二次根式的化简求值(习题)
考点02 二次根式的运算与化简求值专项练习(解析版)

人教版2020——2021年八年级下册新题二次根式的运算与化简求值专项练习1.(2020秋•遵化市期末)计算:(1)﹣(1﹣);(2)(2+6)×÷2.【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据二次根式的乘除法和加法可以解答本题.【解答】解:(1)﹣(1﹣)=﹣+3=3;(2)(2+6)×÷2=(2×+6×)×=(4+18)×=2+9.2.(2020秋•太平区期末)计算题:(1);(2)×﹣;(3)(+3)×(3﹣)﹣(﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后约分即可;(2)利用二次根式的乘除法则运算;(3)根据平方差公式和完全平方公式计算.【解答】解:(1)原式==6;(2)原式=﹣(﹣)=10﹣(2﹣)=8+;(3)原式=9﹣5﹣(3﹣2+1)=4﹣4+2=2.3.(2020秋•市中区期末)计算:(1)﹣4+2;(2)﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的除法法则运算,然后化简后合并即可.【解答】解:(1)原式=3﹣2+4=5;(2)原式=+﹣4=2+3﹣4=1.4.(2020秋•项城市期末)计算:(1);(2).【分析】(1)根据二次根式的乘法法则运算;(2)根据平方差公式计算.【解答】解:(1)原式=2××+5=3+5;(2)原式=(2)2﹣()2=12﹣6=6.5.(2020秋•织金县期末)计算下列各题:(1)﹣+;(2)﹣(3﹣1)2.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用二次根式的除法法则和完全平方公式计算.【解答】解:(1)原式=3﹣+=;(2)原式=+﹣(18﹣6+1)=2+4﹣19+6=6﹣13.6.(2020秋•沈河区期末)计算:(1)﹣+2÷;(2)﹣×.【分析】(1)直接利用二次根式的混合运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案.【解答】解:(1)﹣+2÷=2﹣+2=+2;(2)﹣×=1+﹣2=﹣1.7.(2020秋•碑林区校级期末)计算:(1)2﹣2+;(2)(﹣2)2﹣.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和二次根式的除法法则运算.【解答】解:(1)原式=6﹣+=6;(2)原式=3﹣4+4﹣(﹣)=7﹣4﹣3+2=6﹣4.8.(2020秋•武侯区期末)计算:(1)(π﹣2020)0﹣2++|1﹣|.(2)﹣(﹣)(+).【分析】(1)根据零指数幂、立方根的定义和绝对值的意义计算;(2)根据二次根式的除法法则和平方差公式计算.【解答】解:(1)原式=1﹣﹣2+﹣1=﹣2;(2)原式=+﹣(3﹣2)=2+3﹣1=4.9.(2020秋•郫都区期末)计算:(1)÷+×﹣;(2)(+2)2﹣(+2)(﹣2).【分析】(1)直接利用二次根式的性质分别化简得出答案;(2)直接利用二次根式的混合运算法则化简得出答案.【解答】解:(1)原式=+5﹣3=3;(2)原式=5+4+4﹣(5﹣4)=9+4﹣1=8+4.10.(2020秋•龙华区期末)计算题(1)+(+2)(﹣2);(2)6+|1﹣|﹣(+1)÷.【分析】(1)先化简二次根式,利用平方差公式计算,再进一步计算即可;(2)先化简二次根式、去绝对值符号、除法转化为乘法,再计算乘法,最后计算加减即可.【解答】解:(1)原式=+()2﹣22=2+3﹣4=1;(2)原式=6×+﹣1﹣(+1)×=3+﹣1﹣3﹣=﹣1.11.(2020秋•新化县期末)已知a=1+,b=1﹣,求:(1)求a2﹣2a﹣1的值;(2)求a2﹣2ab+b2的值.【分析】(1)根据完全平方公式把原式变形,把a的值代入计算即可;(2)根据完全平方公式把原式变形,把a、b的值代入计算即可.【解答】解:(1)原式=a2﹣2a+1﹣2=(a﹣1)2﹣2,当a=1+时,原式=(1+﹣1)2﹣2=0;(2)a2﹣2ab+b2=(a﹣b)2,当a=1+,b=1﹣时,原式=(1+﹣1+)2=8.12.(2020秋•永年区期末)已知x=.(1)求代数式x+;(2)求(7﹣4)x2+(2﹣)x+的值.【分析】(1)根据分母有理化把x的值化简,计算即可;(2)根据二次根式的混合运算法则计算,得到答案.【解答】解:(1)x===2+,则=2﹣,∴x+=2++2﹣=4;(2)(7﹣4)x2+(2﹣)x+=(7﹣4)(2+)2+(2﹣)(2+)+=(7﹣4)(7+4)+(2﹣)(2+)+=49﹣48+4﹣3+=2+.13.(2020春•遵义期末)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2;(2).【分析】(1)原式利用完全平方公式变形,把a与b的值代入计算即可求出值;(2)原式通分并利用同分母分式的减法法则变形,把a与b的值代入计算即可求出值.【解答】解:(1)∵x=+1,y=﹣1,∴原式=(x+y)2=(+1+﹣1)2=(2)2=8;(2)∵x=+1,y=﹣1,∴原式====2.14.(2020春•浦北县期末)已知:m=+2,n=﹣2,求(1)m﹣n的值;(2)mn的值.【分析】(1)把m与n的值代入原式计算即可求出值;(2)把m与n的值代入原式计算即可求出值.【解答】解:(1)当m=+2,n=﹣2时,m﹣n=(+2)﹣(﹣2)=+2﹣+2=4;(2)当m=+2,n=﹣2时,mn=(+2)×(﹣2)=5﹣4=1.15.(2020春•和县期末)已知x=2+,y=2﹣,求代数式x2﹣y2的值.【分析】根据二次根式的加减法法则分别求出x+y、x﹣y,根据平方差公式把原式变形,代入计算即可.【解答】解:∵x=2+,y=2﹣,∴x+y=4,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=8.16.(2020春•潮南区期末)已知a=+2,b=﹣2.求下列式子的值:(1)a2b+ab2;(2)(a﹣2)(b﹣2).【分析】(1)将所求式子因式分解,然后将a+b和ab的值代入即可解答本题;(2)将a、b的值代入所求式子,即可解答本题.【解答】解:(1)∵a=+2,b=﹣2,∴a+b=2,ab=1,∴a2b+ab2=ab(a+b)=1×2=2;(2)∵a=+2,b=﹣2,∴(a﹣2)(b﹣2)=(+2﹣2)×(﹣2﹣2)=×(﹣4)=5﹣4.17.(2020春•姑苏区期末)已知:a=,b=.求值:(1)ab;(2)a2﹣3ab+b2;【分析】根据二次根式的运算法则即可求出答案.【解答】解:(1)ab=(+)(﹣)=5﹣3=2.(2)a﹣b=+﹣+=2,∴a2﹣3ab+b2=(a﹣b)2﹣ab=12﹣2=10.18.(2020春•临邑县期末)已知x=,y=.(1)计算x+y=2;xy=4;(2)求x2﹣xy+y2的值;【分析】(1)先将知x=,y=进行分母有理化.然后代入求值;(2)将x2﹣xy+y2的化成(x+y)2﹣3xy,然后将(1)中数据代入求值.【解答】解:∵已知x=,y=.∴x==,y==﹣1.(1)x+y=+1+﹣1=2,xy=(+1)(﹣1)=4.故答案为2,4;(2)x2﹣xy+y2=(x+y)2﹣3xy=(2)2﹣3×4=20﹣12=8.19.(2020春•鱼台县期末)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.【分析】原式第一项约分,第二项利用完全平方公式化简,第三项利用二次根式性质计算得到最简结果,把x的值代入计算即可求出值.【解答】解:∵x=+1>0,∴原式=+x2﹣4x+4﹣2x=4x+x2﹣4x+4﹣2x=x2﹣2x+4=(x﹣1)2+3=5+3=8.20.(2020春•马山县期末)已知:x=+,y=﹣,求代数式x2﹣y2+5xy的值.【分析】首先把代数式利用平方差公式因式分解,再进一步代入求得答案即可.【解答】解:∵x=+,y=﹣,∴x2﹣y2+5xy=(x+y)(x﹣y)+5xy=2×2+5(+)(﹣)=4+5.。
