案】B【解析】先由题意求出a b ⋅r r,再由向量夹角公式,即可求出结果.【详解】因为||2,a =r ||1b =r ,()a b b -⊥rr r ,所以()0-⋅=r rr a b b ,因此21⋅==r r r a b b ,所以1cos ,2⋅==r rr r r r a b a b a b , 因此向量a r与b r的夹角为3π 【点睛】本题主要考查向量夹角的计算,熟记向量数量积的运算即可,属于常考题型. 6.马拉松是一项历史悠久的长跑运动,全程约42千米.跑马拉松对运动员的身体素质和耐力是极大的考验,专业的马拉松运动员经过长期的训练,跑步时的步幅(一步的距离)一般略低于自身的身高,若某运动员跑完一次全程马拉松用了2.5小时,则他平均每分钟的步数可能为() A .60 B .120C .180D .240【答案】C【解析】先求出运动员每分钟跑42000150280÷=米,再对运动员每分钟的跑步数分类讨论,排除答案即得解. 【详解】解:42千米=42000米,2.5小时=150分钟,故运动员每分钟跑42000150280÷=米;若运动员每分钟跑120步,280120 2.33÷=,则运动员的身高超过2.33米不太可能;若运动员每分钟跑240步,280240 1.17÷=,则运动员的身高稍超过1.17米不太可能; 若运动员每分钟跑180步,280180 1.56÷=,则运动员的身高超过1.56米,基本符合实际, 故选:C . 【点睛】本题主要考查推理证明,考查数据处理,属于基础题.7.某几何体的三视图如图所示,则该几何体的侧面积为( )A .352B .3562+C .35πD .635π+【答案】B【解析】由题意可知该几何体是一个半圆台,利用圆台侧面积公式和梯形面积公式即可得解. 【详解】该几何体是一个半圆台,上底面半圆的半径为1,下底面半圆的半径为2,高为2,母5.所以其侧面积为()()113525242622ππ⨯+⨯+⨯=+. 故选:B. 【点睛】本题考查了三视图的识别和圆台侧面积的求解,属于基础题.8.已知双曲线22:13x E y -=,F 为E 的左焦点,P ,Q 为双曲线E 右支上的两点,若线段PQ 经过点()2,0,△PQF 的周长为83PQ 的长为( ) A .2 B .23C .4D .3【答案】B【解析】根据题意作出双曲线图象,然后根据双曲线的定义得:||||23PF PA -=,||||23QF QA -=,再根据周长的值,求得线段PQ 的长.【详解】Q 双曲线22:13x E y -=的左焦点(2,0)F -,3a =,1b =,2c =;双曲线的右焦点(2,0)A 在线段PQ 上,||||23PFPA -=,||||23QF QA -=,所以∆POF 的周长为83||||||2||43PF QF PQ PQ =++=+,得||23PQ =,故选:B .【点睛】本题考查双曲线中过焦点弦长,把双曲线的定义融入三角形知识中,考查学生对问题的转化能力.9.已知函数()()x xf x x e e -=-,若(21)(2)f x f x -<+,则x 的取值范围是()A .1,33⎛⎫- ⎪⎝⎭B .1,3⎛⎫-∞- ⎪⎝⎭C .(3,)+∞D .1,(3,)3⎛⎫-∞-+∞ ⎪⎝⎭U【答案】A【解析】根据()()f x f x -=得()f x 为偶函数,利用导数得函数()f x 在[0,)+∞上为增函数,结合偶函数的性质(||)()f x f x =,将(21)(2)f x f x -<+转化为|21||2|x x -<+,两边平方解得x 的取值范围.【详解】 根据题意,()()x x f x x e e -=-,因为()()()()()x x x x f x x e e x e e f x ---=--=-=,所以()f x 为偶函数; 又由()()()x x x x f x e e x e e --'=-++,当0x …时,()0f x '>,则函数()f x 在[0,)+∞上为增函数, 所以(21)(2)(|21|)(|2|)|21|2|f x f x f x f x x x -<+⇔-<+⇔-<+, 即22(21)(2)x x -<+,解得:133x -<<. 故选:A . 【点睛】本题综合考查函数的奇偶性、单调性的应用,利用导数研究函数的单调性,考查分析问题和解决问题的能力,考查数形结合思想的应用.10.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( )A .14B .12CD【答案】C【解析】利用直线AM 和直线BM 的斜率之积为14-,得到2214b a =这一关系,再代入离心率的公式,求得e 的值. 【详解】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以2e =. 【点睛】本题考查直线与椭圆的位置关系、斜率公式、离心率求法等知识,考查基本运算求解能力.11.设函数()2sin f x x ππ=-在()0,∞+上最小的零点为0x ,曲线()y f x =在点()0,0x 处的切线上有一点P ,曲线23ln 2y x x =-上有一点Q ,则PQ 的最小值为( ) A.BCD【答案】C【解析】由题意得01x =,由导数的几何意义结合点斜式可得切线的方程为22y x =-,证明切线与曲线23ln 2y x x =-无交点,当点Q 处的切线与22y x =-平行时,点Q 到直线22y x =-的距离即为PQ 最小值,利用导数几何意义求得点Q 后即可得解. 【详解】令()x k k ππ=∈Z ,则x k =,最小为01x =. 因为()2cos f x x π'=-,所以曲线()y f x =在点()1,0处的切线斜率为()12cos 2f π'=-=, 则切线方程为22y x =-,设()23ln 2g x x x =-,()23ln 222h x x x x =--+, 则()132h x x x '=--,()10h '=,()h x 在1x =处取最小值()3102h =>,所以()0h x >恒成立,所以直线22y x =-与曲线()y g x =没有交点. 令()132g x x x '=-=,得1x =或13x =-(舍去),()312g =, 则PQ 的最小值为点31,2⎛⎫⎪⎝⎭到直线22y x =-的距离d ,所以10d ==. 故选:C. 【点睛】本题考查了导数几何意义的应用,考查了转化化归思想,属于中档题.12.已知四棱锥P ABCD -的四条侧棱都相等,底面是边长为2的正方形,若其五个顶点都在一个表面积为814π的球面上,则PA 与底面ABCD 所成角的正弦值为( )A .23B .23或3C.3D .13或3【答案】D 【解析】【详解】解:因为P ABCD -的四条侧棱都相等,底面是边长为2的正方形,则点P 在 面ABCD 内的射影落在正方形 ABCD 的中心,连接,AC BD 交于点E ,设球心为O , 连接,PO BO ,则E 在直线PO 上,PO BO R ==,由28144R ππ=,解得94R =,又2BDBE ==所以74OE ===, 所以971442PE R OE =-=-=或97444PE R OE =+=+=, 当12PE =时,32PA ===, 则PA 与底面ABCD 所成角的正弦值为112332PE AP ==, 当4PE =时,PA ===则PA 与底面ABCD所成角的正弦值为3PE AP ==, 即PA 与底面ABCD 所成角的正弦值为13, 故选D.【点睛】本题考查了球的表面积公式及正棱锥的外接球问题,重点考查了棱锥顶点在底面中的射影位置,着重考查了空间想象能力及运算能力,属中档题.二、填空题13.设变量,x y满足约束条件70,10,2,x yx yx+-≤⎧⎪--≤⎨⎪≥⎩则目标函数11yzx-=-的最大值为_______.【答案】4【解析】作出可行域,将问题转化为可行域中的点与点(1,1)P连线的斜率的最大值,结合图形可得答案.【详解】作出可行域,如图所示:11y z x -=-表示可行域中的点与点(1,1)P 连线的斜率. 由图可知,点(1,1)P 与点(2,5)A 连线的斜率最大,max 51421z -==-, 所以目标函数11y z x -=-的最大值为4. 故答案为: 4 【点睛】本题考查了利用线性规划求分式型目标函数的最大值,解题关键是转化为斜率求最大值,属于基础题.14.已知正项等比数列{n a }满足2464,80a a a =+=.记2log n n b a =,则数列{n b }的前50项和为________.【答案】1275【解析】由等比数列通项公式的求法可得:42200q q +-=,又0q >解得2422n n n a -=⨯=,由对数的运算可得:n b n =,即{}n b 是以1为首项,1为公差的等差数列,再由等差数列前n 项和公式即可得解. 【详解】解:由数列{n a }为正项等比数列,设其公比为q ,则0q >, 又2464,80a a a =+=, 所以42200q q +-=, 解得2q =,即2422n n n a -=⨯=, 所以2log 2nn b n ==,则{}n b 是以1为首项,1为公差的等差数列, 则数列{n b }的前50项和为(150)5012752+⨯=,故答案为:1275. 【点睛】本题考查了等比数列通项公式的求法及等差数列前n 项和,重点考查了对数的运算,属基础题.15.在()()51231x x -+的展开式中,含3x 项的系数为__________. 【答案】40【解析】由题意写出()512x -的展开式的通项,根据通项求出()512x -的展开式中2x 和3x 的系数,根据乘法分配律即可得解.【详解】由题意()512x -的展开式的通项为()()15522r rrr r r T C x C x +=-=-,()512x -的展开式中2x 的系数为()225240C -=,3x 的系数为()335280C -=-,因此,原展开式中含3x 项的系数为40380=40⨯-. 故答案为:40. 【点睛】本题考查了二项式定理的应用,属于基础题. 16.已知2tan tan()43παα-=,则cos(2)4πα-的值是______.【答案】10【解析】根据两角和差正切公式可构造方程求得1tan 3α=-或tan 2α=;利用两角和差余弦公式和二倍角公式可将cos 24πα⎛⎫-⎪⎝⎭化为)22cos sin 2sin cos αααα-+,根据正余弦齐次式的求解方法可化简为221tan 2tan 21tan ααα-++,代入tan α即可求得结果.【详解】tan tantan 124tan tan tan tan 41tan 31tan tan 4παπαααααπαα--⎛⎫-=⋅=⋅= ⎪+⎝⎭+ 解得:1tan 3α=-或tan 2α=)cos 2cos 2cos sin 2sin cos 2sin 2444πππααααα⎛⎫-=+=+ ⎪⎝⎭)222222cos sin 2sin cos cos sin 2sin cos 22cos sin αααααααααα-+=-+=+221tan 2tan 21tan ααα-+=⨯+ 当1tan 3α=-时,12193cos 21421019πα--⎛⎫-=⨯= ⎪⎝⎭+ 当tan 2α=时,144cos 2421410πα-+⎛⎫-== ⎪+⎝⎭综上所述,cos 2410πα⎛⎫-= ⎪⎝⎭本题正确结果:10【点睛】本题考查利用三角恒等变换公式化简求值、正余弦齐次式的求解问题,涉及到两角和差正切公式和余弦公式、二倍角公式的应用、同角三角函数关系的应用等知识;关键是能够将正余弦齐次式配凑出正切的形式.