二次根式化简习题汇编(完整资料).doc

合集下载

(完整word版)最简二次根式基础练习

(完整word版)最简二次根式基础练习

最简二次根式基础练习一、填空题:1.把下列二次根式化成最简二次根式.(1)120=________; (2)27=________; (3)811=________;(4)412=________;(5)84=________; 6)250=________;(7)24=________;(8)8=________;(9)98=________; (10)5.4=________. 3.设x <0,则x8-=_________. 4.下列二次根式a 45,30,212,240b ,54中的最简二次根式有________.二、选择题:1.在二次根式72,35a ,3,9,2x 中,最简二次根式的个数是( ). A .1个 B .2个 C .3个 D .4个2.下列各式中是最简二次根式的是( ).A .1984B .21 C .a D .1 3.下列各式中,不是最简二次根式的是( ).A .30B .x x +2C .1+xD .3634.下列计算中正确的是( ).A .63121=B .3294=--C .2322188+=+D .2281= 5.如果09|2|=-+-y x ,则)1(+x y =( ). A .33 B .33± C .33- D .236.下列二次根式中,最简二次根式是( ).A .21+a B .12+a C .ab 4 D .b a 2 7.下列二次根式中,最简二次根式是( ).A .2m B .m 8 C .32m D .162+m 8.下列根式中,是最简二次根式的是( ).A .x 5.0B .22xyC .33y x -D .y x 99+四、把下列各式化成最简二次根式.1.27 2.1133 3.2282 4.8385.3263- 6.48.0 7.b a 212 8.121+五、下列根式中,哪些是最简二次根式?哪些不是?若不是,请说明理由.1.70 2.92+x 3.838 4.a 455.2126.24ab 7.)(1722b a + 8.54分母有理化是指把分母中的根号化去。

八年级二次根式化简题100题

八年级二次根式化简题100题

八年级二次根式化简题100题1. 二次根式化简题在八年级数学学习中,二次根式化简是一个重要的知识点。

通过化简二次根式,我们可以简化计算过程,更好地理解和应用根式的性质。

本文将为大家提供100道八年级二次根式化简题,帮助大家巩固和提高相关知识。

1. $\sqrt{16} = 4$2. $\sqrt{25} = 5$3. $\sqrt{36} = 6$4. $\sqrt{49} = 7$5. $\sqrt{64} = 8$6. $\sqrt{81} = 9$7. $\sqrt{100} = 10$8. $\sqrt{121} = 11$9. $\sqrt{144} = 12$10. $\sqrt{169} = 13$11. $\sqrt{196} = 14$12. $\sqrt{225} = 15$13. $\sqrt{256} = 16$15. $\sqrt{324} = 18$16. $\sqrt{361} = 19$17. $\sqrt{400} = 20$18. $\sqrt{441} = 21$19. $\sqrt{484} = 22$20. $\sqrt{529} = 23$21. $\sqrt{576} = 24$22. $\sqrt{625} = 25$23. $\sqrt{676} = 26$24. $\sqrt{729} = 27$25. $\sqrt{784} = 28$26. $\sqrt{841} = 29$27. $\sqrt{900} = 30$28. $\sqrt{961} = 31$29. $\sqrt{1024} = 32$30. $\sqrt{1089} = 33$31. $\sqrt{1156} = 34$32. $\sqrt{1225} = 35$34. $\sqrt{1369} = 37$35. $\sqrt{1444} = 38$36. $\sqrt{1521} = 39$37. $\sqrt{1600} = 40$38. $\sqrt{1681} = 41$39. $\sqrt{1764} = 42$40. $\sqrt{1849} = 43$41. $\sqrt{1936} = 44$42. $\sqrt{2025} = 45$43. $\sqrt{2116} = 46$44. $\sqrt{2209} = 47$45. $\sqrt{2304} = 48$46. $\sqrt{2401} = 49$47. $\sqrt{2500} = 50$48. $\sqrt{2601} = 51$49. $\sqrt{2704} = 52$50. $\sqrt{2809} = 53$51. $\sqrt{2916} = 54$53. $\sqrt{3136} = 56$54. $\sqrt{3249} = 57$55. $\sqrt{3364} = 58$56. $\sqrt{3481} = 59$57. $\sqrt{3600} = 60$58. $\sqrt{3721} = 61$59. $\sqrt{3844} = 62$60. $\sqrt{3969} = 63$61. $\sqrt{4096} = 64$62. $\sqrt{4225} = 65$63. $\sqrt{4356} = 66$64. $\sqrt{4489} = 67$65. $\sqrt{4624} = 68$66. $\sqrt{4761} = 69$67. $\sqrt{4900} = 70$68. $\sqrt{5041} = 71$69. $\sqrt{5184} = 72$70. $\sqrt{5329} = 73$72. $\sqrt{5625} = 75$73. $\sqrt{5776} = 76$74. $\sqrt{5929} = 77$75. $\sqrt{6084} = 78$76. $\sqrt{6241} = 79$77. $\sqrt{6400} = 80$78. $\sqrt{6561} = 81$79. $\sqrt{6724} = 82$80. $\sqrt{6889} = 83$81. $\sqrt{7056} = 84$82. $\sqrt{7225} = 85$83. $\sqrt{7396} = 86$84. $\sqrt{7569} = 87$85. $\sqrt{7744} = 88$86. $\sqrt{7921} = 89$87. $\sqrt{8100} = 90$88. $\sqrt{8281} = 91$89. $\sqrt{8464} = 92$91. $\sqrt{8836} = 94$92. $\sqrt{9025} = 95$93. $\sqrt{9216} = 96$94. $\sqrt{9409} = 97$95. $\sqrt{9604} = 98$96. $\sqrt{9801} = 99$97. $\sqrt{10000} = 100$98. $\sqrt{10201} = 101$99. $\sqrt{10404} = 102$100. $\sqrt{10609} = 103$通过以上100道二次根式化简题的练习,相信大家对二次根式的化简有了更深入的理解。