初二数学二次根式试题答案及解析

初二数学二次根式试题答案及解析1.(6分)化简:(+)-(+6)÷.【答案】.【解析】分别利用二次根式的乘除运算法则化简,进而合并得出即可.试题解析:(+)-(+6)÷=2+3﹣3﹣=.【考点】二次根式的混合运算.2.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.3.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.计算:【答案】3【解析】先进行乘方、分母有理化及负整数指数幂,最后合并同类二次根式即可求解.原式=【考点】实数的混合运算.6.若,则。
A.B.C.0D.2【答案】A.【解析】∵∴x+y=2,x-y=2∴原式=(x+y)(x-y)=2×2=4.故选A.考点: 二次根式的化简求值.7.若,则的取值范围是。
【答案】x≥0.【解析】根据(a≥0),可得答案.试题解析:解;∵,∴2x≥0,∴x≥0.考点: 二次根式的性质与化简.8.计算()(+++…+)【答案】2013.【解析】根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:()(+++…+)=()(-1+-+-+…+-)=()()=2014-1=2013.考点: 分母有理化.9.已知+,那么 .【答案】8【解析】由+,得,所以.10.已知、b为两个连续的整数,且,则= .【答案】11【解析】∵,、b为两个连续的整数,又<<,∴ =6,b=5,∴.11.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.12.下列说法正确的是……()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1D.的平方根是-1【答案】A.【解析】根据平方根的定义即可判定A.0的平方根是0,故说法正确;B.1的平方根是±1,故说法错误;C.-1的平方根是-1,负数没有平方根,故说法错误;D.(-1)2=1,1的平方根为±1,故说法错误【考点】平方根.13.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.14.计算:【答案】5【解析】解:原式【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
二次根式的计算与化简练习题(提高篇)(可编辑修改word版)

2 m 2 + 1- 2 m 2(1- x )2 4a - 4b (a - b )3 二次根式的计算与化简练习题(提高篇)1、已知 m 是 的小数部分,求 的值。
2、化简(1) - (2) 1232x 3 + 2x- x 2(3) + - a 3 - a 2b (a > 0)3、当 x = 2 - 时,求(7 + 4 3)x 2 + (2 +3)x + 的值。
x 2 - 8x +16x 2 50 x3 3b 27a 3b 3 2 2 + 3 x 2 14、先化简,再求值: 2a - + 2ab 6,其中 a = , b = 3 。
96、已知a = -1,先化简 +a -1 + 4a 2 -16 ÷ 4a 2 + 8a ,再求值。
a 2- aa 2- 2a +1 a 2 - 4a + 4 a - 27、已知: a = 1 , b =a 2 -b 2 ,求 的值。
2a + 2b9、已知0 ≤ x ≤ 3 ,化简 + 3ab 33 ab4 a 2- 2a +1 1 2 - 3x 2 - 6x + 9a 2 - 2a + 1 y 2 x x x 2 3a 27a 3110、已知a = 2 - ,化简求值1 - 2a + a 2 - a - 1 a 2 - a -a11、①已知 x = 2 - 3, y = 2 + 3, 求:x 2 + xy + y 2 的值。
②已知 x =+1 ,求 x +1-x 2x -1的值.③ 4 + 6- (7 + 5 )④ ( - 3 ) ÷3 2 y 29a3a a ⎪ ⎭ a -b a - b - ⎛a a + ab -⎝ b b - ab- 1 ( 2)⎪12、计算及化简:⑴. ⎛ 1 ⎫2⎛ + ⎪ 1 ⎫2⑵.- ⎝a ⎭ ⎝a + 2 ab + b ⎫⑷. ÷ a - b ⎭13、已知: a + = 1+ a,求 a 2+ 1a2的值。
二次根式化简习题大全

二次根式化简习题大全 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】二次根式化简练习一、 化简下列二次根式 =12 =8 =18 20=60= =72 =80 =90=108 125= =128 =135二、 比较下列二次根式的大小182_____123 2421 ____2731 12554 ___16932 403_____602三、 化简=38x 212x =x 232532⨯⨯=292ab = a c b 16332 = 2312a c b ==-22513 =+22158211-= 二选择题1.若-1<x <0,则()221+-x x 等于 +12.下列等式成立的是 A.2)2(2-=- B.4x =x 2 122++b b =-1 D.36x x = 3.若1)3()2(22=-+-a a ,则a 的取值范围是≤a ≤3 ≥3或a ≤2 ≤2 ≥34.化简a +2)1(a -等于 或-1 或1 5.计算22)21()12(a a -+-的值是 或4a -26.当3323+-=+x x x x 时,x 的取值范围是≤0 ≤-3 ≥-3 ≤x ≤07当a >0时,化简3ax -的结果是ax ax - ax - ax8.实数a ,b 在数轴上对应点的位置如图所示,则化简2222a b ab a -+-的结果为9.计算22)53()52(-+-等于5 5 510.下列二次根式中,是同类二次根式的是 A.b c a bc a 3与 B.23b a 与ab C.a 2与34a D.b a 与23b a 三.填空题1.代数式xx x -+++213有意义的条件是 ; x x 263-+-有意义的条件是2.函数xx x y -++-=2132的自变量x 的取值范围是 3化简12=____. .2)23(-= . 4.|)1(1|,22a a +--<化简时当得 . 5.若三角形的三边a ?b ?c 满足a 2-4a +4+3-b =0,则笫三边c 的取值范围是_____________.6.若m <0,则|m |+______332=+m m .已知:42<<x ,化简()|5|12-+-x x =_________.三解答题1.计算 221--22+0)101(+1)21(- 2)52(80182445-+-++ 3.小明和小芳解答题目:"先化简下式,再求值:a +221a a +-,其中a =9"时,得出了不同的答案.小明的解答是:原式=a +2)1(a -=a +(1-a )=1; 小芳的解答是:原式=a +2)1(a -=a +(a -1)=2a -1=2×9-1=17.(1)_________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________.4.若│1995-a │+2000a -=a ,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值5已知,化简求值 6、已知,先化简,再求值。
八年级数学_二次根式的化简求值_练习题及答案

(4)已知a= ,b= ,求 的值.
解析:a= ,同理b= ;
a + b= + =10,a b=( )( )=1,然后将所要求值的式子用a + b和a b表示,再整体代入求值即可.
答案:解:因为a= ,b= ,
所以a + b= + =10,a b=( )( )=1.1.若 ,Βιβλιοθήκη ,则xy的值是( )A. B.
C.m + nD.m-n
解析:xy= = = .