三、解答题17.已知平面四边形ABCD 中,3AB =,4BC =,5CD =,6DA =,且内角B 与D 互补.(1)求cos A 的值.(2)求四边形ABCD 的面积. 【答案】(1)1cos 19A =;(2)S =【解析】(1)由题意A 与C 也互补,在ABD △和BCD V 中分别使用余弦定理,即可得4536cos 4140cos A A -=+,即可得解;(2)由平方关系可得2sin sin 1cos C A A ==-,再利用三角形面积公式即可得解. 【详解】(1)因为B 与D 互补,所以A 与C 也互补, 可得A C π+=,所以cos cos C A =-. 在ABD △中,根据余弦定理可得2222cos 4536cos BD AB AD AB AD A A =+-⋅=-.在BCD V 中,根据余弦定理可得2222cos 4140cos 4140cos BD CB CD CB CD C C A =+-⋅=-=+.由4536cos 4140cos A A -=+,得1cos 19A =. (2)因为0A π<<,所以221610sin sin 1cos 119C A A ⎛⎫==-=-= ⎪⎝⎭. 故四边形ABCD 的面积11sin sin 22ABD BCD S S S AB AD A CB CD C =+=⋅+⋅⋅V V 11610364561022⎛⎫=⨯⨯+⨯⨯⨯= ⎪⎝⎭.【点睛】本题考查了余弦定理和面积公式的应用,考查了方程思想,属于中档题.18.如图,在直三棱柱111ABC A B C -中,90ACB ∠=o ,12CA CB AA ===,M ,N 分别是1A B 与1CC 的中点,G 为ABN ∆的重心.(1)求证:MG ⊥平面ABN ; (2)求二面角1A AB N --的正弦值. 【答案】(1)见解析;(2)63【解析】(1)建立空间直角坐标系,表示出各点的坐标后,通过证明0MG AN ⋅=u u u u v u u u v, 0MG AB ⋅=u u u u v u u u v,即可得证;(2)求出平面ABN 的一个法向量MG u u u u r ,平面1A AB 的一个法向量为n r,求出cos ,MGn MG n MG n⋅=u u u u v vu u u u v v u u u u v v 后,利用平方关系即可得解.【详解】(1)证明:由题意可知,AC ,BC ,1CC 两两垂直,以C 为原点,分别以AC ,BC ,1CC 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,0,0C ,()2,0,0A ,()0,2,0B ,()10,0,2C ,()12,0,2A .由中点坐标公式可得()1,1,1M ,()0,0,1N ,由重心的性质可得221,,333G ⎛⎫⎪⎝⎭. 则112,,333MG ⎛⎫=--- ⎪⎝⎭u u u u r ,()2,2,0AB =-u u u r ,()2,0,1AN =-u u u r ,()10,0,2AA =u u u r.所以()1122010333MG AN ⎛⎫⎛⎫⎛⎫⋅=-⨯-+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r u u u r , ()1122200333MG AB ⎛⎫⎛⎫⎛⎫⋅=-⨯-+-⨯+-⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭u u u u r u u u r ,所以MG AN ⊥,MG AB ⊥,又AN AB A =I ,AN ,AB Ì平面ABN , 所以MG ⊥平面ABN .(2)由(1)知,平面ABN 的一个法向量为112,,333MG ⎛⎫=--- ⎪⎝⎭u u u u r .设平面1A AB 的一个法向量为(),,n x y z =r.则120220n AA z n AB x y ⎧⋅==⎨⋅=-+=⎩u u u v v u u u v v ,所以0z x y =⎧⎨=⎩,令1x =,则()1,1,0n =r .所以cos ,MG n MG n MG n⋅==u u u u r ru u u u r r u u u u r r . 设二面角1A AB N --的大小为θ,则sin 3θ==. 所以二面角1A AB N --【点睛】本题考查了利用空间向量证明线面垂直和求解二面角,考查了计算能力,属于中档题. 19.已知动圆M 过点(2,0)P 且与直线20x +=相切. (1)求动圆圆心M 的轨迹C 的方程;(2)斜率为()0k k ≠的直线l 经过点(2,0)P 且与曲线C 交于A ,B 两点,线段AB 的中垂线交x 轴于点N ,求||||AB NP 的值. 【答案】(1)28y x =(2)2【解析】(1)已知条件转化成圆心M 到定点(2,0)P 的距离与定直线2x =-的距离相等,再利用抛物线的定义求得圆心M 的轨迹C 的方程;(2)设直线l 的方程为(2)y k x =-,()11,A x y ,()22,B x y ,把直线方程代入抛物线方程,利用根与系数的关系,得到AB 的中点坐标,进而得到线段AB 的中垂线方程,令0y =得到点N 的坐标,把弦长||AB 和线段||NP 都用k 表示,再进行比值即可得答案. 【详解】(1)由已知可得,点M 到点(2,0)P 的距离等于点M 到直线20x +=的距离,所以点M 的轨迹是抛物线.点P 为抛物线的焦点,直线20x +=即2x =-为抛物线的准线. 设抛物线C 的方程为22(0)y px p =>,所以22p=,所以4p =, 故动圆圆心M 的轨迹C 的方程为28y x =.(2)由已知可得直线l 的方程为(2)y k x =-,记()11,A x y ,()22,B x y .由2(2)8y k x y x=-⎧⎨=⎩消去y 整理可得()22224840k x k x k -++=. 由根与系数关系可得212248k x x k ++=,所以()12124422k x x k y y k+-+==. 所以AB 的中点坐标为22244,k kk ⎛⎫+ ⎪⎝⎭. 所以线段AB 的中垂线方程为224124k y x k k k ⎛⎫+-=-- ⎪⎝⎭.令0y =,可得2264k x k +=,所以2264,0k N k ⎛⎫+ ⎪⎝⎭. 所以()22224164||2k k NP k k++=-=. 又由抛物线的定义可知()212281||4k AB x x k +=++=.所以()()222281||2||41k AB k NP k k +=⋅=+. 【点睛】本题考查定义法求抛物线的方程、直线与抛物线的位置关系,考查坐标法思想的运用,解题过程中要注意目标意识,即弦长||AB 和线段||NP 都借助变量k 进行表示,再进行运算求值.20.一间宿舍内住有甲、乙两人,为了保持宿舍内的干净整洁,他们每天通过小游戏的方式选出一人值日打扫卫生,游戏规则如下:第1天由甲值日,随后每天由前一天值日的人抛掷两枚正方体骰子(点数为16-),若得到两枚骰子的点数之和小于10,则前一天值日的人继续值日,否则当天换另一人值日.从第2天开始,设“当天值日的人与前一天相同”为事件A . (1)求()P A . (2)设()*n p n N∈表示“第n 天甲值日”的概率,则()1111,1(2,3,4,)n n n p p ap b p n --==+-=L ,其中()a P A =,()b P A =.(ⅰ)求n p 关于n 的表达式.(ⅱ)这种游戏规则公平吗?说明理由.【答案】(1)56.(2)(ⅰ)1*121,232n n p n -⎛⎫=+∈ ⎪⎝⎭N (ⅱ)不公平,理由见解析 【解析】(1)根据古典概型的概率公式和对立事件的概率公式可求得结果; (2)(ⅰ)代入,a b 的值后,构造等比数列12n p ⎧⎫-⎨⎬⎩⎭可求得结果;(ⅱ)根据112112322n n p -⎛⎫=+> ⎪⎝⎭可知游戏不公平. 【详解】(1)由题意可知,事件A 表示“当天值日的人与前一天不同”,即前一天值日的人抛掷两枚骰子所得点数之和大于或等于10.抛掷两枚骰子所得点数的情况有6636⨯=种,事件A 包含的情况有(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共6种情况.所以61()366P A ==. 所以5()1()6P A P A =-=. (2)(ⅰ)由(1)可知()111512116636n n n n p p p p ---=+-=+. 整理可得1121,2,3,4,232n n p p n -⎛⎫-=-= ⎪⎝⎭L , 所以12n p ⎧⎫-⎨⎬⎩⎭是首项为11122p -=,公比为23的等比数列.所以1112223n n p -⎛⎫-= ⎪⎝⎭.所以1*121,232n n p n -⎛⎫=+∈ ⎪⎝⎭N . (ⅱ)不公平.理由如下:因为112112322n n p -⎛⎫=+> ⎪⎝⎭恒成立,即每天甲值日的概率都大于12,甲每天值日的概率都比乙值日的概率大,所以不公平. 【点睛】本题考查了古典概型扥概率公式和对立事件的概率公式,考查了构造等比数列求数列的通项公式,属于中档题.21.设函数()()21ln 12f x k x k x x =+-- (1)讨论函数()f x 的单调性;(2)设函数()f x 的图象与直线y m =交于()1,A x m ,()2,B x m 两点,且12x x <,求证:1202x x f +⎛⎫'< ⎪⎝⎭. 【答案】(1)见解析;(2)见解析【解析】(1)求导后根据0k ≤、0k >分别求出()0f x '>、()0f x '<得解即可得解;(2)由题意得212121ln ln 12x x x x k k x x +-=+--,则212122211112ln 21x x x x x k f x x x x x ⎛⎫- ⎪+⎛⎫ ⎪=- ⎪-⎪⎝⎭+ ⎪⎝⎭',令211x t x =>,()()()21ln 11t g t t t t -=->+,求导后证明()()10g t g <=即可得证. 【详解】(1)函数()()21ln 12f x k x k x x =+--的定义域为()0,∞+. ()()()11x x k kf x k x x x+-'=+--=-. 当0k ≤时,()0f x '<恒成立,所以()f x 在()0,∞+是减函数; 当0k >时,令()0f x '>,得0x k <<,令()0f x '<,得x k >, 所以()f x 在()0,k 上是增函数,在(),k +∞上是减函数.综上,当0k ≤时,()f x 在()0,∞+是减函数;当0k >时,()f x 在()0,k 上是增函数,在(),k +∞上是减函数.(2)证明:由题意知方程()f x m =有两个不相等的实根1x ,2x ,且12x x <, 所以()()2211122211ln 1ln 122k x k x x k x k x x +--=+--,且120x x <<. 所以()()()222121211ln ln 2x x k x x k x x ----=-,所以212121ln ln 12x x x x k k x x +-=+--. 