二次根式化简练习题含答案

二次根式化简练习题含答案

•二次根式(g ēnsh ì)化简练习题含答案(培优)(一)判断题:(每小题1分,共5分)1.=-2.…………………( ) 2.-2的倒数(d ǎo sh ù)是3+2.( )3.=.…( )4.ab 、、是同类(t óngl èi)二次根式.…( ) 5.,,都不是(b ù shi)最简二次根式.( )(二)填空题:(每小题2分,共20分)6.当x __________时,式子(sh ì zi)有意义.7.化简-÷= .8.a -的有理化因式是____________.9.当1<x <4时,|x -4|+=________________.10.方程(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简=______.12.比较大小:-_________-.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若+=0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-的整数部分和小数部分,则2xy -y 2=____________. (三)选择题:(每小题3分,共15分)16.已知=-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若x <y <0,则+=………………………( )(A )2x (B )2y (C )-2x (D )-2y 18.若0<x <1,则-等于………………………( )(A ) (B )-x2(C )-2x (D )2x 19.化简a <0得………………………………………………………………( ) (A )(B )-(C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形(bi àn x íng)为………………………………………( ) (A )(B )-(C )(D )(四)计算题:(每小题6分,共24分)21.()();22.--;23.(a 2-+)÷a 2b 2mn ;24.(a +)÷(+-)(a ≠b ).(五)求值:(每小题7分,共14分)25.已知x =,y =,求的值.26.当x =1-2时,求++的值.六、解答(ji ěd á)题:(每小题8分,共16分)27.计算(j ì su àn)(2+1)(+++…+).28.若x ,y 为实数(sh ìsh ù),且y =++.求-的值.(一)判断题:(每小题1分,共5分) 1、【提示(t ísh ì)】=|-2|=2.【答案(d á àn)】×.2、【提示】==-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6、【提示】何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9.7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用. 8、【提示】(a -12-a )(________)=a 2-.a +12-a .【答案】a +12-a .9、【提示(t ísh ì)】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数(zh èngsh ù)还是负数?x -4是负数(f ùsh ù),x -1是正数(zh èngsh ù).【答案】3. 10、【提示(t ísh ì)】把方程整理成ax =b 的形式后,a 、b 分别是多少?,.【答案】x =3+22. 11、【提示】=|cd |=-cd .【答案】ab +cd .【点评】∵ ab =(ab >0),∴ ab -c 2d 2=()(). 12、【提示】2=,43=.【答案】<.【点评】先比较28,48的大小,再比较,的大小,最后比较-281与-481的大小. 13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-==|x -y |=y -x .222y xy x ++==|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质=|a |.18、【提示】(x -)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x 1<0.19、【提示】==a -·2a =|a |a -=-a a -.【答案】C .20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =,-b =,ab =.【答案】C .【点评】本题考查逆向运用公式=a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、都没有意义.(四)计算题:(每小题6分,共24分) 21、【提示(t ísh ì)】将看成一个整体,先用平方差公式,再用完全(w ánqu án)平方公式.【解】原式=(35-)2-=5-2+3-2=6-215. 22、【提示(t ísh ì)】先分别分母有理化,再合并同类二次根式.【解】原式=--=4+11-11-7-3+7=1.23、【提示(t ísh ì)】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2mn -m ab mn +mnn m)·n m =-+=21b -+221b a =. 24、【提示】本题应先将两个括号(ku òh ào)内的分式分别通分,然后分解因式并约分.【解】原式=÷=÷=ba ba ++·=-.【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值:(每小题7分,共14分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+==5+2, y =2323+-==5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.====.【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 26、【提示】注意:x 2+a 2=,∴ x 2+a 2-x =22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ).【解】原式=-+221ax +=====x1.当x =1-2时,原式==-1-2.【点评(di ǎn p ín ɡ)】本题如果将前两个“分式(f ēnsh ì)”分拆(f ēn ch āi)成两个“分式(f ēnsh ì)”之差,那么(n à me)化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=-+221a x +=x1.六、解答题:(每小题8分,共16分)27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(+++…+)=(25+1)[(12-)+()+()+…+()]=(25+1)()=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?你能求出x ,y 的值吗?【解】要使y 有意义,必须,即∴ x =.当x =41时,y =21. 又∵xyy x ++2-xyy x +-2=-=||-||∵ x =41,y =21,∴ <. ∴ 原式=xy yx +-=2当x =41,y =21时,原式=2=2.【点评】解本题的关键是利用二次根式的意义求出x的值,进而求出y的值.内容总结(1)二次根式化简练习题含答案(培优)(一)判断题:(每小题1分,共5分)1.=-2.(2)你能求出x,y的值吗。