例2阅读材料:“黑白双雄,纵横江湖;双剑合璧,天下无敌.”这是武侠小说的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”,如:(2+ )(2- )=1,( + )( - )=3,它们的积不含根号,我们就说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式.于是,二次根式的除法可以这样解:如 = = , = = ,像这样,通过分子、分母同乘一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.
6(a2+2a)-12=6×6-12=24.
举一反三:
4.设a= -1,则3a3+12a2-6a-12=( )
A. 24 B. 25 C. D.
解析:由a= -1得a+1= ,两边平方得a2+2a+1=7,所以a2+2a=6,所以3a3+12a2-6a-12=3a(a2+2a)+6a2-6a-12=3a×6+6a2-6a-12=6a2+12a-12=
∴ - > - .
小结:比较两个二次根式大小的方法很多,最常用的是平方法和取倒数法,还可以将根号外因子移到根号内比较,但这时要注意:(1)负号不能移到根号内;(2)根号外正因子要平方后才能从根号外移到根号内.
二次根式200题

二次根式200题(含解析)1. 计算:2.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.3.已知,求代数式(x+1)2-4(x+1)+4的值.4.先化简,再求值:.5.(1)计算:;(2)化简,求值:,其中x=-1.6.先化简、再求值:+,其中x=,y=.7.计算:(1)(-2)2+3×(-2)-()-2;(2)已知x=-1,求x2+3x-1的值.8.先化简,再求值:,其中.9.已知a=2+,b=2-,试求的值.10.先化简,再求值:,其中a=+1,b=.11.先化简,再求值:,其中,.12.先化简,再求值:,其中a=-1.13.先化简,再求值:(x+1)2-2x+1,其中x=.14.化简,将代入求值.15.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.16.先化简,再求值:,其中.17.先化简,再求值:,其中.18.求代数式的值:,其中x=2+.19.已知a为实数,求代数式的值.20.已知:a=-1,求的值.21.已知x=1+,求代数式的值.22.先化简,再求值:,其中x=1+,y=1-.23.有这样一道题:计算-x2(x>2)的值,其中x=1005,某同学把“x=1 005”错抄成“x=1 050”,但他的计算结果是正确的,请回答这是怎么回事?试说明理由.24.已知:x=,y=-1,求x2+2y2-xy的值.25.已知实数x、y、a满足:,试问长度分别为x、y、a的三条线段能否组成一个三角形?如果能,请求出该三角形的面积;如果不能,请说明理由.26.我国古代数学家秦九韶在《数书九章》中记述了“三斜求积术”,即已知三角形的三边长,求它的面积.用现代式子表示即为:…①(其中a、b、c为三角形的三边长,s为面积).而另一个文明古国古希腊也有求三角形面积的海伦公式:s=…②(其中p=.)(1)若已知三角形的三边长分别为5,7,8,试分别运用公式①和公式②,计算该三角形的面积s;(2)你能否由公式①推导出公式②?请试试.27.(1)计算28.(2)解不等式组.29.已知a=+2,b=-2,则的值为()30.已知a=2,则代数式的值等于()31.已知x=,则代数式的值为()32.已知x=,则•(1+)的值是()33.若,则的值为()34.已知,则的值为()35.如果最简二次根式与是同类二次根式,则a= .36.若最简根式与是同类二次根式,则ab= .37.计算:①= ;②= .38.化简-= .39.化简-的结果是.40.计算:= .41.计算:+= .42.化简:= .43.化简:-+= .44.计算:= .45.先化简-(-),再求得它的近似值为(精确到0.01,≈1.414,≈1.732).46.化简:的结果为.47.计算:= .48.化简:= .49.化简:+(5-)= .50.计算:= .51.计算:= .52.分解因式:a2-a= ;化简:= ;计算:(-2a)•(a3)= .53.若x=,y=,则x+y的值为.54.计算:= .55.化简:= .56.若x≥0,= .57.当m<3时,=58.计算:-(-3)= ;如图所示,化简= .59.实数a在数轴上的位置如图所示,则化简|a-2|+的结果为.60.已知a<2,则= .61.当x>2时,化简= .62.计算:+|-2|+(2-π)063.计算:.64.计算:-(-2009)0+()-1+|-1|.65.计算:66.计算:(π-1)0++-2.67.计算:.68.计算:.69.计算:70.计算:.71.不使用计算器,计算:.72.计算:73.计算:.74.计算:.75.计算:.76.计算:77.不使用计算器,计算:78.计算:(-2)2-()-1×+(1-)0.79.计算:(-1)-1--(2-tan50°)0.80.计算:(1+)-()0.81.计算:.82.(1)计算:+-;(2)先化简,再求值:(a+b)(a-b)+a(2b-a),其中a=1.5,b=2.83.(1)计算:;(2)化简:.84.计算:|-|+(-2)2+(3.14-π)085.计算:= .86.化简二次根式:= .87.若a=,b=-2,则a+b= .88.化简:= .89.计算:+-= .90.计算2-(-1)= ,-= ,(a-1)(a+1)=91.计算:+= .92.计算:= .93.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A⇒B⇒C所走的路程为m.94.计算:-(cos30°)095.计算:.96.计算:.97.计算:98.计算:.99.若a=,b=-2,则a+b= .100.化简:= .101.计算:+-= .102.计算2-(-1)= ,-= ,(a-1)(a+1)= 103.计算:+= .104.计算:= .105.计算:×-= .106.计算:= .107.计算:= .108.定义运算“@”的运算法则为:x@y=,则(2@6)@8= .109.化简:= .110.化简:= .111.当x=时,代数式x2-3x+3的值是.112.已知x=,则的值等于.113.如图,矩形内两相邻正方形的面积分别是2和6,那么矩形内阴影部分的面积是.(结果保留根号)114.计算:-(cos30°)0115.已知x=+1,求x2-2x-3的值.116.先化简,再求值,其中a=,b=.117.计算:.118.计算:.119.计算:120.计算:.121.计算:.122.计算:(2-)(2+)+(-1)2010.123.化简:.124.化简或解方程组:(1)(2).125.(1)计算;(2)分解因式(x+2)(x+4)+x2-4.126.化简:(1);127.计算:128.先分解因式,再求值:b2-2b+1-a2,其中a=-3,b=+4.129.先化简,再求值:,其中x=-2.130.先化简,再求值:,其中x=-1.131.先化简,再求值:,其中x=.132.先化简,再求值:,其中a=+1 133.化简求值:,其中x=3-1,y=-2+1.134.已知m=,先化简再求值:.135.先化简,再求值:,其中x=.136.已知a=,求代数式的值.137.化简求值:,其中a=.138.已知x=2,y=,求的值.139.先化简,再求值:,其中x=-2.140.解不等式:+1≥x,并将解集表示在数轴上.141.先化简,再求值:,其中a=b.142.化简求值:,其中a=.143.先化简,再求值:,其中a=,b=.144.先化简,再求值:,其中a=4+.145.先化简,再求值,其中x=.146.先化简,再求值,其中x=.147.化简求值:,其中x=-2.148.先化简,再求值:,其中x=-1.149.先化简,再求值:÷x,其中x=.150.