因为()1kf x k x x'=+--,所以21221122122121111ln ln 22ln 21x x x x x x x k k f k x x x x x x x x x ⎛⎫- ⎪+-⎛⎫ ⎪'=-=- ⎪+-- ⎪⎝⎭+ ⎪⎝⎭令211x t x =>,()()()21ln 11t g t t t t -=->+,则()()()22101t g t t t '-=-<+, 所以()g t 在()1,+∞单调递减,所以()()10g t g <=. 又因为120x x <<,由(Ⅰ)知0k >,所以210kx x >-.所以1202x x f +⎛⎫'< ⎪⎝⎭. 【点睛】本题考查了导数的综合应用,考查了推理能力和计算能力,属于中档题.22.在平面直角坐标系xOy 中,直线l 的参数方程为121x m y m =+⎧⎨=-+⎩,(m 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2363cos 2ρθ=-,直线l 与曲线C 交于M ,N 两点.(1)求直线l 的普通方程和曲线C 的直角坐标方程; (2)求|MN |.【答案】(1)直线:230l x y --=,曲线22:1189x y C +=;(2)【解析】(1)把直线参数方程中的参数m 消去,可得直线的普通方程,把曲线C 的极坐标方程变形,结合极坐标与直角坐标的互化公式可得曲线C 的直角坐标方程; (2)写出直线参数方程的标准形式,代入曲线C 的普通方程,化为关于t 的一元二次方程,再由参数t 的几何意义求解. 【详解】 (1)由121x my m=+⎧⎨=-+⎩(m 为参数),消去参数m 整理可得直线l 的普通方程为230x y --=.由曲线C 的极坐标方程2363cos 2ρθ=-,得2(3cos 2)36ρθ-=,即()2222cos 4sin 36ρθθ+=,故曲线C 的直角坐标方程为22218xy +=,即221189x y +=. (2)由已知可得直线l 的斜率12k =,设l 的倾斜角为α,则sin α,cos 5α=, 所以直线l的参数方程可写成11x y ⎧=⎪⎪⎨⎪=-⎪⎩(t 为参数),将11x y ⎧=+⎪⎪⎨⎪=-+⎪⎩代入22218x y +=,整理可得2252t =,解得1t =2t =.由参数方程的几何意义可得12||MN t t =-=【点睛】本题考查简单曲线的极坐标方程,考查参数方程与普通方程的互化,利用直线参数方程中参数t 的几何意义求解问题时,记得把参数方程化成标准形式. 23.设函数()|1||2|f x x x =++-.(1)求不等式()4f x …的解集; (2)设a ,b ,*c R ∈,函数()f x 的最小值为m ,且111234m a b c++=,求证:2343a b c ++….【答案】(1)35,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭(2)详见解析【解析】(1)将()f x 写为分段函数的形式,然后由()4f x …,分别解不等式即可; (2)由(1)知()3min f x =,从而得到3m =,再根据1113(234)(234)()234a b c a b c a b c++=++++,利用基本不等式求出3(234)a b c ++的最小值即可证明2343a b c ++….【详解】第 21 页 共 21 页 (1)12,1()123,1221,2x x f x x x x x x -<-⎧⎪=++-=-⎨⎪->⎩剟. ()4f x Q …,∴1241x x -⎧⎨<-⎩…或2142x x -⎧⎨>⎩…,∴32x -…或52x …, ∴不等式的解集为35(,][,)22-∞-⋃+∞; (2)证明:由(1)知()3min f x =,3m ∴=,∴1113234m a b c++==, 1113(234)(234)()234a b c a b c a b c∴++=++++ 2324433324234a b a c c b b a c a b c=++++++39+=…, 2343a b c ∴++…,当且仅当2341a b c ===,即12a =,13b =,14c =时取等号, 2343a b c ∴++….【点睛】 本题考查绝对值不等式的解法,基本不等式和利用综合法证明不等式,考查分类讨论思想和转化思想,属中档题.。
天一大联考顶尖联盟2024届高三阶段性测试(二)(老教材版)理科数学试题(含答案)

试卷类型:老教材版2024届高中毕业班第二次考试理科数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()1i 35i z -=+,则z 的共轭复数z =()A .44i+B .44i-C .14i-+D .14i--2.已知集合{}{}21log 3,25A x x B x x x *=∈≤<=<≥N 或,则()A B =R ð()A .{}1,2,3B .{}2,3C .{}2,3,4D .{}2,3,4,53.已知向量()()()3,4,2,,2,1a b m c =-=-= ,若()a b c +⊥,则m =()A .2-B .2C .6-D .64.设函数()21f x x =+,数列{}n a ,{}n b 满足()(),n n a f n f b n ==,则2a =()A .7b B .9b C .11b D .13b 5.记ABC △的内角,,A B C 的对边分别为,,a bc ,分别以,,a b c 为边长的正三角形的面积依次为123,,S S S ,且12334S S S bc --=,则A =()A .6πB .3πC .23πD .56π6.通过验血诊断某疾病的误诊率(将未患病者判定为阳性的概率)为()01p p <<,漏诊率(将患病者判定为阴性的概率)为()01q q <<,现对2名未患病者和1名患病者进行验血,每人的诊断结果互不影响,则诊断结果均为阴性的概率为()A .()21p q-B .()21p q -C .()21p q -D .()21p q -7.斐波那契数列,又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,…,这个数列从第3项开始,每一项都等于前两项之和,小李以前6项数字的某种排列作为他的银行卡密码,如果数字1与2不相邻,则小李可以设置的不同的密码个数为()A .144B .120C .108D .968.函数()21log xf x x-=的单调递增区间为()A .()0,1B .10,2⎛⎫ ⎪⎝⎭c .1,2⎛⎫+∞ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭9.陀螺是中国民间最早的娱乐工具之一,如图所示,某陀螺可以视为由圆锥SO 和圆柱1OO 组合而成,点,M N在圆锥SO 的底面圆周上,且SMN △74MSN ∠=,圆锥SO 的侧面积为,圆柱1OO 的母线长为3,则该几何体的体积为()A .403πB .443πC .523πD .563π10.已知函数()sin 2sin 233f x x x ππ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,则()f x 在区间,22ππ⎛⎫- ⎪⎝⎭内的零点个数为()A .0B .1C .2D .311.已知12,F F 是双曲线C 的两个焦点,P 为C 上除顶点外的一点,123PF PF =,且1260F PF ∠>︒,则C 的离心率的取值范围是()A .7,22⎛⎫⎪⎝⎭B .7,32⎛⎫⎪ ⎪⎝⎭C .()1,2D .)12.已知01a <<,若函数()ln e x f x a a x =-有两个不同的零点,则a 的取值范围是()A .10,e ⎛⎫ ⎪⎝⎭B .1,1e ⎛⎫ ⎪⎝⎭C .10,2e ⎛⎫ ⎪⎝⎭D .11,2e e ⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知椭圆2221(3)9x y m m+=>的离心率为12,则m =______.14.已知,x y 满足约束条件30,35030,x y x y x -+≤⎧⎪++≤⎨⎪+≥⎩,则2z x y =+的最小值是______.15.在正四棱柱1111ABCD A B C D -中,12,4AB AA ==,平面α与棱1111,,,AA BB CC DD 分别交于点,,,M E N F ,其中,E F 分别是11,BB DD 的中点,且1AC ME ⊥,则1A M =______.16.已知0,,,222x y πππ⎛⎫⎛⎫∈∈- ⎪ ⎪⎝⎭⎝⎭,若()()tan tan 4sin2x y x y x ++-=,则cos cos x y 的最小值为______.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)随着寒冷冬季的到来,羽绒服进入了销售旺季,某调查机构随机调查了400人,询问他们选购羽绒服时更关注保暖性能还是更关注款式设计,得到以下的22⨯列联表:更关注保暖性能更关注款式设计合计女性16080240男性12040160合计280120400(Ⅰ)是否有95%的把握认为男性和女性在选购羽线服时的关注点有差异?(Ⅱ)若从这400人中按男女比例用分层抽样的方法抽取5人进行采访,再从这5人中任选2人赠送羽线服,记X 为抽取的2人中女生的人数,求X 的分布列和数学期望.附:()()()()22()n ad bc K a b c d a c b d -=++++.()20P K k ≥0.100.050.0100k 2.7063.8416.63518.(12分)如图,矩形ABCF 与梯形FCDE 所在的平面垂直,,,1DE CF EF FC AF EF DE ⊥===∥,2,AB P =为AB 的中点.(Ⅰ)求证:平面EPF ⊥平面DPC ;(Ⅱ)求二面角B CD P --的余弦值.19.(12分)在数列{}n a 中,已知()112242,4n n a a n n a -=-+≥=.(Ⅰ)求{}n a 的通项公式;(Ⅱ)求数列{}24n nn a ⋅-的前n 项和.20.(12分)已知()4,4M 为抛物线2:2(0)C y px p =>上的一点,F 为C 的焦点,O 为坐标原点.(Ⅰ)求MOF △的面积;(Ⅱ)若,A B 为C 上的两个动点,直线MA 与MB 的斜率之积恒等于2-,作,MN AB N ⊥为垂足,证明:存在定点Q ,使得NQ 为定值.21.(12分)已知函数()e x f x x =.(Ⅰ)若存在唯一的负整数0x ,使得()()001f x m x <-,求m 的取值范围;(Ⅱ)若0a >,当()1,x ∈-+∞时,()()213ln 8a x af x ++≥,求a 的取值范围.(二)选考题:共10分.请考生在第22,23题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,已知直线2cos ,:sin x t l y t αα=-+⎧⎨=⎩(t 为参数),α为l 的倾斜角,l 与x 轴交于点P ,与y轴正半轴交于点Q ,且OPQ △的面积为233.(Ⅰ)求α;(Ⅱ)若l 与曲线22:1C x y -=交于,A B 两点,求11PA PB+的值.23.