二次根式化简习题大全

二次根式化简习题大全

二次根式化简习题大全 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】二次根式化简练习一、 化简下列二次根式 =12 =8 =18 20=60= =72 =80 =90=108 125= =128 =135二、 比较下列二次根式的大小182_____123 2421 ____2731 12554 ___16932 403_____602三、 化简=38x 212x =x 232532⨯⨯=292ab = a c b 16332 = 2312a c b ==-22513 =+22158211-= 二选择题1.若-1<x <0,则()221+-x x 等于 +12.下列等式成立的是 A.2)2(2-=- B.4x =x 2 122++b b =-1 D.36x x = 3.若1)3()2(22=-+-a a ,则a 的取值范围是≤a ≤3 ≥3或a ≤2 ≤2 ≥34.化简a +2)1(a -等于 或-1 或1 5.计算22)21()12(a a -+-的值是 或4a -26.当3323+-=+x x x x 时,x 的取值范围是≤0 ≤-3 ≥-3 ≤x ≤07当a >0时,化简3ax -的结果是ax ax - ax - ax8.实数a ,b 在数轴上对应点的位置如图所示,则化简2222a b ab a -+-的结果为9.计算22)53()52(-+-等于5 5 510.下列二次根式中,是同类二次根式的是 A.b c a bc a 3与 B.23b a 与ab C.a 2与34a D.b a 与23b a 三.填空题1.代数式xx x -+++213有意义的条件是 ; x x 263-+-有意义的条件是2.函数xx x y -++-=2132的自变量x 的取值范围是 3化简12=____. .2)23(-= . 4.|)1(1|,22a a +--<化简时当得 . 5.若三角形的三边a ?b ?c 满足a 2-4a +4+3-b =0,则笫三边c 的取值范围是_____________.6.若m <0,则|m |+______332=+m m .已知:42<<x ,化简()|5|12-+-x x =_________.三解答题1.计算 221--22+0)101(+1)21(- 2)52(80182445-+-++ 3.小明和小芳解答题目:"先化简下式,再求值:a +221a a +-,其中a =9"时,得出了不同的答案.小明的解答是:原式=a +2)1(a -=a +(1-a )=1; 小芳的解答是:原式=a +2)1(a -=a +(a -1)=2a -1=2×9-1=17.(1)_________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________.4.若│1995-a │+2000a -=a ,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值5已知,化简求值 6、已知,先化简,再求值。