先化简后求值:,其中x=2.151.化简并求值:,其中x=+1.152.已知x=-1,求的值.153.先化简,然后给x赋一个你喜欢的无理数,再求化简后代数式的值.154.计算:(-1)(+1)-(sin35°-)0+(-1)2008-(-2)-2 155.计算:(+3)(3-)156.阅读下列材料,然后回答问题.在进行二次根式的化简与运算时,我们有时会碰上如,,一样的式子,其实我们还可以将其进一步化简:==;(一)=(二)==(三)以上这种化简的步骤叫做分母有理化.还可以用以下方法化简:=(四)(1)请用不同的方法化简.①参照(三)式得=();②参照(四)式得=()(2)化简:.157.计算:= .158.实数a,b在数轴上的位置如图所示,化简|a+b|+= .159.实数a,b在数轴上的位置如图所示,化简|a-b|+= .160.化简:= .161.若x≥0,= .162.当m<3时,=163.计算:-(-3)= ;如图所示,化简= .164.实数a在数轴上的位置如图所示,则化简|a-2|+的结果为.165.已知a<2,则= .166.当x>2时,化简= .167.计算:+|-2|+(2-π)0168.计算:.169.计算:-(-2009)0+()-1+|-1|.170.计算:171.计算:(π-1)0++-2.172.计算:.173.计算:.174.计算:175.计算:.176.计算:.177.计算:178.计算:.179.计算:.180.计算:.181.计算:182.计算:183.计算:(-2)2-()-1×+(1-)0.184.计算:(-1)-1--(2-tan50°)0.185.计算:(1+)-()0.186.计算:.187.计算:188.计算:.189.已知:x=+1,y=-1,求下列各式的值.(1)x2+2xy+y2;(2)x2-y2.190.先化简,再求值:,其中.191.已知x=1+,求代数式的值.192.先化简,再求值:,其中x=1+,y=1-.193.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答:+=+=+-a=-a=;乙的解答:+=+=+a-=a=.请你判断谁的答案是错误的,为什么?194.化简求值:已知x=,y=,求x2-y2的值.195.先化简再求值:,其中.196.已知:,,求代数式x2-xy+y2值.197.先化简,再求值:,其中.198. 先化简,后求值:,其中x=-2.199. .200.某公路规定行驶汽车的速度每小时不得超过70千米,当发生交通事故时,交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v=16,其中v表示车速(单位:千米/小时),d表示刹车后车轮滑过的距离(单位:米),f表示摩擦系数.经测量,d=20米,f=1.25,请你帮助判断一下,肇事汽车当时的速度是否超出了规定的速度?解析:1.解:原式=2+(2+)-(7+4)=--5.2.当a=-3,b=+4时,原式=×(+6)=3+6.3.解:原式=(x+1-2)2=(x-1)2,当时,原式==3.4.解:原式=-===.当时,=.5.解:(1)原式=4--4+2=;(2)原式===x+1,当x=-1时,原式=.6.解:原式=-===x-y,当x=,y=时,(2)方法一:当x=-1时,x2+3x-1=(-1)2+3(-1)-1=2-2+1+3-3-1=-1;方法二:因为x=-1,所以x+1=,所以(x+1)2=()2即x2+2x+1=2,所以x2+2x=1所以x2+3x-1=x2+2x+x-1=1+x-1=-1.8.解:原式====-x-4,当时,原式===.9.解:∵a=2+,b=2-,∴a+b=4,a-b=2,ab=1.而=,∴===8.10.原式==,∵∴.11.解:===,把,代入上式,得原式=.12.解:====;当a=-1时,原式====-(-1)=1.13.解:原式=x2+2x+1-2x+1=x2+2;当.14.解:原式=•=x-3;当x=3-,原式=3--3=.15.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.16.解:===x-2;当时,原式=.17.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.18.解:原式=+=+=;当x=2+时,原式==.19.解:∵-a2≥0∴a2≤0而a2≥0∴a=0∴原式=.20.解:原式=,当a=-1时,原式=.21.解:原式=-==,当x=1+时,原式=.22.解:原式===;当x=1+,y=1-时,原式=.23.解:原式==+-x2=-x2=-2.∵化简结果与x的值无关,∴该同学虽然抄错了x的值,计算结果却是正确的.24.解:当时,x2+2y2-xy==.25.解:根据二次根式的意义,得,解得x+y=8,∴+=0,根据非负数的意义,得解得x=3,y=5,a=4,∴可以组成三角形,且为直角三角形,面积为6.26.解:(1)S=,=;P=(5+7+8)=10,又S=;(2)=(-)=,=(c+a-b)(c-a+b)(a+b+c)(a+b-c),=(2p-2a)(2p-2b)•2p•(2p-2c),=p(p-a)(p-b)(p-c),∴=.(说明:若在整个推导过程中,始终带根号运算当然也正确)27.解:27.(1)原式=3--+1=3--+1=+1;28.(2)由①得x+1>3-x,即x>1;由②得4x+16<3x+18,即x<2;不等式组的解集为1<x<2.29.解:原式=====5.30.解:当a=2时,=2-=2-=2-3-2=-3.31.解:=.32.当x=时,=-1,∴原式=1-()=2-.33.解:原式==•-•=a-b,34.解:∵a==,b==,∴==5.35.解:∵最简二次根式与是同类二次根式,∴3a-8=17-2a,解得:a=5.36.解:∵最简根式与是同类二次根式,∴,解得:,∴ab=1.37.解:①×===4;②-=2-=.38.解:原式=2-3=-.39.解:原式=2-=.故答案为:.40.解:原式=3-4+=0.41.解:原式=2+=3.42.解:原式=4-=3.43.(2010•聊城)化简:-+= .44.解:原式=2-=.45.解:原式=-(-)=-(-)=-+=3≈3×1.732≈5.196≈5.2046.解:原式=-20=-14.47.解:原式=2-3=-.48.解:=5.49.解:原式=+5-=5.51.解:=5-2=3.52.解:a2-a=a(a-1);5-2=(5-2)=3;(-2a)•(a3)=-a4.53.解:x+y=+=()=×2 =.54.解:原式=3+=4.55.解:原式==2.56.解:∵x≥0,∴原式=•=3.57.解:∵m<3,∴m-3<0,∴=|m-3|=3-m.58.解:-(-3)=3;59.解:由图可得,1<a<2,则a-2<0,a-1>0,化简|a-2|+=2-a+a-1=1.故答案为:1.60.解:因为a<2,所以a-2<0,故=|a-2|=2-a.61.解:∵x>2∴原式==|x-2|=x-2.62.解:原式==.63.解:原式=2-3-+1=-2.65.解:原式==.66.解:原式=1+2+(-5)-2=3+3-5-2=-2.67. 解:原式=68.解:原式=-9+8-+1+3=2.69.解:=.70.解:原式=1-2+2=1.71.解:原式=1+3++1+-1=4+2.72.解:原式=+2-(2-1)-1=+2-2+1-1=.73.解:原式=1+(-1)-×2=1+-1-=0.74.解:原式==8.75.解:原式=2×(+1)-2-1=2-1=1.76.解:原式=-2+3=2(-1)-2+3=1.77.解:原式=3×2+-+1=3-1.78.解:原式=4-+1=3.79.解:原式===.80.解:原式=+2-1=+1.81.解:原式=5+4-3-2-1=3.82. 解:(1)原式=2+1-2=2-1,(2)原式=a2-b2+2ab-a2=-b2+2ab当a=1.5,b=2时,原式=-22+2×1.5×2=2.故答案为2-1、2.83.