[选修4-5:不等式选讲](10分)已知函数()f x x a x b =++-.(Ⅰ)当2,3a b ==时,求不等式()6f x ≥的解集;(Ⅱ)设0,1a b >>,若()f x 的最小值为2,求111a b +-的最小值.理科数学(老教材版)答案一、选择题:本题共12小题,每小题5分,共60分.1.答案D命题意图本题考查复数的基本概念和运算.解析35i14i 1iz +==-+-,故14i z =--.2.答案C命题意图本题考查集合的运算.解析因为{}{}[)*2R 1log 32,3,4,5,6,7,2,5A x x B =∈≤<==N ð,所以(){}R 2,3,4A B = ð.3.答案B命题意图本题考查平面向量的数量积.解析()1,4a b m +=- ,因为()a b c +⊥,所以240m +-=,得2m =.4.答案C命题意图本题考查数列的概念与性质.解析由题意知()121,12n n a n b n =+=-,可知2115a b ==.5.答案C命题意图本题考恒三角形的面积公式和余弦定理.解析由题意得222123,,444S a S b S c ===,则2221234444S S S a b c bc --=--=,所以222a b c bc --=,故2221cos 22b c a A bc +-==-,又0A π<<,所以23A π=.6.答案A 命题意图本题考查概率的计算.解析未患病者的诊断结果为阴性的概率为1p -,患病者的诊断结果为阴性的概率为q ,所以对2名未患病者和1名患病者进行验血,诊断结果均为阴性的概率为()21p q -.7.答案A 命题意图本题考查排列与组合的应用.解析先排数字2,3,5,8,有44A 种排法,4个数字形成5个空当.第一类:若两个1相邻,则从可选择的3个空当中选出一个放入两个1,有3种排法;第二类:若两个1也不相邻,则从可选择的3个空当中选出两个分别放入数字1,有3种排法.所以密码个数为()4433144A ⨯+=.命题意图本题考查函数的单调性.解析由10x x ->,得01x <<,所以()f x 的定义域为()0,1.设()2211log log 1x g x x x -⎛⎫==- ⎪⎝⎭,易得()g x 在()0,1上单调递减.当11x x ->,即102x <<时,()0g x >,此时()()f x g x =单调递减,当101x x -<<,即112x <<时,()0g x <,此时()()f x g x =-单调递增,所以()f x 的单调递增区间为1,12⎛⎫ ⎪⎝⎭.9.答案B命题意图本题考查圆柱与圆锥的结构特征.解析设圆锥的底面半径为r ,母线长为l ,则SMN △的面积为117sin 224SM SN MSN l l ⨯∠=⨯⨯=解得l =因为圆锥SO的侧面积为rl r π==,所以2,2r SO ===.故该几何体的体积为144434233V V V πππ=+=⨯+⨯⨯=圆柱圆锥.10.答案D命题意图本题考查三角函数的图象与性质.解析令()0f x =,得sin 2sin 233x x ππ⎛⎫⎛⎫+=±- ⎪ ⎪⎝⎭⎝⎭,又222333x x πππ⎛⎫⎛⎫+--= ⎪ ⎪⎝⎭⎝⎭,所以只能是()2233x x k k πππ⎛⎫⎛⎫++-=∈ ⎪ ⎪⎝⎭⎝⎭Z ,得()4k x k π=∈Z ,在区间,22ππ⎛⎫- ⎪⎝⎭内,有,0,44ππ-共3个零点.11.答案A 命题意图本题考查双曲线的性质.解析设2112(0),3,PF m m PF m F PF θ=>=∠=,显然60180θ︒<<︒,则12F F ===,所以C 的离心率12122106cos 22F F c c e a a PF PF ====-.由于60180θ︒<<︒,所以1cos 1,2θ⎛⎫∈- ⎪⎝⎭,所以2的取值范围是,22⎛⎫⎪⎝⎭.命题意图本题考查函数的零点、导数的几何意义.解析()f x 有两个不同的零点,等价于曲线ln x y a a =与e y x =有两个不同的交点,当0x >时,ln 0,e 0x a a x <>,二者不可能有交点,只需考虑0x <时的情况.设()ln x g x a a =,若1ea =,则()1e xg x ⎛⎫=- ⎪⎝⎭,易知曲线1e xy ⎛⎫=- ⎪⎝⎭与直线e y x =在点()1,e --处相切;若10e a <<,当0x <时,1,ln 1e xxa a ⎛⎫><- ⎪⎝⎭,所以1ln e xx xa a a ⎛⎫<-<- ⎪⎝⎭,所以曲线()y g x =与直线e y x =没有交点;若11e a <<,则1e,ln 1a a <>-,所以()ln 11e a g a a-=>->-,曲线()y g x =与直线e y x =有两个交点.综上可得,满足条件的a 的取值范围是1,1e ⎛⎫⎪⎝⎭.二、填空题:本题共4小题,每小题5分,共20分.13.答案命题意图本题考查椭圆的性质.解析因为3m >,所以912m m =,解得m =14.答案3-命题意图本题考查简单的线性规划问题.解析不等式组表示的可行域如图中阴影部分所示,直线20x y z +-=过点()3,0-时z 取得最小值,且min 303z =-+=-.15.答案3命题意图本题考查空间位置关系的判断以及相关计算.解析因为平面α经过棱11,BB DD 的中点,所以四边形MENF 为菱形,且易证1A C EF ⊥.又因为1AC ME ⊥,所以1AC ⊥平面MENF ,所以1AC MN ⊥,且MN 经过1A C 的中点.在矩形11A ACC 中利用三角形相似可计算得13A M =.16.答案12命题意图本题考查三角恒等变换的应用.解析由题意知()()()()()()()()()()sin sin sin cos sin cos cos cos cos cos x y x y x y x y x y x y x y x y x y x y +-+-+-++=+-+-()()sin 24sin 2cos cos xx x y x y ==+-,由题意知sin20x ≠,因此()()1cos cos 4x y x y +-=.所以()()11cos cos cos cos 22x y x y x y =++-≥=⎡⎤⎣⎦,当且仅当()()1cos cos 2x y x y +=-=,即,03x y π==时等号成立.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.命题意图本题考查独立性检验和超几何分布的相关计算.解析(Ⅰ)因为22400(1604080120)2003.17524016028012063K ⨯⨯-⨯==≈⨯⨯⨯,因为3.175 3.841<,所以没有95%的把握认为男性和女性在选购羽线服时的关注点有差异.(Ⅱ)选出的男性人数为16052400⨯=,选出的女性人数为24053400⨯=,由题意可得X 的所有可能取值为0,1,2,()()()21122233222555C 1C C 3C 30,1,2C 10C 5C 10P X P X P X =========,故X 的分布列为X 012P11035310所以X 的数学期望()1336012105105E X =⨯+⨯+⨯=.18.命题意图本题考查面面垂直的证明以及二面角的计算.解析(Ⅰ)因为EF FC ⊥,平面EFCD ⊥平面ABCF ,所以EF⊥平面ABCF ,又因为PC ⊂平面ABCF ,所以EF PC ⊥.在矩形ABCF 中,1,2,AF AB P ==为AB 的中点,所以2FP CP FC ===,根据勾股定理可得FP PC ⊥.因为EF FP F = ,所以PC ⊥平面EPF ,所以平面EPF⊥平面DPC .(Ⅱ)以F 为坐标原点,,,FA FC FE 所在直线分别为,,x y z轴,建立如图所示的空间直角坐标系,则()()()()0,1,1,0,2,0,1,2,0,1,1,0D C B P .所以()()()0,1,1,1,0,1,1,1,1DC DP DB =-=-=-.设平面DPC 的法向量为(),,n x y z = ,由0,0,n DC n DP ⎧⋅=⎪⎨⋅=⎪⎩得0,0,y z x z -=⎧⎨-=⎩令1y =,则()1,1,1n =.同理可得平面BCD 的一个法向量为()0,1,1m =.设二面角B CD P --的平面角为θ,故cos 3m n m nθ⋅=== ,即二面角B CD P --的余弦值为3.19.命题意图本题考查递推关系与等比数列的性质,以及错位相减法的应用.解析(Ⅰ)因为()12242n n a a n n -=-+≥,所以()()122212n n a n a n n --=--≥⎡⎤⎣⎦.所以{}2n a n -是首项为2,公比为2的等比数列.所以22nn a n -=,即22nn a n =+.(Ⅱ)由(Ⅰ)知1242n n n n a n +⋅-=⋅.设前n 项和为n T ,则23411222322n n T n +=⨯+⨯+⨯+⋅⋅⋅+⨯,345221222322n n T n +=⨯+⨯+⨯+⋅⋅⋅+⨯,两式相减可得()223412221222222212n n n n n T n n +++--=+++⋅⋅⋅+-⨯=-⨯-()222242124n n n n n +++=--⨯=--,所以()2124n n T n +=-+.20.命题意图本题考查抛物线的性质,抛物线与直线的位置关系.解析(Ⅰ)由题可得168p =,解得2p =,所以()110,1,14222MOF M F S OF y ==⨯⨯=△.(Ⅱ)由(Ⅰ)可知C 的方程为24y x =.由题意可知直线AB 不与x 轴平行,设直线AB 的方程为221212,,,,44y y x my b A y B y ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则124y y ≠±.联立方程得2,4,x my b y x =+⎧⎨=⎩整理可得2440y my b --=,则2Δ16160m b =+>,且124y y m +=①,124y y b =-②.121144444MA y k y y -==+-,同理可得244MB k y =+.由题意得1244244MA MB k k y y ⨯=⨯=-++,即()12124240y y y y +++=,将①②代入可得164240m b -+=,即46b m =+.故直线AB 的方程可化为46x my m =++,即()64x m y -=+,直线AB 过定点()6,4D -.因为MN AB ⊥于点N ,所以点N 在以MD 为直径的圆上,故存在MD 的中点Q ,即()5,0Q ,使得2MD NQ ==,为定值.21.命题意图本题考查利用导数研究函数性质.解析(Ⅰ)()()1e x f x x +'=,可得()f x 在(),1-∞-上单调递减,在()1,-+∞上单调递增.令()()1h x m x =-,作出()f x 与()h x 的大致图象如图所示,因为存在唯一的负整数0x ,使得()()00f x h x <,则01x =-,故()()()()11,22,f h f h ⎧-<-⎪⎨-≥-⎪⎩即2213e2e m ≤<,故m 的取值范围为221,3e 2e ⎡⎫⎪⎢⎣⎭.(Ⅱ)根据题意,()()213ln 8a x af x ++≥对()1,x ∈-+∞恒成立,等价于()e ln 12ln 3ln23x ax x a -+≥--对()1,x ∈-+∞恒成立.