二次根式化简练习题含答案

二次根式化简练习题含答案

•二次根式(g ēnsh ì)化简练习题含答案(培优)(一)判断题:(每小题1分,共5分)1.=-2.…………………( ) 2.-2的倒数(d ǎo sh ù)是3+2.( )3.=.…( )4.ab 、、是同类(t óngl èi)二次根式.…( ) 5.,,都不是(b ù shi)最简二次根式.( )(二)填空题:(每小题2分,共20分)6.当x __________时,式子(sh ì zi)有意义.7.化简-÷= .8.a -的有理化因式是____________.9.当1<x <4时,|x -4|+=________________.10.方程(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简=______.12.比较大小:-_________-.13.化简:(7-52)2000·(-7-52)2001=______________. 14.若+=0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-的整数部分和小数部分,则2xy -y 2=____________. (三)选择题:(每小题3分,共15分)16.已知=-x ,则………………( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤0 17.若x <y <0,则+=………………………( )(A )2x (B )2y (C )-2x (D )-2y 18.若0<x <1,则-等于………………………( )(A ) (B )-x2(C )-2x (D )2x 19.化简a <0得………………………………………………………………( ) (A )(B )-(C )-a - (D )a20.当a <0,b <0时,-a +2ab -b 可变形(bi àn x íng)为………………………………………( ) (A )(B )-(C )(D )(四)计算题:(每小题6分,共24分)21.()();22.--;23.(a 2-+)÷a 2b 2mn ;24.(a +)÷(+-)(a ≠b ).(五)求值:(每小题7分,共14分)25.已知x =,y =,求的值.26.当x =1-2时,求++的值.六、解答(ji ěd á)题:(每小题8分,共16分)27.计算(j ì su àn)(2+1)(+++…+).28.若x ,y 为实数(sh ìsh ù),且y =++.求-的值.(一)判断题:(每小题1分,共5分) 1、【提示(t ísh ì)】=|-2|=2.【答案(d á àn)】×.2、【提示】==-(3+2).【答案】×.3、【提示】2)1(-x =|x -1|,2)1(-x =x -1(x ≥1).两式相等,必须x ≥1.但等式左边x 可取任何数.【答案】×.4、【提示】31b a 3、bax 2-化成最简二次根式后再判断.【答案】√. 5、29x +是最简二次根式.【答案】×. (二)填空题:(每小题2分,共20分) 6、【提示】何时有意义?x ≥0.分式何时有意义?分母不等于零.【答案】x ≥0且x ≠9.7、【答案】-2a a .【点评】注意除法法则和积的算术平方根性质的运用. 8、【提示】(a -12-a )(________)=a 2-.a +12-a .【答案】a +12-a .9、【提示(t ísh ì)】x 2-2x +1=( )2,x -1.当1<x <4时,x -4,x -1是正数(zh èngsh ù)还是负数?x -4是负数(f ùsh ù),x -1是正数(zh èngsh ù).【答案】3. 10、【提示(t ísh ì)】把方程整理成ax =b 的形式后,a 、b 分别是多少?,.【答案】x =3+22. 11、【提示】=|cd |=-cd .【答案】ab +cd .【点评】∵ ab =(ab >0),∴ ab -c 2d 2=()(). 12、【提示】2=,43=.【答案】<.【点评】先比较28,48的大小,再比较,的大小,最后比较-281与-481的大小. 13、【提示】(-7-52)2001=(-7-52)2000·(_________)[-7-52.](7-52)·(-7-52)=?[1.]【答案】-7-52.【点评】注意在化简过程中运用幂的运算法则和平方差公式. 14、【答案】40.【点评】1+x ≥0,3-y ≥0.当1+x +3-y =0时,x +1=0,y -3=0. 15、【提示】∵ 3<11<4,∴ _______<8-11<__________.[4,5].由于8-11介于4与5之间,则其整数部分x =?小数部分y =?[x =4,y =4-11]【答案】5.【点评】求二次根式的整数部分和小数部分时,先要对无理数进行估算.在明确了二次根式的取值范围后,其整数部分和小数部分就不难确定了. (三)选择题:(每小题3分,共15分) 16、【答案】D .【点评】本题考查积的算术平方根性质成立的条件,(A )、(C )不正确是因为只考虑了其中一个算术平方根的意义.17、【提示】∵ x <y <0,∴ x -y <0,x +y <0.∴222y xy x +-==|x -y |=y -x .222y xy x ++==|x +y |=-x -y .【答案】C .【点评】本题考查二次根式的性质=|a |.18、【提示】(x -)2+4=(x +x 1)2,(x +x 1)2-4=(x -x1)2.又∵ 0<x <1,∴ x +x 1>0,x -x1<0.【答案】D .【点评】本题考查完全平方公式和二次根式的性质.(A )不正确是因为用性质时没有注意当0<x <1时,x -x 1<0.19、【提示】==a -·2a =|a |a -=-a a -.【答案】C .20、【提示】∵ a <0,b <0,∴ -a >0,-b >0.并且-a =,-b =,ab =.【答案】C .【点评】本题考查逆向运用公式=a (a ≥0)和完全平方公式.注意(A )、(B )不正确是因为a <0,b <0时,a 、都没有意义.(四)计算题:(每小题6分,共24分) 21、【提示(t ísh ì)】将看成一个整体,先用平方差公式,再用完全(w ánqu án)平方公式.【解】原式=(35-)2-=5-2+3-2=6-215. 22、【提示(t ísh ì)】先分别分母有理化,再合并同类二次根式.【解】原式=--=4+11-11-7-3+7=1.23、【提示(t ísh ì)】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式.【解】原式=(a 2mn -m ab mn +mnn m)·n m =-+=21b -+221b a =. 24、【提示】本题应先将两个括号(ku òh ào)内的分式分别通分,然后分解因式并约分.【解】原式=÷=÷=ba ba ++·=-.【点评】本题如果先分母有理化,那么计算较烦琐. (五)求值:(每小题7分,共14分)25、【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值.【解】∵ x =2323-+==5+2, y =2323+-==5-26.∴ x +y =10,x -y =46,xy =52-(26)2=1.====.【点评】本题将x 、y 化简后,根据解题的需要,先分别求出“x +y ”、“x -y ”、“xy ”.从而使求值的过程更简捷. 26、【提示】注意:x 2+a 2=,∴ x 2+a 2-x =22a x +(22a x +-x ),x 2-x 22a x +=-x (22a x +-x ).【解】原式=-+221ax +=====x1.当x =1-2时,原式==-1-2.【点评(di ǎn p ín ɡ)】本题如果将前两个“分式(f ēnsh ì)”分拆(f ēn ch āi)成两个“分式(f ēnsh ì)”之差,那么(n à me)化简会更简便.即原式=)(2222x a x a x x-++-)(22222x a x x a x x -++-+221ax +=-+221a x +=x1.六、解答题:(每小题8分,共16分)27、【提示】先将每个部分分母有理化后,再计算.【解】原式=(25+1)(+++…+)=(25+1)[(12-)+()+()+…+()]=(25+1)()=9(25+1).【点评】本题第二个括号内有99个不同分母,不可能通分.这里采用的是先分母有理化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消.这种方法也叫做裂项相消法.28、【提示】要使y 有意义,必须满足什么条件?你能求出x ,y 的值吗?【解】要使y 有意义,必须,即∴ x =.当x =41时,y =21. 又∵xyy x ++2-xyy x +-2=-=||-||∵ x =41,y =21,∴ <. ∴ 原式=xy yx +-=2当x =41,y =21时,原式=2=2.【点评】解本题的关键是利用二次根式的意义求出x的值,进而求出y的值.内容总结(1)二次根式化简练习题含答案(培优)(一)判断题:(每小题1分,共5分)1.=-2.(2)你能求出x,y的值吗。