解:(1)原式=2+1-(-)=3-1=2;(2)原式===x+9.84.解:原式=3+4+1=5+3.85.解:原式=3+=4.86.解:原式=2+3.87.解:a===2-,a+b=2-+-2=0.88.解:原式=-(-1)a=a.89.解:原式=+2-3=0.90.解:2-(-1)=2+1=3,-=-=,(a-1)(a+1)=a2-1.91.解:原式=+2=3.92.解:原式=6-=5.93.解:折线分为AB、BC两段,AB、BC分别看作直角三角形斜边,由勾股定理得AB=BC==米.小明沿图中所示的折线从A⇒B⇒C所走的路程为+=米.94.解:原式===.95.解:原式=.96.解:==.97.解:原式===-1.98.解:原式===.99.解:a===2-,a+b=2-+-2=0.100.解:原式=-(-1)a=a.101.解:原式=+2-3=0.102.解:2-(-1)=2+1=3,-=-=,(a-1)(a+1)=a2-1.103.解:原式=+2=3.104.解:原式=6-=5.105.解:原式=-=3-=2.故答案为:2.106.解:=2-2+2=2.107.解:=(4)=×=.108.解:∵x@y=,∴(2@6)@8=@8=4@8==6,故答案为:6.109.解:=--2=-3+2=-3.110.解:=2+-2=-.111.解:由题意得:x2-3x+3=()2-3+3=2.112.解:∵x===+2,=-2,∴x-=(+2)-(-2)=4.故本题答案为:4.113.解:矩形内阴影部分的面积是(+)•-2-6=2+6-2-6=2-2.114.解:原式===.115.解:原式=(x-3)(x+1),将代入上式得,原式==.116.解:=;因为a=,b=;所以原式=.117.解:原式=.118.解:==.119.解:原式===-1.120.解:原式===.121.原式=3+4-2-2+=5-2+2-2=3.122.解:原式=4-3+1×1-2=1+1-2=0.123.解:原式==2.124.解:(1)原式=(3-2)×+=+=;(2)由①-②得:y=3,∴把y=3代入①得:x=-2,∴方程组的解为.125.解:(1)原式===2;(2)原式=(x+2)(x+4)+(x+2)(x-2)=(x+2)[(x+4)+(x-2)]=(x+2)(2x+2)=2(x+2)(x+1).126.解:(1)原式=3-3-1=-1;127.解:原式=2+(2+)-(7+4)=--5.128.解:b2-2b+1-a2=(b-1)2-a2=(b-1+a)(b-1-a),当a=-3,b=+4时,原式=×(+6)=3+6.129.解:原式=;当x=-2时,原式=.130.解:原式==,当x=-1时,原式=.131.解:原式===,当x=时,原式==1+.132.解:原式=,当a=+1时,原式=.133.解:原式==(2分)=,当x=3-1,y=-2+1时,原式==.134.解:原式====m+2;因为m==,所以,原式==.135.解:原式====,当x=时,原式==+1.136.解:原式=×=,当a=时,原式==.137.解:原式====当a=时,原式==.138.解:原式==;当x=2,时,原式==.139.解:原式==,当x=-2时,原式==.140.解:(1)去分母,得x-1+2≥2x移项,得x-2x≥1-2,解得x≤1;在数轴上表示为:141.解:==,当a=b时,原式====.142.解:原式===-;当a=时,原式=-=1减.143.解:原式=-•=-==,当a=,b=时,原式==.144.解:原式==;当a=4+时,原式==2-.145.解:原式===当x=时,原式==6-4.146.解:==;当x=时,原式==2+2.147.解:原式===;当x=x=-2时,原式==.148.解:原式===;当x=-1时,原式==2+.149.原式=-×==,当x==时,原式==1+.150.解:原式=÷=-=-;当x=2时,原式=-=2-3.151.解:原式===,当x=+1时,原式=.152.解:原式=,当x=-1时,原式=.153.解:原式===;不妨取x=+3,原式=.154.解:原式=3-1-1+1-.155.解:(+3)(3-)=32-()2=9-6=3.156.解:(1)=,=;(2)原式=+…+=++…+=.157.解:原式==2.故答案为:2158.解:由图可知:a>0,b<0,|a|>|b|,∴a+b<0,b-a>0,∴|a+b|+=-(a+b)+(b-a)=-a-b+b-a=-2a.159.解:由图可得,a<0,b>0且|a|>|b|,∴a-b<0,a+b<0∴|a-b|+=b-a-a-b=-2a.160.解:原式==2.161.解:∵x≥0,∴原式=•=3.162.解:∵m<3,∴m-3<0,∴=|m-3|=3-m.163.解:-(-3)=3;由数轴可知a<0,所以=-a.164.解:由图可得,1<a<2,则a-2<0,a-1>0,化简|a-2|+=2-a+a-1=1.故答案为:1.165.解:因为a<2,所以a-2<0,故=|a-2|=2-a.166.解:∵x>2∴原式==|x-2|=x-2.168.解:原式=2-3-+1=-2.169.解:原式=2-1+2+-1=3.170.解:原式==.171.解:原式=1+2+(-5)-2=3+3-5-2=-2.172.解:原式===.173.解:原式=-9+8-+1+3=2.174.解:=.175.解:原式=1-2+2=1.176.解:原式=1+3++1+-1=4+2.177.解:原式=+2-(2-1)-1=+2-2+1-1=.178.解:原式=1+(-1)-×2=1+-1-=0.179.解:原式==8180.解:原式=2×(+1)-2-1=2-1=1.181.解:原式=-2+3=2(-1)-2+3=1.182.解:原式=3×2+-+1=3-1.184.解:原式===.185.解:原式=+2-1=+1.186.解:原式=5+4-3-2-1=3.187.解:原式=5-6+9+11-9=16-6.188.解:原式=(20-18+4)÷=20-18+4=2+4.189.解:(1)当x=+1,y=-1时,原式=(x+y)2=(+1+-1)2=12;(2)当x=+1,y=-1时,原式=(x+y)(x-y)=(+1+-1)(+1-+1)=4.190.解:原式=a2-3-a2+6a=6a-3,当a=时,原式=6+3-3=6.191.解:原式=-==,当x=1+时,原式=.192.解:原式===;当x=1+,y=1-时,原式=.193.解:甲的解答:a=时,-a=5-=4>0,所以=-a,正确;乙的解答:因为a=时,a-=-5=-4<0,所以≠a-,错误;因此,我们可以判断乙的解答是错误的.194.解:∵x==2-,y==2+,∴原式=(2-)2-(2+)2=[(2-)+(2+)][(2-)-(2+)]=4×[-2]=.195.解:原式=====,当x=时,原式=.196.解:∵,,∴xy=×2=,x-y=∴原式=(x-y)2+xy=5+=.197.解:原式=6-4-6=-,当时,原式=-=-.198. 原式==当x=时,原式==1-.199. 原式=•-1=a+1-1=a.200.解:v=16=16×=16×5=80>70.肇事汽车当时的速度超出了规定的速度.。
专题07 二次根式化简求值(解析版)