令()()e ln 1,1x F x ax x x =-+>-,则有()()1e e 1x x F x a x x =+-+',令()()()1e e ,11x x G x F x a x x x =-+'=+>-,则()()212e 0(1)x G x a x x =++>+',所以()F x '在()1,-+∞上单调递增,又1x →-时,(),F x x →-∞'→+∞时,()F x '→+∞,从而存在唯一的()01,x ∈-+∞,使得()00F x '=,即()00001e e 01x x a x x +-=+,可得()()000201,ln 2ln 11e x a a x x x ==-+-+,当()01,x x ∈-时,()()0,F x F x '<在()01,x -上单调递减,当()0,x x ∈+∞时,()()0,F x F x '>在()0,x +∞上单调递增,故()()()0000e ln 1x F x F x ax x ≥=-+,故原不等式恒成立只需()()()00000020e ln 122ln 13ln231e x x x x x x x ⋅-+≥-+---⎡⎤⎣⎦+,即()()000203ln 123ln2301x x x x +++++≥+.构造函数()()23ln 123ln23,1(1)x H x x x x x =+++++>-+,可得()2331335422(1)1(1)x x x H x x x x -++=++=+'+++,当1x >-时,令()2354u x x x =++,因为Δ2548230=-=-<,从而可得()0H x '>在()1,x ∈-+∞时恒成立,又102H ⎛⎫-= ⎪⎝⎭,所以()0H x ≥的解集为1,2⎡⎫-+∞⎪⎢⎣⎭.又因为()00ln 2ln 1a x x =-+-,令()()2ln 1v x x x =-+-,易得()v x 在定义域内单调递减,所以111ln 2ln 1ln4222a ⎛⎫≤--++=+ ⎪⎝⎭,所以1ln42e a ≤=故a的取值范围为(.22.命题意图本题考查方程的互化、直线的参数方程的应用.解析(Ⅰ)由l 的参数方程可知()2,0P -,由题意知11232223OPQ S OP OQ OQ ==⨯=△,所以233OQ =,即230,3Q ⎛⎫ ⎪⎝⎭,所以l 的斜率为()23033023-=--,所以6πα=.(Ⅱ)由(Ⅰ)可知2,2:12x t l y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),代入221x y -=,得到260t -+=.设,A B 对应的参数分别为12,t t,则121260t t t t +==>,故121211233t t PA PB t t ++==.23.命题意图本题考查绝对值不等式的解法及性质.解析(Ⅰ)将2,3a b ==代入()6f x ≥,得236x x ++-≥,等价于2,126,x x ≤-⎧⎨-≥⎩或23,56,x -<<⎧⎨≥⎩或3,216,x x ≥⎧⎨-≥⎩得52x ≤-或无解或72x ≥.所以不等式()6f x ≥的解集为57,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭ .(Ⅱ)()()()f x x a x b x a x b a b =++-≥+--=+,因为()f x 的最小值为2,且0,1a b >>,所以2a b +=.()1111111a b a b a b ⎛⎫+=++- ⎪--⎝⎭12241b a a b -=++≥+=-,当且仅当11b a a b -=-,即1a b =-,也即13,22a b ==时取等号,所以111a b +-的最小值为4.。
2020届河南省天一大联考“顶尖计划”高三第一联考数学(理)试题(解析版)

(Ⅱ)若 , , ,求直线 与平面 所成角的正弦值.
【答案】(Ⅰ)证明见详解;(Ⅱ) .
【解析】(Ⅰ)取 中点为 ,根据几何关系,求证四边形 为平行四边形,即可由线线平行推证线面平行;
(Ⅱ)以 为坐标原点,建立空间直角坐标系,求得直线的方向向量和平面的法向量,即可求得线面角的正弦值.
2020届河南省天一大联考“顶尖计划”高三第一联考数学(理)试题
一、单选题
1.已知集合 , ,则 ()
A. B. C. D.
【答案】A
【解析】求解一元二次不等式解得集合 ,根据集合的交运算即可求得结果.
【详解】
,
故 .
故选:A.
【点睛】
本题考查集合的运算、一元二次不等式的解法,考查运算求解能力以及化归与转化思想,属基础题.
6.已知幂函数 的图象过点 ,且 , , ,则 , , 的大小关系为()
A. B. C. D.
【答案】A
【解析】根据题意求得参数 ,根据对数的运算性质,以及对数函数的单调性即可判断.
【详解】
依题意,得 ,故 ,
故 , , ,
则 .
故选:A.
【点睛】
本题考查利用指数函数和对数函数的单调性比较大小,考查推理论证能力,属基础题.
如下图所示:
不妨设 ,则 ,
所以 , , , , .
所以 , , .
设平面 的法向量为 ,
则 所以
可取 .
设直线 与平面 所成的角为 ,
则 .
故可得直线 与平面 所成的角的正弦值为 .
【点睛】
本题考查由线线平行推证线面平行,以及用向量法求解线面角,属综合中档题.
19.已知椭圆 : ,不与坐标轴垂直的直线 与椭圆 交于 , 两点.
2021届全国天一大联考新高三原创预测试卷(二十三)理科数学

2021届全国天一大联考新高三原创预测试卷(二十三)理科数学★祝考试顺利★注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题1.设集合{}2230,N A x x x x =--<∈,集合{}2xB y y ==,则AB =( )A. {}1,2B. {}1,2,8C. 1,82⎛⎫ ⎪⎝⎭D. ∅【答案】A 【解析】 【分析】求出集合A 、B ,利用交集的定义可得出集合A B .【详解】{}{}{}2230,N 13,N 0,1,2A x x x x x x x =--<∈=-<<∈=,{}{}20x B y y y y ===>,因此,{}1,2A B =.【点睛】本题考查交集的计算,同时也考查了一元二次不等式的求解以及指数函数值域的计算,考查计算能力,属于基础题.2.命题“0x ∀>,tan sin x x >”的否定为( ) A. 0x ∃>,tan sin x x ≤ B. 0x ∃≤,tan sin x x > C. 0x ∀>,tan sin x x ≤ D. 0x ∀≤,tan sin x x ≤【答案】A 【解析】 【分析】利用全称命题的否定:改变量词,否定结论,可得出结果.【详解】命题“0x ∀>,tan sin x x >”为全称命题,其否定为“0x ∃>,tan sin x x ≤”, 故选:A.【点睛】本题考查全称命题否定的改写,属于基础题. 3.已知复数12z i =+,则55zz iz-+=( ) A. 12i + B. 2i +C. 12i -D. 2i -【答案】B 【解析】 【分析】利用复数的乘法和除法法则可计算出结果. 【详解】12z i =+,则2125z z ⋅=+=,因此,()()()5125552121212i i zz i ii z i i i --+===+++-. 故选:B.【点睛】本题考查复数的计算,涉及复数的乘法和除法法则的应用,考查计算能力,属于基础题.4.已知向量()1,2a =,()11b =-,,(),2c m =,且()2-⊥a b c ,则实数m =( ) A. 1- B. 0C. 1D. 任意实数【答案】B 【解析】计算出向量2a b -的坐标,由()2-⊥a b c 得()20a b c -⋅=,结合向量数量积的坐标运算可求得实数m 的值. 【详解】()1,2a =,()11b =-,,()23,0a b ∴-=,(),2c m =,()2-⊥a b c ,则()230a b c m -⋅==,解得0m =.故选:B.【点睛】本题考查利用向量垂直的坐标表示求参数,考查计算能力,属于基础题.5.已知n *∈N ,且1n >,三个数1lnn n +、11n +、1n的大小关系是( ) A. 111ln 1n n n n +>>+ B. 111ln 1n n n n +>>+ C. 111ln 1n n n n +>>+D. 111ln 1n n n n+>>+ 【答案】A 【解析】试题分析:令()ln(1)f x x x =+-,则1()111xf x x x-'==-++,当0x >时,()0f x '<,所以()f x 在区间[0,)+∞上单调递减,所以当0x >时,()ln(1)(0)0f x x x f =+-<=恒成立,即ln(1)x x +<恒成立,令1x n =得,11ln 1n n ⎛⎫+< ⎪⎝⎭,即11ln n n n+⎛⎫< ⎪⎝⎭;令()ln(1)1x g x x x =+-+,则()()2211()0111x x x g x x x x +-=+'=->++,所以()g x 在区间[0,)+∞上单调递增,所以当0x >时,()ln(1)(0)01xg x x g x =+->=+,即ln(1)1x x x +>+,令1x n =得11ln 111n n n⎛⎫+> ⎪⎝⎭+,即11ln 1n n n +⎛⎫> ⎪+⎝⎭.综上所述有111ln 1n n n n +>>+,故选A. 考点:1.导数与函数单调性;2.函数与数列不等式.6.不等式20x ax b -+<的解集为{}12x x <<,则6x a ⎫⎪⎭的展开式中常数项为( )A. 64-B. 16027-C.2027D.803【答案】D 【解析】 【分析】利用一元二次不等式的解可求得实数a 的值,进而写出二项展开式的通项,令x 的指数为零,求出参数的值,再代入通项即可得解.【详解】由题意可知,1、2是二次方程20x ax b -+=的两根,由韦达定理得123a =+=,所以63x ⎫⎪⎭的展开式通项为633621661233rr rr r r r r x T C C x ---+⎛⎫⎛⎫=⋅⋅-=⋅⋅-⋅ ⎪ ⎪⎝⎭⎝⎭, 令3302r-=,得2r ,因此,二项展开式中常数项22436180233T C ⎛⎫=⋅⋅-=⎪⎝⎭. 故选:D.【点睛】本题考查利用一元二次不等式的解求参数,同时也考查了二项展开式中常数项的求解,考查计算能力,属于中等题.7.抛物线24y x =的焦点到双曲线()222210,0x y a b a b -=>>曲线的离心率为( )C. 2D. 3【答案】C 【解析】 【分析】求出抛物线的焦点坐标以及双曲线的渐近线方程,利用点到直线的距离求出ba的值,再利用离心率公式可求得双曲线的离心率的值.【详解】抛物线24y x =的焦点坐标为()1,0,双曲线的渐近线方程为by x a=±,由题意得2231b a d b a==+,解得3ba=, 因此,该双曲线的离心率为222212c a b b e a a a +⎛⎫===+= ⎪⎝⎭. 故选:C.【点睛】本题考查抛物线和双曲线几何性质的应用,在涉及利用双曲线的渐近线方程求双曲线的离心率时,利用公式21b e a ⎛⎫=+ ⎪⎝⎭计算较为方便,考查计算能力,属于中等题. 8.