完整版二次根式的化简习题

完整版二次根式的化简习题

完美WORD 格式二次根式的化简1. 若-1<x<0,则 斥-Qa+h 等于2. 下列等式成立的是3. 若叮冷-n 「,则a 的取值范围是4.化简a+ 等于5.计算(匸―的值是6.当 ■ • '•时,x 的取值范围是7.当 2m+7<0 时,'7、 二 — 1化简为8. 当a>0时,化简的结果是10.计算 &2-® 十-送亍 等于、填空题A.2X+1B.1C.-1-2XD.1-2XA. |B. • =/C.b-嘤$ 衣必 7 =-1D.—A.2 < a w 3B.a > 3 或 a w 2C.a w 2D.a > 3A.2a-1B.1C.1 或-1D.2a-1 或 1A.2-4 a 或 4a-2B.0C.2-4aD.4a-2A.x w 0B.x < -3C.x 》-3D.-3 w x < 0A.-5 mB. mC.- m-2D.5 mA.xB.-xC.xD.-x9.实数a,b 在数轴上对应点的位置如图所示,则化简 一门'厂\…的结果为A.-bB.2a-bC.b-2aD.bA.5-2B.1C.2 -5D.2 -111.下列二次根式中 ,是同类二次根式的是A.B J 出'冉三与屮页 c 迈匚与寸D2. J"® 二3. 当 X-謝.俺 |l-V (l + ^):得 4.若三角形的三边a?b?c 满足a 2-4a+4+ •=0,则笫三边c 的取值范围是5. 判断题⑴若•=玄则a - -定是 正数.()⑵若• =-a,则a 一定是负数.()(3)= n -3.14.()⑷•••(-5)2=52」:—— 一―1()乍、Qw ,■ -(V5 - \■ \''7 - <5.(5) ( )⑹当 a>1 时,|a-1|+ ' =2a-2.()(7)若 x=1,则 2x- ‘ " 一1 °' =2x-(x-2)=x+2=1+2=3.((10)'' ' =x+1.()⑴)=0.()(12)当 m>3 时,’ ''"-m=-3.( )6. 如果等式-=-x 成立,则x 的取值范围是7. 当 x _____ 时,W-h x' =x-1.8. 若 (兀 + 2〕=x+2,则 x __________ 9. 若 m<0,则 |m|+ '---------<A <2时,干--6A +1)10.当211. 若 x 与它的绝对值之和为零,则 二12. 当 a时,1、" -3a|=-4a.(8)若JOT)=冈工0,则x y 异号.((9)m<1 时,13.化简14. 若a<0,则化简' 的结果为15. ______________________________________ 化简-弭©7"的结果是16. ___________ 当 a 时,2M 2.f~217. _______________________________________ 若a<-3时,则[2-JU十心I等于18.计算19.已知: 2<x<4,化简寸+丨玄-、= ______________________21.比较大小:•-7 + 2宓22. 化简:* 1亠[=.[5+1的整数部分a,小数部分为b,则a=23. 设24. 先化简再求值:当a=9时,求a+一;一丄"从的值,甲乙两人的解答如下甲的解答为:原式=a+ '•■'=a+(1-a)=1;乙的解答为:原式=a+WU「" =a+(a-1)=2a-1=17.两种解答中,_______ 的解答是错误的,错误的原因是未能正确地运用二次根次的性质:_______________25.把根号外的因式移动到根号内:27. 当-1<x<0 时,化简A+V1+2A' + A = ________________ .28. 小明和小芳解答题目:”先化简下式,再求值:a+ I ',其中a=9"时,得出了不同的答案.小明的解答是:原式:=a+ ■' =a+(1- a)=1;小芳的解答是:原式=a+ =a+(a-1)=2a-1=2 x 9-1=17.(1) _______ 的解答是错误的.(2) 错误的解答错在未能正确运用二次根式的性质:___________三、解答题(共26题,题分合计205分)1.已知a为实数,化简1.a = -J一b2.已知^ ', 爲+ 2,求盘十占十-的值.茁'+ 2血+护3.化简求值::'、-'汀.其中a*:;+1,b= :•-'-1.4.玄亠定一占时,求代数式:…「一/ ■■■■ ■ 3的值.5. 计算:」一I + •+:6.<45 + + <78-^/80 4- J(&_為丄计算:-7.8.)【x _ 4先化简再求值-■- ■ ■,其中x=2+1_化简求值:(角煌川暮T,其中a=-Q)询9. 计算:宀10. 先化简后求值:x2- 2x - 3 宀9- -------- * ~;----7斗2 ; -r 一I •亠-其中x=11. 计算:12. 若」14.