专题07 二次根式化简求值【考点归纳】1、二次根式的化简求值,一定要先化简再代入求值.2、二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.3、二次根式的化简求值的常见题型及方法常见题型:与分式的化简求值相结合.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.【好题必练】一、选择题1.(2020秋•天心区期末)已知x=+2,则代数式x2﹣x﹣2的值为()A.9B.9C.5D.5【答案】D.【解析】解:∵x=+2,∴x﹣2=,∴(x﹣2)2=5,即x2﹣4x+4=5,∴x2=4x+1,∴x2﹣x﹣2=4x+1﹣x﹣2=3x﹣1,当x=+2时,原式=3(+2)﹣1=3+5.故选:D.2.(2020秋•会宁县期末)已知a=+2,b=﹣2,则a2+b2的值为()A.4B.14C.D.14+4【答案】B.【解析】解:∵a=+2,b=﹣2,∴a+b=(+2+﹣2)=2,ab=(+2)(﹣2)=﹣1,∴a2+b2=(a+b)2﹣2ab=(2)2﹣2×(﹣1)=14,故选:B.3.(2020秋•乐亭县期末)已知x=+1,y=﹣1,则x2+2xy+y2的值为()A.20B.16C.2D.4【答案】A.【解析】解:当x=+1,y=﹣1时,x2+2xy+y2=(x+y)2=(+1+﹣1)2=(2)2=20,故选:A.4.(2020•石家庄模拟)当,分式的结果为a,则)A.a>1B.C.D.【答案】B.【解析】解:+=+==,当x=+1时,原式===,即a=,∵<<1,∴<a<1,故选:B.5.(2020秋•渝中区校级月考)已知m=+,n=﹣,则代数式的值为()A.5B.C.3D.【答案】B.【解析】解:∵m=+,n=﹣,∴m+n=2,mn=5﹣2=3,∴原式===.故选:B.6.(2020秋•大洼区月考)当m=3时,m+的值等于()A.6B.5C.3D.1【答案】B.【解析】解:原式=m+=m+|m﹣1|,当m=3时,原式=3+|3﹣1|=3+2=5.故选:B.二、填空题7.(2020春•高密市期中)若a=+1,则a2﹣2a+1的值为.【答案】6【解析】解:∵a=+1,∴原式=(a﹣1)2=(+1﹣1)2=6.故答案为:6.8.(2020春•明水县校级期中)已知x=+1,y=﹣1,求下列各式的值:(1)x2+2xy+y2=;(2)x2﹣y2=.【答案】(1)12(2)4.【解析】解:(1)∵x=+1,y=﹣1,∴x+y=2,∴x2+2xy+y2=(x+y)2=(2)2=12,故答案为:12;(2)∵x=+1,y=﹣1,∴x+y=2,x﹣y=2,∴x2﹣y2=(x+y)(x﹣y)=2×2=4,故答案为:4.9.已知a=1+,b=,则a2+b2﹣2a+1的值为.【答案】5【解析】解:∵a=1+,b=,∴a2+b2﹣2a+1=(a2﹣2a+1)+b2=(a﹣1)2+b2=(1+﹣1)2+()2=2+3=5,故答案为:5.10.(2020春•武昌区期中)若a=2+,b=2﹣,则ab的值为.【答案】1【解析】解:∵a=2+,b=2﹣,∴ab=(2+)×(2﹣)=4﹣3=1.故答案为:1.11.(2019秋•高安市校级期末)若x=﹣1,则x3+x2﹣3x+2020的值为.【答案】2019【解析】解:∵x=﹣1,∴x+1=,∴(x+1)2=2,即x2=﹣2x+1,∴x3=﹣2x2+x=﹣2(﹣2x+1)+x=5x﹣2,∴x3+x2﹣3x+2020=5x﹣2﹣2x+1﹣3x+2020=2019.故答案为2019.三、解答题12.(2020春•常熟市期中)已知x=﹣2,y=+2,求代数式x2+y2+xy﹣2x﹣2y的值.【答案】解:∵x=﹣2,y=+2,∴x+y=2,xy=﹣1,∴x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y)=(2)2﹣(﹣1)﹣2×2=12+1﹣4=13﹣4.【解析】先计算出x+y与xy的值,再利用完全平方公式得到x2+y2+xy﹣2x﹣2y=(x+y)2﹣xy﹣2(x+y),然后利用整体代入的方法计算.13.(1)计算:()2﹣3;(2)如果a=﹣,求﹣的值.【答案】解:(1)原式=3﹣3×3=3﹣9=﹣6;(2)∵a=﹣,∴a+1=﹣+1<0,a﹣1=﹣﹣1<0,则原式=|a+1|﹣|a﹣1|=﹣a﹣1+a﹣1=﹣2.【解析】(1)根据()2=a,=|a|求解可得;(2)先由a=﹣判断出a+1和a﹣1的符号,再根据=|a|化简可得.14.(2020春•大悟县期中)先化简再求值:已知a=,b=,求.【答案】解:∵a==+2,b==﹣2,∴a+b=2,ab=1,∴====4.【解析】先分母有理化,再计算出a+b与ab,再利用完全平方公式得到原式,然后利用整体的方法计算.15.(2020春•闵行区校级期中)先化简,再求值:已知a=2﹣,b=2,求的值.【答案】解:==,当a=2﹣,b=2时,原式===﹣.【解析】先化简分式,然后将a=2﹣,b=2代入求值.16.(2020春•江汉区期中)已知x=,y=,m=﹣,n=+(1)求m,n的值;(2)若﹣=n+2,=m,求+的值.【答案】解:(1)∵x=,y=,∴x+y=,x﹣y=﹣1,xy=,∴m=﹣==﹣=﹣=2;n=+====4;(2)∵﹣=6,=2,∴(﹣)2=36,∴(+)2﹣4=36,∴(+)2=36+4×2=44,∴+=2.【解析】(1)先利用x与y的值计算出x+y=,x﹣y=﹣1,xy=,再把m、n变形为m=﹣=﹣;n=+=;然后利用整体代入的方法计算m、n的值;(2)由于﹣=6,=2,利用完全平方公式得到(+)2﹣4=36,最后利用算术平方根的定义得到+的值.。
化简二次根式练习题及答案

化简二次根式练习题及答案21.ab=-2ab.…………………2.-2的倒数是3+2.23.=2.…4.ab、5.8x,13a3b、?2a是同类二次根式.… xb1,?x2都不是最简二次根式.1有意义. x?3填空题:6.当x__________时,式子7.化简-15821025÷=.712a38.a-a2?1的有理化因式是____________..当1<x<4时,|x-4|+x2?2x?1=________________.ab?c2d2ab?cd2210.方程2=x+1的解是____________. 11.已知a、b、c为正数,d为负数,化简12.比较大小:-=______.127_________-14.13.化简:2000·2001=______________. 14.若x?1+y?3=0,则2+2=____________.15.x,y分别为8-的整数部分和小数部分,则2xy -y2=____________.选择题:16.已知x3?3x2=-xx?3,则………………x≤0x≤-3x≥-3-3≤x≤0222217.若x<y<0,则x?2xy?y+x?2xy?y =………………………2x2y-2x-2y 18.若0<x<1,则?4-?4等于 (x)22--2x2x xx?a3得……………………………………………………………… 19.化简a?a-a-?aa20.当a<0,b<0时,-a+2ab-b可变形为……………………………………… -2计算题:21.;22.23.÷a2b2; nma?babb?ab)÷.abab?bab?aa?求值:x3?xy23?2?225.已知x=,y=,求4的值.223xy?2xy?xy3?2?226.当x=1-2时,求xx?a?xx?a2222+2x?x2?a2x?xx?a222+1x?a22的值.六、解答题:27.计算.1?22?3?499?28.若x,y为实数,且y=?4x+4x?1+判断题:21、=|-2|=2.×.1xyxy.求?2?-?2?的值.yxyx2、1?2==-.×.3?4?223、=|x-1|,.两式相等,必须x≥1.但等式左边x 可取任何数.×.、13a3b、?2a化成最简二次根式后再判断.√. xb5、?x2是最简二次根式.×.填空题:6、x何时有意义?x≥0.分式何时有意义?分母不等于零.x≥0且x≠9.、-2aa.注意除法法则和积的算术平方根性质的运用.8、=a2-2.a+a2?1.a+a2?1.、x2-2x+1=2,x -1.当1<x<4时,x-4,x-1是正数还是负数?x-4是负数,x-1是正数.3. 10、把方程整理成ax=b的形式后,a、b分别是多少?2?1,2?1.x=3+22. 11、c2d2=|cd|=-cd.ab+cd.∵ ab=2,∴ ab-c2d2=. 12、27=28,43=48.<.先比较28,48的大小,再比较-111,的大小,最后比较-与2848281的大小.813、2001=2000·[-7-52.]·=?[1.]-7-52.注意在化简过程中运用幂的运算法则和平方差公式. 14、40.x?1≥0,y?3≥0.