执行如图所示的程序框图,输出的结果为( )A.919B.1021C.1819D.2021【答案】B 【解析】 【分析】根据程序框图得出2221114114214101S =+++⨯-⨯-⨯-,利用裂项相消法可求得输出的S 的值.【详解】()()21111141212122121i i i i i ⎛⎫==- ⎪--+-+⎝⎭,由程序框图可知,输出的S 的值为2221114114214101S =+++⨯-⨯-⨯-1111111012335192121⎛⎫=-+-++-= ⎪⎝⎭. 故选:B .【点睛】本题考查利用程序框图计算输出结果,同时也考查了裂项求和法的应用,考查计算能力,属于中等题.9.山城发生一起入室盗窃案,经警方初步调查,锁定为甲、乙、丙、丁四人中的一人所盗,经审讯,四人笔录如下,甲说:“是丁盗的”;乙说:“是甲、丁两人中的一人盗的”;丙说:“甲说的正确”;丁说:“与我无关,是他们三人中的一人盗的”,后经进一步调查发现四人中只有两人说了真话,由此可判断盗窃者是( ) A. 甲B. 乙C. 丙D. 丁【答案】A 【解析】 【分析】分别假设甲、乙、丙、丁是罪犯,依次分析四人的供词,由两人说的是真话,两人说的是假话,能判断出结果.【详解】①假设盗窃者是甲,则甲说了假话,乙说了真话,丙说了假话,丁说了真话,合乎题意;②假设盗窃者是乙,则甲说了假话,乙说了假话,丙说了假话,丁说了真话,不合乎题意; ③假设盗窃者是丙,则甲说了假话,乙说了假话,丙说了假话,丁说了真话,不合乎题意; ④假设盗窃者是丁,则甲说了真话,乙说了真话,丙说了真话,丁说了假话,不合乎题意. 综上所述,盗窃者是甲. 故选:A.【点睛】本题考查罪犯的判断,考查合情推理等基础知识,考查分类讨论思想的应用,是中等题.10.已知双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 、2F ,O 为坐标原点,以12F F 为直径的圆O 与双曲线及其渐近线在第一象限的交点分别为P 、Q ,点B 为圆O 与y 轴正半轴的交点,若2POFQOB ∠=∠,则双曲线C 的离心率为( ) A. 35+ B.35+ C. 15+D.15+ 【答案】D 【解析】【详解】画出图形如图所示,由题意得双曲线在一、三象限的渐近线方程为by x a=,以12F F 为直径的圆O 的方程为222x y c +=.由222b y x ax y c⎧=⎪⎨⎪+=⎩,解得x a y b =⎧⎨=⎩,故点P 的坐标为(,)a b ; 由22222221x y a b x y c ⎧-=⎪⎨⎪+=⎩,解得222x b c by c ⎧=+⎪⎨=⎪⎩,故点Q 的坐标为222()b c b c c +. ∵2POF QOB ∠=∠, ∴2sin sin POF QOB ∠=∠,∴22b a b c c +=,整理得2b ac =, ∴22c a ac -=,故得210e e --=, 解得152e +=. 选D . 点睛:求双曲线的离心率时,可将条件中所给的几何关系转化为关于,,a b c 等式或不等式,再由222c a b =+及ce a=可得到关于e 的方程或不等式,然后解方程(或不等式)可得离心率(或其范围).解题时要注意平面几何知识的运用,如何把几何图形中的位置关系化为数量关系是解题的关键.11.已知定义域为R 的函数()f x ,对任意x ∈R 有()()f x f x '>(()f x '是函数()f x 的导函数),若()1y f x =-为奇函数,则满足不等式()xf x e >的x 的取值范围是( )A. (),0-∞B. (),1-∞C. ()0,∞+D. ()1,+∞【答案】C 【解析】 【分析】根据函数()1y f x =-为奇函数推导出()01f =,构造函数()()xf xg x e=,利用导数可判断出函数()y g x =的单调性,将所求不等式变形为()()0g x g >,再利用函数()y g x =的单调性即可得解.【详解】由于函数()1y f x =-为奇函数,则()010f -=,可得()01f =, 构造函数()()xf xg x e=,则()()0001f g e==,且()()()0xf x f xg x e-''=>,所以,函数()y g x =在R 上单调递增, 由()xf x e >得()1xf x e>,即()()0g x g >,解得0x >.因此,满足不等式()xf x e >的x 的取值范围是()0,+∞. 故选:C.【点睛】本题考查函数不等式的求解,根据导数不等式的结构构造新函数是解答的关键,考查计算能力,属于中等题.12.已知a 、0b >,21b a b a ⎛⎫-= ⎪⎝⎭,则当1a b +取最小值时,221a b +的值为( )A. 2B.C. 3D. 4【答案】C 【解析】 【分析】由21b a b a ⎛⎫-= ⎪⎝⎭得出2212a b a b b a +=+,进而可得出214a b a b b a ⎛⎫+=+ ⎪⎝⎭,利用基本不等式求出21a b ⎛⎫+ ⎪⎝⎭的值,利用等号成立的条件求得2b a =,进而可得出221a b +的值.【详解】由222112a b a a b b b a ⎛⎫-=+-= ⎪⎝⎭得,2212a b a b b a +=+, 2221122244a a b a a b a a b b b b a b b a ⎛⎫+=++=++=+≥ ⎪⎝⎭,等号成立时4a b b a =,即2b a =, 此时22123a ba b b a+=+=. 故选:C.【点睛】本题考查利用基本不等式求最值,同时要注意等号成立的条件,考查计算能力,属于中等题. 二、填空题13.不等式组2220y x y ⎧≤⎨-≤⎩所表示的平面区域的面积为______. 【答案】8 【解析】 【分析】作出不等式组所表示的平面区域,进而可求得区域的面积.【详解】不等式组2220y x y ⎧≤⎨-≤⎩即为()()220y x y x y -≤≤⎧⎨-+≤⎩,则不等式组2220y x y ⎧≤⎨-≤⎩所表示的平面区域由不等式组2200y x y x y -≤≤⎧⎪-≥⎨⎪+≤⎩和2200y x y x y -≤≤⎧⎪-≤⎨⎪+≥⎩所表示的平面区域合并而成,如下图所示:平面区域为两个全等的等腰直角三角形,且腰长为22因此,所求平面区域的面积为(2122282S =⨯⨯=.故答案为:8.【点睛】本题考查可行域面积的计算,解答的关键就是根据不等式组画出可行域,考查数形结合思想的应用,属于基础题.14.设数列{}n a 的前n 项和为n S ,若1sin 12n n a n π+⎛⎫=+ ⎪⎝⎭,则2018S =______. 【答案】1008 【解析】 【分析】分别计算出43k a -、42k a -、41k a -、()4k a k N *∈,进而得出43424146k k k k aa a a ---+++=,再由201845042=⨯+可得出2018S 的值.【详解】由题意可得()434243sin 112k k a k π--⎛⎫=-+= ⎪⎝⎭,()424142sin 1342k k a k kπ--⎛⎫=-+=- ⎪⎝⎭,()()4141sin 211k a k k π-=-+=,4414sin 1412k k a k k π+⎛⎫=+=+ ⎪⎝⎭,()()43424141341416k k k k a a a a k k ---∴+++=+-+++=,201845042=⨯+,201820172018450534505265046504S a a a a ⨯-⨯-∴=⨯++=⨯++()30241345051008=++-⨯=.故答案为:1008.【点睛】本题考查数列求和,找出数列的规律是解答的关键,考查计算能力,属于中等题.15.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ∆的面积为315,12,cos 4b c A -==-,则a 的值为___________.【答案】8 【解析】 试题分析:因,故,由题设可得,即,所以,所以,应填.考点:余弦定理及三角形面积公式的运用.【易错点晴】本题的设置将面积与余弦定理有机地结合起来,有效地检测了综合运用所学知识分析问题和解决问题的能力.求解时先借助题设条件和三角形的面积公式及余弦定理探究出三边的关系及,先求出,在运用余弦定理得到.16.已知直线1:222l x y a -=-,2:24l x y a +=+及圆222:420M x y x ay a +--+=,设直线1l 、2l 分别与圆M 交于点A 、B 和点C 、D ,现随机向圆M 内抛掷一粒黄豆,则黄豆落入四边形ACBD 内的概率为______. 【答案】2π【解析】 【分析】求出直线1l 、2l 的交点,恰为圆M 的圆心,且12l l ⊥,进而可得知AB 、CD 是圆M 两条相互垂直的直径,由此计算出四边形ACBD 的面积以及圆M 的面积,利用几何概型的概率公式可求得所求事件的概率. 【详解】直线1l 的斜率为112k =,直线2l 的斜率为22k =-,则121k k =-,12l l ∴⊥, 将圆M 的方程化为标准方程得()()2224x y a -+-=,圆心为()2,M a ,半径为2.联立直线1l 、2l 的方程22224x y a x y a -=-⎧⎨+=+⎩,解得2x y a =⎧⎨=⎩,两直线的交点为圆心M ,所以,AB 、CD 是圆M 两条相互垂直的直径,四边形ACBD 的面积为2114822S AB CD =⋅=⨯=, 因此,所求的概率为2822P ππ==⨯.故答案为:2π.【点睛】本题考查几何概型概率的计算,考查计算能力,属于中等题. 三、解答题17.如图,在四边形ABCD 中,2D B ∠=∠,AC BC =,2AD =,6CD =.(Ⅰ)当ACD ∆的面积最大时,求ABC ∆的面积; (Ⅱ)若3cos 3B =,求AB . 【答案】(Ⅰ)20;(Ⅱ)8. 【解析】 【分析】(Ⅰ)由ACD ∆的面积最大可知2ADC π∠=,利用勾股定理求出AC ,可判断出ABC ∆的形状,进而可求得ABC ∆的面积;(Ⅱ)利用二倍角余弦公式求出cos D ,在ACD ∆中利用余弦定理求出AC ,然后在ABC ∆中利用余弦定理求出AB .【详解】(Ⅰ)由1sin 2ACD S AD CD ADC ∆=⋅⋅∠知当2ADC π∠=时,ACD ∆的面积ACD S ∆最大,此时AC =,4B π=,此时,ABC ∆为等腰直角三角形,其面积为1202ACD S AC BC ∆=⋅=; (Ⅱ)21cos cos 22cos 13D B B ==-=-,在ACD ∆中,由余弦定理2222cos 48AC AD CD AD CD D =+-⋅=,AC ∴=AC BC =,2ACB B π∴∠=-,则()1cos cos 2cos 23ACB B B π∠=-=-=,在ABC ∆中,由余弦定理得2222cos 64AB AC BC AC BC ACB =+-⋅∠=, 因此,8AB =.【点睛】本题考查三角形面积的计算,同时也考查了利用余弦定理解三角形,考查计算能力,属于中等题.18.李华同学将参加英语考试,英语听力考试与笔试分开进行.英语听力一共五题,每题2分,李华同学做对一题的概率为34,而后又进行了笔试,李华同学在做阅读E (共4题)时,没有看懂文章,李华同学十分纠结,决定用丢色子的方法选出答案,若丢出1、2、5选A ,丢出3选B ,丢出4选C ,丢出6选D (已知4道题的正确答案依次为A 、C 、D 、D ) (I )求李华同学听力的6分的概率;(II )记随机变量李华做阅读E 时做对的题数为ξ,求ξ的分布列与期望. 