先化简后求值_V + J " — 1 -X一 J — 115.计算假设有一对亲兄弟,哥哥 26岁,弟弟25岁,现在哥哥乘以 0.6倍光速飞行的宇宙飞船作星际航行 .如果宇宙飞船作了五年的星际航行后回来(这五年指地球上的五年),即当弟弟13.已知,苗十应 ⑶ X+ •'(x<「)(4)--(0<x<y)16.化简⑴乂历-春2厲-計⑵尺叩(x<0)17.化简:(1):-肚(-2<x<4)18.化简:(1);」 几"-t 订-- ' (-1<a<2)(1<a<8)19.化简:(1) ;(0<x<1)(a<2b)-4X + 1 4-2|X -2|(-20.化简:(1)'-<x<2) + 4x + I + <4x 2 -12x + 9(^丄 -2 < x w 】)21.已知 3 - *+(a+b+6)2=0,求 a 2 2 的值.22.当,■-时,化简下式并求值:-x^jx 2 + a 223 Si .r - 5 - 2^, j - 5 + 2 H 求;- 2xy +23.24.若一—…■-,+ _「一 '■ 一八,求代数式一—'+「-超•一 :s -点的值. 25.根据大科学家爱因斯坦的相对论原理,当地球上的时间经过1秒钟时,在作星际飞行的宇宙飞船内经过了秒.(c 为光速,r 为飞船速度)30岁时,哥哥在宇宙飞船内度过了多少先化简后求值•,把年,年龄是多大?J 片-1 + J1 - JT + —26.若x、y为实数且y< 匚,化简|2y-1|二次根式的化简答案一、选择题(共11题,合计44分)1.16817 答案: C2.16818 答案: B3.16819 答案: A4.16820 答案: D5.16821 答案: A6.16822 答案: D7.16823 答案: A8.16824 答案: B9.16825 答案: D10.16826 答案::B11.8763 答案: C二、填空题(共28题,合计112 分)1.6297 答案:2占2.8765 答案:2-Va3.8772 答案:-a-24.8773 答案:1<c<55.16804 答案:(1)X ⑵X⑶V ⑷X6.16805 答案:x W 07.16806 答案:x > 18.16807 答案:x=-29.16808 答案:-m10.16809 答案::-3X2+7X-211.1681答案:-X12.16811 答案:aw 013.16812 答案:10= fl3114.16813 答案:1—a --------a(5) V (6)V (7)X (8) V (9) X (10) X ⑴)X(12) V15.16814 答案:(5 - -5 16.16815 答案:av 017.16816 答案:-3-a18.6298 答案:V2-119.6317 答案: 420.6318 答案:-x21.6330 答案:<22.6331 答案:v,(6 +123.6400 答案:R K亦-1a - 2rb =-----224.8774 答案:甲;打汀 _ ”严25.6328 答案:J3a(b+ <026.6332 答案:—2 —27.8769 答案: 128.16835 答案:⑴小明(2),=|a|=--a (a v0)三、解答题(共26题,合计205分)1.8781 答案:(1-a厂2.6352 答案: 43.6355 答案:4.6359 答案:1 + V2-V35.6360 答案: 46.6369 答案:4>/217.6371 答案:132 +V28.6372 答案:29.6374 答案:60 + >^2完美WORD 格式10.6376 答案:少-12rz 11.6377 答案:V2 ~T12.6386 答案: 613.6399 答案: 原式盘丄-书-近-羽-A /2 = -2^/2 < 0「.原式■ ° +丄--aa=2V3-2J2也可这样运算:原式= |2^|-|-2V2|= 2^3 -厶伍5 + 2^521.16834 答案:12、、14.6401 答案: 15.16827 答案: 4(1)4-x (2)2 a-5⑶16.16828 答案: (1)1⑵-517.16829 答案: (1)2-2x(2)2x-118.16830 答案:(1)3 (2)7-a⑴:+ -V3⑵-19.16831 答案:1 -X20.16832 答案:(1)3 (2)4(4)y 2-x 2完美WORD格式22.6381答案:原式23.8782 答案:' ' 124.6333 答案:1525.6373 答案:解:根据题意得,,所以地球上的1秒钟,宇宙飞船内度过了Ji-(—)2 nTTTBT7脑"2丫U 秒,计算得5秒,所以地球上5年,相当于这个宇宙飞船内的4年.因此,弟弟30岁时,即地球上过了5年,而宇宙飞船内度过了4年,所以哥哥回来后是30岁.26.8783 答案:|2y-1|=1-2y。