当x?1+y?3=0时,x+1=0,y-3=0.15、∵<<4,∴ _______<8-<__________.[4,5].由于8-介于4与5之间,则其整数部分x=?小数部分y=?[x=4,y=4-]5.求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了.选择题: 16、D.本题考查积的算术平方根性质成立的条件,、不正确是因为只考虑了其中一个算术平方根的意义. 17、∵ x<y<0,∴ x-y<0,x+y<0.∴x2?2xy?y2=2=|x-y|=y-x.x2?2xy?y2=2=|x+y|=-x-y.C.本题考查二次根式的性质a2=|a|.18、+4=2,2-4=2.又∵ 0<x<1, xxxx11∴ x+>0,x-<0.D.xx1<0. x本题考查完全平方公式和二次根式的性质.不正确是因为用性质时没有注意当0<x<1时,x-19、?a3=?a?a2=?aa2=|a|?a=-a?a.C.0、∵ a <0,b<0,∴ -a>0,-b>0.并且-a=2,-b=2,ab=. C.本题考查逆向运用公式2=a和完全平方公式.注意、不正确是因为a<0,b<0时,a、b都没有意义.计算题:21、将?看成一个整体,先用平方差公式,再用完全平方公式.原式=2-2=5-2+3-2=6-2.2、先分别分母有理化,再合并同类二次根式.原式=542--=4+---3+7=1.16?1111?79?7abnm1nm-)2mn+mmnabmn1nnmmmm?-? mn?+mabma2b2nnmnn11a2?ab?1-+22=.2ababab23、先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.原式=求值:5、先将已知条件化简,再将分式化简最后将已知条件代入求值.∵ x=3?2=2=5+2,3?23?2y==2=5-26.3?2∴ x+y=10,x-y=46,xy=52-2=1.2xx?y46x3?xy26.====22432235xyxy1?10xy?2xy?xy本题将x、y化简后,根据解题的需要,先分别求出“x +y”、“x-y”、“xy”.从而使求值的过程更简捷.26、注意:x2+a2=2,∴ x2+a2-xx2?a2=x2?a2,x2-xx2?a2=-x.原式=xx?a2222-2x?x2?a2x22+1x?a22=x2?x2?a2?xxx?axx2?a22222222222222=x?2xx?a??xx?a?x=2?xx2?a2=xx2?a2x2?a2 xx2?a2=式”之差,那么化简会更简便.即原式=11.当x=1-2时,原式==-1-2.本题如果将前两个“分式”分拆成两个“分x1?21x2x?x2?a2-+2222x?ax11111=+?)-1.若-1 x2?2等于A.2x+1B.1C.-1-2xD.1-2x2.下列等式成立的是A.2??224263B.x=x2C.b-b?2b?1=-1D.x?x3.若?2?1,则a的取值范围是A.2≤a≤B.a≥3或a≤2C.a≤2D.a≥34.化简a+2等于A.2a-1B.1C.1或-1D.2a-1或15.计算2?2的值是A.2-4a或4a-2B.0C.2-4aD.4a-26.当x3?3x2??xx?3时,x的取值范围是A.x≤0B.x≤-C.x≥-D.-3≤x≤07.当2m+7 ?4m?1?9m2?6m?1化简为A.-5mB.mC.-m-2D.5m8.当a>0时,化简?ax3的结果是A.xaxB.-x?axC.x?axD.-xax9.实数a,b在数轴上对应点的位置如图所示,则化简a2?2ab?b2?a2的结果为A.-bB.2a-bC.b-2aD.b10.计算2?2等于A.5-25B.1C.25-5D.25-111.下列二次根式中,是同类二次根式的是aa3caA.bcbB.a3b2与abC.2a与4aD.b与a3b2二、填空题1.化简=____.2.2= .3.当a??2时,化简|1?2|得 .4.若三角形的三边a?b?c满足a2-4a+4+b?3=0,则笫三边c的取值范围是_____________.5.判断题若a2=a,则a一定是正数.若a2=-a,则a一定是负数.2=π-3.14.222∴2∵=5,?5,又52?5,?2??5.27?5.当a>1时,|a-1|+?2a?a 2=2a-2.2若x=1,则2x-x?4x?4?2x?=2x-=x+2=1+2=3.若2=-xy≠0,则x、y异号.1m 2=1.x2?2x?1=x+1.32?2=0.当m>3时,9?6m?m2-m=-3.6.如果等式2=-x成立,则x的取值范围是________.7.当x_______时,1?2x?x2=x-1.8.若?2=x+2,则x__________.39.若m m2?m?______.1x?2时,210.当2?=________.x与它的绝对值之和为零,则x211.若?_________.12.当a_________时,|a2-3a|=-4a.213.化简3=________.)?4214.若a 2的结果为________. 的结果是________. ??12.15.化简a216.当a_______时,2a17.若a2|等于________.18.计算2?1=_____.19.已知:2?x?4,化简20.当x?0时,21.比较大小: 2?x?1?2?|x?5|=_________.x=___________.5?2______2?37?2622.化简:6?1=________.23.设的整数部分a,小数部分为b,则a=______, b=______.224.先化简再求值:当a=9时,求a+?2a?a的值,甲乙两?a href=“http:///fanwen/shuoshuodaquan/”target=“_blank” class=“keylink”>说慕獯鹑缦?2甲的解答为:原式=a+=a+=1;2乙的解答为:原式=a+=a+=2a-1=17.两种解答中,____的解答是错误的,错误的原因是未能正确地运用二次根次的性质:_______________.25.把根号外的因式移动到根号内:0?a?b时,26. ?a?b?3ab?a22=_______.?2?5?1999?2??5?2000=__________.2|x|??2x?x=______________.7.当-1 28.小明和小芳解答题目:”先化简下式,再求值:a+?2a?a2,其中a=9”时,得出了不同的答案.小明的解答是:原式=a+2=a+=1;小芳的解答是:原式=a+2=a+=2a-1=2×9-1=17._________的解答是错误的.错误的解答错在未能正确运用二次根式的性质:________.三、解答题1.已知 a为实数,化简?a3?a?a?1b?1b?a2.已知5?2,5?2,求ab?2的值.a2?2ab?b23.化简求值:a2?b2.其中a=2+1,b=2-1.12?x?34.x?3时,求代数式:x?1x?1?x?4x?3x2?2x?1的值.121)?15.计算:2?226.计算:2?xx,其中x=2+38.化简求值:,其中a= . ?2??2?1??19.计算:?8?1?2二次根式的化简年级__________ 班级_________ 学号_________ 姓名__________ 分数____一、选择题1.若-1 x2?2等于A.2x+1B.1C.-1-2xD.1-2x2.下列等式成立的是A.2??246322xx?xb?2b?1 B.=xC.b-=-1 D.3.若2?2?1,则a的取值范围是A.2≤a≤B.a≥3或a≤2C.a≤2D.a≥32等于A.2a-1B.1C.1或-1D.2a-1或15.计算2?2的值是A.2-4a或4a-2B.0C.2-4aD.4a-26.当x3?3x2??xx?3时,x的取值范围是A.x≤0B.x≤-C.x≥-D.-3≤x≤07.当2m+7 4m2?4m?1?9m2?6m?1化简为 A.-5m B.mC.-m-2D.5m8.当a>0时,化简?ax3的结果是A.xaxB.-x?axC.x?axD.-xax9.实数a,b在数轴上对应点的位置如图所示,则化简a2?2ab?b2?a2的结果为A.