【答案】(I )135512;(II )分布列见解析,随机变量ξ的期望值为1. 【解析】 【分析】(I )由题意可知,李华同学做对3道听力题,利用独立重复试验的概率公式可求出所求事件的概率;(II )由题意可知随机变量ξ的可能取值有0、1、2、3、4,分别计算出随机变量ξ在不同取值下的概率,可得出其分布列,并利用期望公式计算出()E ξ.【详解】(I )根据题意,听力一共五题,每题2分,李华同学做对一题的概率为34, 则听力得6分的概率为323533135144512P C ⎛⎫⎛⎫=⋅⋅-= ⎪ ⎪⎝⎭⎝⎭; (II )由题意,随机变量ξ的可能取值为0、1、2、3、4, 则李华做对4道阅读题的概率分别为12、16、16、16, 则()31112501126432P ξ⎛⎫⎛⎫==-⨯-=⎪ ⎪⎝⎭⎝⎭,()321311111200111126266432P C ξ⎛⎫⎛⎫⎛⎫==⋅-+⋅-⋅⋅-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()221233111111902111266266432P C C ξ⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅-+⋅-⋅⋅-= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()2323111111631126626432P C ξ⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅-+-⋅=⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ()3111426432P ξ⎛⎫==⋅=⎪⎝⎭. 所以,随机变量ξ的分布列为:因此,随机变量ξ的期望值为()12520090161012341432432432432432E ξ=⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查独立重复试验的概率问题,同时也考查了随机变量分布列以及数学期望等基础知识,考查计算能力,属于中等题. 19.设数列{}n a 的前n 项和n S .已知2*112121,,33n n S a a n n n N n +==---∈. (1)求数列{}n a 的通项公式;(2)是否对一切正整数n ,有121115131n a a a n ++⋯+<-+?说明理由. 【答案】(1)2n a n =;(2)对一切正整数n ,有121115131n a a a n ++⋯+<-+. 【解析】 【分析】(1)运用数列的递推式,结合等差数列的定义和通项公式,可得所求; (2)对一切正整数n ,有121115131n a a a n ++⋯+<-+, 考虑当3n ≥时,22111111(1211n a n n n n =<=---+),再由裂项相消求和,即可得证. 【详解】(1)2121233n n S a n n n +=--- 321112(1)(2)2333n n n n n n S na n n n na ++++∴=---=-当2n ≥时,1(1)(1)2(1)3n n n n n S n a --+=--两式做差得11222(1)(1)n n n n n a S S na n a n n -+=-=---+111n n a a n n+∴-=+,11n an n n ∴=+-=2(2)n a n n ∴=≥,当1n =时,上式显然成立,2n a n ∴=.(2)证明:当3n ≥时,22111111(1211n a n n n n =<=---+) 可得12111111111111151111(=-)422435211321n a a a n n n n n n ++⋯+=++-+-++-+-+--++)(由11111111))0211212(1)n n n n n n n +-=-=>++++(( 可得1111)211n n n +>++(即有5111-)321n n ++(<51-31n +则当3n ≥时,不等式成立.检验1,2n =时,不等式也成立,综上对一切正整数n,有121115131n a a a n ++⋯+<-+. 【点睛】本题考查数列递推式,考查数列求和,考查裂项法的运用,确定数列的通项是关键.20.已知椭圆()2222:10x y C a b a b +=>>的离心率为22,且过点()2,1P .(Ⅰ)求椭圆C 的方程;(Ⅱ)过点P 作两直线1l 与2l 分别交椭圆C 于A 、B 两点,若直线1l 与2l 的斜率互为相反数,求AB 的最大值.【答案】(Ⅰ)22163x y +=;(Ⅱ)4. 【解析】 【分析】(Ⅰ)根据题意得出关于a 、b 、c 的方程组,解出a 、b 、c 的值,即可得出椭圆C 的方程; (Ⅱ)设直线1l 的方程为()21y k x =-+,可得出直线2l 的方程为()21y k x =--+,联立直线1l 与椭圆C 的方程,可求得点A 的坐标,同理得出点B 的坐标,利用弦长公式求出AB 关于k 的表达式,利用基本不等式可求得AB 的最大值.【详解】(Ⅰ)由题意有:222222411c e a a b c a b ⎧==⎪⎪⎪⎨+=⎪⎪=-⎪⎩,解得633a b c ⎧=⎪⎪=⎨⎪=⎪⎩因此,椭圆C 的方程为22163x y +=;(Ⅱ)设直线1l 为()21y k x =-+,则直线2l 为()21y k x =--+,联立方程有:()2221163y k x x y ⎧=-+⎪⎨+=⎪⎩()()()222221488840k x k k x k k ⇒++-+--=, ()()()()22222844218841610k k k k k k ∆=--+--=+>,解得1k ≠-.22228844422121A P A k k k k x x x k k ----∴=⇒=++,则()222412121A A k k y k x k --+=-+=+. 同理可得:2244221B k k x k +-=+,2224121B k k y k -++=+. ()()()222222221281281612144A B A B k AB x x y y k k k ∴=-+-==≤=+++,当且仅当12k =±时,等号成立,因此,AB 的最大值为4.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中弦长最值的计算,考查计算能力,属于中等题.21.已知定义域为()0,∞+的函数()f x 满足()()2f x f x '+=()f x '是()f x 的导函数, 2.71828e =),12f ⎛⎫= ⎪⎝⎭. (Ⅰ)求函数()()22x g x e e f x =的最大值;(Ⅱ)若对于任意正实数a 、b 都有()222211432ab f x ae b ≤++成立,求x 的取值范围. 【答案】(Ⅰ)0;(Ⅱ),22⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭. 【解析】 【分析】(Ⅰ)利用导数分析函数()y g x =的单调性,进而可求得函数()y g x =的最大值;(Ⅱ)利用基本不等式求出22211432ab a e b ++的最小值为12f ⎛⎫⎪⎝⎭,可得出()212f x f ⎛⎫≤ ⎪⎝⎭,由(Ⅰ)得出()2x f x e ≥,结合()()2x f x f x e='+得出()0f x '≤,进而可得出函数()y f x =的单调性,由此可得212x ≥,由此可得出x 的取值范围. 【详解】(Ⅰ)()()22x g x e e f x =,()()()12221422x x x g x ee x ef x e f x -=-''∴-()()2242x x x x x x e f x f x e e e e e ⎤=-=+-=⎥⎣⎣'⎦⎦. 令()0g x '>,得102x <<;令()0g x '<,得12x >. 所以,函数()y g x =在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞⎪⎝⎭上单调递减,()max 102g x g ⎛⎫∴== ⎪⎝⎭;(Ⅱ)222111143232322ab ab ab f a e b eab ⎛⎫++≥=+≥== ⎪⎝⎭, 等号成立时2224132a e b ab eab ⎧=⎪⎨=⎪⎩,即22232a eb ea b =⎧⎨=⎩,由题意得()212f x f ⎛⎫≤ ⎪⎝⎭,①由(Ⅰ)()()21202xg x e e f x g ⎛⎫=≤= ⎪⎝⎭,得()2x f x e≥,又()()2xf x f x e='+得()0f x '≤,()f x 单调递减,所以①式等价于212x ≥,即,,22x ⎛⎫∈-∞-⋃+∞ ⎪ ⎪⎝⎦⎣⎭. 【点睛】本题考查利用导数求函数的最值,同时也考查了函数不等式的求解,利用导数分析函数的单调性是解答的关键,考查分析问题与解决问题的能力,属于中等题.22.在直角坐标系xOy 中,直线l的参数方程为222x a y a ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),以原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 44πρρθ⎛⎫-+= ⎪⎝⎭. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程;(Ⅱ)若直线l 被曲线C 所截得的弦长为,求a 的值.【答案】(Ⅰ):3l y x a =-,22:224C x y ax ay +-+=;(Ⅱ)2±.【解析】 【分析】(Ⅰ)在直线l 的参数方程中消去参数t 可得出直线l 的普通方程,将曲线C 的极坐标方程变形为()22cos sin 4a ρρθθ--=,利用极坐标方程与普通方程的转换关系可得出曲线C 的普通方程;(Ⅱ)计算出圆心到直线l 的距离,利用勾股定理可得出关于a 的等式,可求得a 的值.【详解】(Ⅰ)()22cos 42cos sin 44a πρρθρρθθ⎛⎫-+=⇒--= ⎪⎝⎭. 所以,曲线C 的直角坐标方程为22224x y ax ay +-+=,在直线l 的参数方程中消去参数t ,得3y x a =-,即直线l 的普通方程为3y x a =-; (Ⅱ)圆C 的标准方程为()()22224x a y a a -++=+,圆心为(),a a -,半径为r ,圆心(),a a -到直线l 的距离d =直线l 被曲线C 所截得的弦长===,解得2a =±.【点睛】本题考查参数方程、极坐标方程与普通方程的转化,同时也考查了直线截圆所得弦长的计算,考查计算能力,属于中等题. 23.已知函数()213f x x x =---. (Ⅰ)解不等式()0f x >;(Ⅱ)若不等式()243m m x f x -+->对x ∈R 恒成立,求实数m 的取值范围.【答案】(Ⅰ)()4,2,3⎛⎫-∞-+∞ ⎪⎝⎭;(Ⅱ)()(),55,-∞-+∞.【解析】 【分析】(Ⅰ)由()0f x >得出213x x ->-,不等式两边平方,化简后解二次不等式即可; (Ⅱ)由题意得出242126m m x x ->---对任意的x ∈R 恒成立,利用绝对值三角不等式求得2126x x ---的最大值,可得出关于m 的不等式,解出即可.【详解】(Ⅰ)由()0f x >得213x x ->-,则22213x x ->-,得()()2340x x +->,解得2x <-或43x >, 因此,不等式()0f x >的解集为()4,2,3⎛⎫-∞-⋃+∞⎪⎝⎭; (Ⅱ)不等式()243m m x f x -+->对x ∈R 恒成立,即243213m m x x x -+->---,即242126m m x x ->---恒成立,由绝对值三角不等式得()()212621265x x x x ---≤---=,当且仅当3x ≥时,等号成立,所以245m m ->,解得5m >,则5m <-或5m >. 因此,实数m 的取值范围是()(),55,-∞-⋃+∞.【点睛】本题考查绝对值不等式的求解,同时也考查了利用绝对值不等式恒成立求参数的取值范围,涉及绝对值三角不等式的应用,考查计算能力,属于中等题.- 21 -。