二次根式计算及化简练习题.doc

二次根式计算及化简练习题.doc

二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。

m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。

4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。

6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。

a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。

2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。

x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。

x 3yx 291的值。

14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。

二次根式计算及化简练习题.doc

二次根式计算及化简练习题.doc

二次根式的计算与化简练习题(提高篇)1、已知m是 2 的小数部分,求m21 2 的值。

m22、化简( 1)(1 x)2 x2 8x 16 ( 2)132x 3 2xxx 250 2 2 x( 3)4a 4b( a b) 3a3a2b(a0)3、当 x 2 3 时,求(7 4 3) x2(23)x 3 的值。

4、先化简,再求值:2a 3ab3b27a3b3 2ab3ab ,其中 a1, b 3 。

6 4 96、已知aa2 2a 1 a 1 4a2 16 4a2 8a2 1,先化简2 a a2 2a 1 a2 4a 4,再求值。

a a 27、已知: a1 ,b 1 ,求a2 b 22 2a 的值。

2 3 3 2b 9、已知0x 3 ,化简x2x26x910、已知a 2 3 ,化简求值1 2aa2 a 2 2a 1 1a 1 a2 a a11、①已知x23, y 23, 求: x2xy y2的值。

x 2②已知 x 2 1 ,求 x 1的值.x 1③ 4 y 2 6 y2 ( 7 x 5 x 2 ) ④ ( 3a 3 27a 3 ) ax 9 312、计算及化简:22⑴.11aaa a⑷.a 2ab baa ba ab ba b a b 2 ab⑵.bababaabbab13、已知: a1 1 10 ,求 a 2a12a的值。