-bB.2a-bC.b-2aD.b10.计算2?2等于A.5-2B.1C.25-5D.25-111.下列二次根式中,是同类二次根式的是a与a3caA.bcb B.a3b2与ab C.2a与4aD.b与a3b2二、填空题1.化简=____.2.2= .3.当a??2时,化简|1?2|得 .4.若三角形的三边a?b?c满足a2-4a+4+?3=0,则笫三边c的取值范围是_____________.5.判断题若a2=a,则a一定是正数. 若a2=-a,则a一定是负数.2=π-3.14.∵2=52,∴2?52,又52?5,?2??5.27?5.当a>1时,|a-1|+?2a?a2 =2a-2.若x=1,则2x-x2?4x?4?2x?2 =2x-=x+2=1+2=3.若2=-xy≠0,则x、y异号.1m 2=1.x2?2x?1=x+1.32?2=0.当m>3时,9?6m?m2-m=-3.6.如果等式x2=-x成立,则x的取值范围是________. .当x_______时,?2x?x2=x-1.8.若?2=x+2,则x__________.9.若m m2?m3?______. 1?x?2时,210.当2=________.11.若x与它的绝对值之和为零,则x2?_________. 12.当a_________时,|a2-3a|=-4a.213.化简3=________.)12?4a14.若a 15.化简2的结果是________.a21??2. 16.当a_______时,2a17.若a 2|等于________.118.计算2?1=_____.19.已知:2?x?4,化简20.当x?0时,21.比较大小: x?1?2?|x?5|=_________.x2=___________.?2______2?37?2622.化简:6?1=________.23.设的整数部分a,小数部分为b,则a=______, b=______.2?2a?a24.先化简再求值:当a=9时,求a+的值,甲乙两人的解答如下:甲的解答为:原式=a+=a+=1;2乙的解答为:原式=a+=a+=2a-1=17.两种解答中,____的解答是错误的,错误的原因是未能正确地运用二次根次的性质:_______________.25.把根号外的因式移动到根号内:0?a?b时,26. ?a?b3ab2?a2=_______.?2?52??19992000=__________.2|x|??2x?x27.当-1 228.小明和小芳解答题目:”先化简下式,再求值:a+?2a?a,其中a=9”时,得出了不同的答案.小明的解答是:原式=a+2=a+=1;小芳的解答是:原式=a+2=a+=2a-1=2×9-1=17._________的解答是错误的.错误的解答错在未能正确运用二次根式的性质:________.三、解答题1.已知 a为实数,化简?a3?a?1aa?1b?1ba2.已知5?2,?2,求a?b?2的值.a2?2ab?b23.化简求值:a2?b2.其中a=2+1,b=2-1. 1x?3x2?44.x?2x?3时,求代数式:x?1x?1x2?2x?1的值.122-2+0+?15.计算:2?45?4??26.计算:2??x,其中x=2+8.化简求值:,其中a= . ?2?1??21?9.计算:?8???2?11?2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式的化简求值
【例题求解】
例1 已知21=+
x x ,那么191322++-++x x x x x x 的值等于__________.
例2 满足等式2003200320032003=+--+xy y x xy y x 的正整数对),(y x 的个数是( ).
A .1
B .2
C .3
D .4
例 3 已知b a 、是实数,且1)1)(1(22=++++b b a a ,问b a ,之间有怎样的关系?请推导.
例4 有这样一道题,计算222224
444
x x x x x x x x x -++--+---+的值,其中1005=x ,某同学
把“1005=x ”错钞成“1050=x ”,但他的计算结果是正确的.清你回答这是怎么回事?试说明理由.
例5 (1)设d c b a 、、、为正实数,ad bc d c b a <<<,,,有一个三角形的三边长分别为222222)()(,,c d a b d b c a -+-++,求此三角形的面积;
(2)已知b a 、均为正数,且14,222+++=
=+b a U b a 求的最小值.
【学力训练】
基础夯实
1. 已知__________________141402
2=⎪⎭⎫ ⎝
⎛-+-⎪⎭⎫ ⎝⎛+-<a a a a a ,化简. 2. 若________________1),10(41=-<<=+a
a a a a 则. 3. 当215,215-=+=
b a 时,代数式222
22b a b ab a -+-的值是______________.
4. 已知a 是34-的小数部分,那么代数式⎪⎭⎫ ⎝
⎛-•⎪⎪⎭⎫ ⎝⎛++++-+a a a a a a a a a 42442222的值为________________.
5. 若y x ,为有理数,且xy y x x 则,42112=+-+-的值为( ).
A .0
B .
2
1 C .
2 D .不能确定 6. 已知实数a 满足22000,20012000-=-+-a a a a 那么的值是( ). A .1999 B .2000 C .2001 D .2002
7. 设c b a c b a 、、,则10002,9991001,9971003=+=+=之间的大小关系
是( ).
A .c b a <<
B .a b c <<
C .b a c <<
D .b c a <<
8. 若a a x -=
1,则24x x +的值为( ). A .a a 1- B .a a -1 C .a
a 1+ D .不能确定 9.有一道题:“先化简,再求值:41442222-÷⎪⎭⎫ ⎝
⎛-++-x x x x x ,其中3-=x .”小玲做题时把“3-=x ”错钞成了“3=
x ”,但她的计算结果是正确的,请你解释这是怎么回事.
10.已知x x x x x x +++-+=--4
141,)
1(1222化简.
能力拓展
11.已知_______________________2
14121,312=---+++=x x x x 那么. 12.已知__________________________26,514=-=-++a a a 则.
13.代数式9)12(422+-++x x 的最小值为______________________________.
14.已知=+----=++++586643,2002)2002)(2002(2222y x y xy x y y x x 则
______________. 15.如果3333333,,22002,22002c b a c b c b b a b a --=+-=-+=
+那么的值为( ).
A .20022002
B .2001
C .1
D .0
16.化简24066312305941
--+++的结果是( ).
A .无理数
B .真分数
C .奇数
D .偶数
17.b a 、为有理数,且满足等式b a b a +++•=+则,324163的值为( ). A .2 B .4 C .6 D .8 18.设)
1(1,111,111,4++=+-=+-=≥r r r c r r b r r a r ,则下列各式中,一定成立的是( ).
A .c b a >>
B .a c b >>
C .b a c >>
D .a b c >>
19.已知44,1313,1313y x y x +-+=+-=
求的值.
20.已知20052+a 是整数,求所有满足条件的正整数a 的和.
综合创新
21.已知2
222),0(12-++--+>+=x x x x a a a x 化简:.
22.已知x x x x x x ,求71357139722=+-+++的值.。