河南省天一大联考2020届高三上学期阶段性测试(一)数学理科试卷含答案

绝密★启用前天一大联考 2019—2020学年髙中毕业班阶段性测试(一)数学(理科)考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本诫卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={3|-=x y x },B={0<67|2+-x x x },则=B A C R )(A.{3<<1|x x }B.{6<<1|x x }C.{31|≤≤x x }D.{61|≤≤x x }2.已知i z i z 43,10521+=-=,且复数z 满足2111z z z +=,则z 的虚部为 A. i 252 B. i 252- C. 252 D. 252- 3. 某单位共有老年、中年、青年职工320人,其中有青年职工150人,老年职工与中年职工的人数之比为 7:10,为了了解职工的身体状况,现采用分层抽样方法进行调查,抽取的样本中有青年职工30人,则抽取 的老年职工的人数为A.14B.20C.21D.704.设等差数列{n a }的前n 项和为n S ,若40,25732==S a a a ,则=7aA. 13B.15C.20D.225.已知向量b a ,满足b b a b a ⊥-==)(,1||,2||,则a 与b 的夹角为 A. 6π B. 3π C. 2π D. 32π 6.马拉松是一项历史悠久的长跑运动,全程约42千米.跑马拉松对运动员的身体素质和耐力是极大的考验,专业的马拉松运动员经过长期的训练,跑步时的步輻(一步的距离)—般略低于自身的身髙,若某运动员跑完一次全程马拉松用了 2.5小时,则他平均每分钟的步数可能为A.60B. 120C. 180D.2407.某几何体的三视图如阁所示,则该几何体的侧面积为A. π253 B. π2536+ C. π53 D. π536+ 8.已知双曲线E: 1322=-y x ,F 为E 的左焦点,P ,Q 为双曲线E 右支上的两点,若线段PQ 经过点(2,0),PQF ∆的周长为58,则线段PQ 的长为 A.2 B. 52 C.4 D. 549.已知函数)()(x x e e x x f --=,若)1(<)12(+-x f x f ,则x 的取值范围是 A. )3,31(- B. )31,(--∞ C. ),3(+∞ D. ),3()31,(+∞--∞ 10.已知椭圆C: )0> b 0,> (12222a b y ax =+的左、右顶点分别为A ,B,点M 为椭圆C 上异于A,B 的一点.直线AW 和直线BM 的斜率之积为41-,则椭圆C 的离心率为 A. 41 B. 21 C. 23 D. 415 11.设函数x x f ππsin 2)(-=在),0(+∞上最小的零点为0x ,曲线)(x f y =在点(0x ,0)处的切线上有一点P ,曲线x x y ln 232-=上有一点Q ,则||PQ 的最小值为A. 510B. 55C. 10103D. 5102 12.已知四棱锥P-ABCD 的四条俩棱都相等,底面是边长为2的正方形,若其五个顶点都在一个表面积为481π的球面上,则PA 与底面ABCD 所成角的正弦值为 A. 32 B. 32或35 C.322 D. 31或322 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天一原创试题(理科)
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.集合{}2log 2A x x =≤,{}1B x x =>-则A
B =( ) A .{14}x x -<≤
B .{14}x x -<<
C .{04}x x <≤
D .{4}x x ≤ 【答案】D 【解析】根据题意可得{}{}2log 204x A x x x ≤<=≤=,因为A
B ={04}x x <≤,故选
C .
2.以下四个命题中,真命题的个数是
① 存在正实数,M N ,使得log log log M N MN a a a +=; ② 若函数满足(2018)(2019)0f f ⋅<,则()f x 在(2018,2019)上有零点的逆命题;
③ 函数(21)()log x a
f x -=(0a >≠且a 1)的图像过定点(1,0) ④ “x =-1”是“x 2-5x -6=0”的必要不充分条件.
A.1
B.2
C.3
D.4
【答案】B
【解析】根据对数运算法则知①正确;函数()f x 在(2018,2019)上有零点时,函数()f x 在x =2018和x =2019处的函数值不一定异号,故逆命题错误,故②错误;因为无论a 取何值(1)0f =,所以函数()f x 的图像过定点(1,0),故③正确;当x =-1时,x 2-5x -6=0;x 2-5x -6=0时,x =-1或x =6,所以是充分不必要条件,故④错误;故选B
3.若,,,a b c R a b ∈>,则下列不等式成立的是
A .22ac bc >
B .a c b c > C.1
1()()22a b > D.2211
a b c c >++ 【答案】D
【解析】对于A ,当c=0,显然不成立;对于B ,令a =1,b =-2,c =0,错误;对于C ,根据指数函数的单调性应为11()()22a b <;对于D ,∵a>b ,c 2+1>0,∴2211
a b c c >++,故选D. 4.已知函数,0()(),0
x e x f x g x x ⎧≥=⎨<⎩为定义域内的偶函数,则1(ln )2g =( ) A.2 B.
12 C.-2 D.12- 【答案】A
【解析】解法1:ln 21
1(ln )(ln )(ln 2)2
22g f f e ====
解法2:,0,0()()(),0(),0x x e x e x f x f x g x x g x x --⎧⎧-≥≤-===⎨⎨--<->⎩⎩
,所以()x
g x e -=,则1ln 21(ln )22g e -==,故选A. 5.在海昏侯墓中发掘出堆积如山的“汉五铢”铜钱.汉代串铜钱的丝绳或麻绳叫“缗”,后来演变为计量铜钱的单位,1000枚铜钱用缗串起来,就叫一缗.假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为
A .6210⨯枚
B .62.0210⨯枚
C .62.02510⨯枚
D .62.0510⨯枚 【答案】B
【解析】由题意可知,构成一个以首项为70缗,末项为31缗,公差为-1的等差数列,易求得项数为40,则和为()4070+31==20202
S ⨯缗,这一堆铜钱的数量为620201000 2.0210⨯=⨯枚. 6.如图,在ABC ∆中,BA=BC=3,点D 在线段AC 上,且13CD CA =,点E 在线段AB 上,且13
AE AB =,当0120ABC ∠=时,ED BD ⋅=( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解法一:()()
ED BD EB BC CD BC CD ⋅=++⋅+ 211[()][()]333
BA BC BA BC BC BA BC =-++-⋅+- 22121241()()3333399
BA BC BA BC BC BA =-+⋅+=-=,故选C.
解法二:建立如图所示的直角坐标系,由13CD CA =,13
AE AB =可得3((,22E D -则
533(,),(,2222ED BD =-=,所以5332222
ED BD ⋅=⨯-=,故选C.
7.在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若22(),3b a b c c c -=-=,ABC ∆,则b=( )
A .1
B .2
C
D .4
【答案】B
【解析】由22()b a b c c -=-得222
b c a bc +-=,则2221cos 22b c a A bc +-==,所以3A π=,又
1sin 2ABC S bc A ∆==c=3,所以b=2,故选B. 8.已知a>0,且b>0,且
12,a b 的等差中项为2,则2a b +的最小值为 A.34 B .54 C.74 D .94
【答案】D 【解析】
12,a b 的等差中项为2,可得12+=4a b ,112122192=2154444b a a b a b a b a b +⋅+⋅≥⋅(+)()=(+++4)(+4)=,当且仅当22b a a b =时,等号成立,故2a b +的最小值为94
9.已知函数f(x)=93
x x m +为奇函数,若对任意的[0,)x ∈+∞都有()2x f x k >⋅成立,则实数k 的取值范围 A .(,0)-∞ B .(0,)+∞ C .(,0]-∞ D .[0,)+∞
【答案】A
【解析】由函数f(x)是奇函数可知f(0)=1+m =0,解得m =-1.
∵x ∈[0,+∞),均有()2x
f x k >⋅,即9123x x x k ->⋅成立,∴916x x k ->对x≥0恒成立,31()()26x x k <-, ∴令31()()()26x x
g x =-,则()g x 在[0,+∞)上单调递增,∴00min 31()()()026k g x <=-=,∴k<0.
∴实数k 的取值范围是(,0)-∞,故选A .
10.已知函数()f x x α=在(1,1)处的切线方程为1122y x =
+.令*1,(1)()n a n N f n f n =∈++.记数列{a n }的前n 项和为S n ,则10n S =,则n 的值
A.190
B.120
C.121
D.122
【答案】B
【解析】由(1)1f =,可得'1'(),(1)f x x f ααα-=⋅=,切线方程为1(1)y x α-=-,又因切线方程为1122
y x =+
则121,()
2f x x α=∴=,∴1(1)()n a f n f n ===++,
122018n S a a a =+++=1)(1n +++++1,
1=10120n ∴=,,故选B 。
11.已知非零向量,a b 满足||2||a b =,若实数λ使得|2|||a b a b λ+≥+恒成立,则λ的取值范围为。