x 3yx 291的值。

14、已知20,求x x 3 y 1二次根式提高测试一、判断题:(每小题 1 分,共 5 分)1. ( 2)2ab =- 2ab. ()2.3- 2 的倒数是3+ 2.() 3. (x 1)2 = ( x 1) 2. ()1 a 3b 、2 a4.ab 、 3 xb是同类二次根式.()1x 25. 8x,3 , 9 都不是最简二次根式. ()二、填空题:(每小题 2 分,共 20 分)16.当 x__________时,式子x 3有意义.15 2 10257.化简-827 ÷ 12 a 3 = _.8.a - a21的有理化因式是 ____________ .9.当 1< x <4 时, |x - 4| + x 2 2x 1= ________________.10.方程2( x -1)= x + 1 的解是 ____________.ab c 2 d 211.已知 a 、 b 、 c 为正数, d 为负数,化简abc 2d 2 = ______.1112.比较大小:- 2 7_________ -4 3.13.化简: (7- 5 2)2000 (·- 7-52)2001= ______________.14.若 x 1 +y3= 0,则 (x - 1)2+(y + 3)2= ____________.15. x , y 分别为 8- 11的整数部分和小数部分,则 2xy - y2= ____________.三、选择题:(每小题 3 分,共 15 分)16.已知 x33x 2=- x x3,则( )(A )x ≤ 0( B ) x ≤- 3( C ) x ≥- 3( D )- 3≤ x ≤017.若 x < y <0,则x22xy y2 + x 22xy y 2 = ()(A )2x( B )2y (C )- 2x ( D )- 2y( x 1 )2 4(x1 )2 418.若 0< x <1,x -x 等于 ⋯⋯⋯⋯⋯⋯⋯⋯()22(A ) x(B )- x(C )- 2x( D ) 2xa 319.化a(a < 0)得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A )a( B )-a( C )-a( D )a20.当 a <0, b < 0 ,- a + 2ab- b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) ( ab)2(B )-( ab )2 (C )(ab ) 2( D )(ab) 2四、在 数范 内因式分解: (每小 3 分,共 6 分)21. 9x 2- 5y 2 ;22. 4x 4- 4x 2+ 1.五、 算 :(每小 6 分,共 24 分)23.(532)(5 32);5 4224. 411 - 117 - 37 ;n ab n m n25.( a2m-mmn +mn)÷ a2b2 m ;26.(a +b aba b )÷(aab b +bab a -a bab )( a≠b).(六)求值:(每小题 7 分,共 14 分)3 2 3 2 x3 xy 227.已知 x=3 2, y= 3 2 ,求x4y 2x3 y2 x2 y3 的值.x 2x x2 a2 128.当 x= 1- 2 时,求 x2 a2 x x2 a2 + x2 x x2 a2 +x2 a2 的值.七、解答题:(每小题 8 分,共 16 分)1 1 1 129.计算( 2 5+ 1)(12 + 23 + 34 ++ 99 100 ).1 x2 y x 2 y30.若 x, y 为实数,且 y=14x +4x 1 + 2 y x -yx的值..求《二次根式》提高测试(一)判断题: (每小题 1 分,共 5 分)1. ( 2) 2ab =- 2 ab . ()【提示】( 2)2 = | -2| = 2.【答案】×.2. 3 - 2 的倒数是 3 + 2.()【提示】1 2 = 32=-( 3 +2).【答3 3 4案】×. 1)2 x 1)2. (x 1) 2 = ( x . ( )【提示】 (x 1) 2 = | x - 1| , ( = - 1 3x ( x ≥1).两式相等,必须 x ≥ 1.但等式左边 x 可取任何数. 【答案】×. 4. ab 、 1a 3b 、 2a是同类二次根式.()【提示】 1a 3b 、 2 a3 x b3x b化成最简二次根式后再判断. 【答案】√.5. 8x ,1, 9 x 2 都不是最简二次根式. ()9 x 2 是最简二次根式.【答3案】×.(二)填空题: (每小题 2 分,共 20 分)6.当 x__________ 时,式子1 有意义.【提示】x 何时有意义 x ≥ 0.分式何时x3有意义分母不等于零. 【答案】 x ≥ 0 且 x ≠ 9.7.化简- 152 10 ÷25 = _.【答案】- 2a a .【点评】注意除法法则和积的82712a 3算术平方根性质的运用.8. a - a 21 的有理化因式是 ____________ .【提示】( a - a2 1 )( ________)=a 2- ( a 2 1) 2 . a + a 2 1 .【答案】 a + a 2 1 ..当< < 4 时,- +x22 x1 = ________________ .91 x| x 4|【提示】 x 2- 2x + 1=( ) 2, x - 1.当 1 <x < 4 时, x - 4, x -1 是正数还是负数x - 4 是负数, x -1 是正数.【答案】 3. 10.方程 2 (x - 1)= x + 1 的解是 ____________ .【提示】把方程整理成 ax = b 的形式后, a 、 b 分别是多少2 1 , 2 1.【答案】 x = 3+ 2 2 .11.已知 a 、b 、c 为正数, d 为负数,化简ab c 2 d 2 = ______.【提示】 c 2 d 2 =ab c 2d 2| cd| =- cd .【答案】 ab + cd .【点评】∵ ab = ( ab )2 ( ab > 0),∴ ab -c 2d 2=(ab cd )( ab cd ).12.比较大小:-1 _________- 1 .【提示】2 7 = 28 ,43 = 48 .2 7 4 3【答案】<.【点评】先比较 28 , 48 的大小,再比较 1 1的大小,最后 ,48 28 比较- 1 与- 1 的大小.284813.化简: (7-52 )2000·(-7-5 2 )2001=______________.【提示】 (- 7-5 2 )2001=(- 7- 5 2 )2000·( _________) [- 7- 5 2 . ] ( 7- 5 2 ) ·(- 7- 5 2 )= [1. ]【答案】- 7- 5 2 .【点 】注意在化 程中运用 的运算法 和平方差公式. 14.若 x 1 + y 3= 0, (x -1)2+(y + 3)2= ____________.【答案】 40.【点 】x 1 ≥0, y3 ≥ 0.当x1 + y 3=0 , x + 1=0, y - 3= 0.15. x , y 分 8- 11 的整数部分和小数部分,2xy - y 2= ____________. 【提示】 ∵3< 11 < 4,∴ _______< 8- 11 < __________.[4,5].由于 8- 11介于 4 与 5 之 , 其整数部分 x =小数部分y = [x = 4, y = 4- 11 ]【答案】 5. 【点 】 求二次根式的整数部分和小数部分 ,先要 无理数 行估算. 在明确了二次 根式的取 范 后,其整数部分和小数部分就不 确定了. (三) : (每小3 分,共 15 分)16.已知x 33x 2 =- x x3 , ⋯ ⋯⋯⋯⋯⋯()(A )x ≤ 0( B )x ≤- 3(C )x ≥- 3( D )- 3≤ x ≤ 0【答案】 D .【点 】本 考 的算 平方根性 成立的条件,( A )、( C )不正确是因 只考 了其中一个算 平方根的意 .17.若 x < y < 0,x 22xy y 2 + x 2 2xy y2=⋯ ⋯⋯⋯⋯⋯⋯⋯⋯()(A )2x ( B )2y(C )- 2x( D )- 2y【提示】∵x < y < 0,∴ x - y < 0, x + y < 0.∴x 2 2xy y 2 = ( x y)2 =| x -y| = y - x .x 2 2xy y 2 = ( x y) 2 = | x + y| =- x -y .【答案】 C .【点 】本 考 二次根式的性a 2 = | a| .18.若 0< x < 1,(x1 )2 4 - ( x 1 )2 4 等于 ⋯⋯⋯⋯⋯⋯⋯⋯( )x x(A )2(B )-2( C )- 2xxx【提示】 (x -1 2+4= (x + 1 21 2= (x -1 x )x ) , (x + x ) - 4 x( D ) 2x)2.又∵0< x < 1,∴ x + 1>0 ,x - 1< 0.【答案】 D .x x【点 】本 考 完全平方公式和二次根式的性 . ( A )不正确是因 用性 没有注意当 0< x < 1 , x - 1< 0.x19.化a 3( a < 0 ) 得 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()a(A ) a(B )- a( C )-a( D ) a【提示】a 3 = a a 2 = a · a 2 = | a|a =- a a .【答案】 C .20.当 a <0, b < 0 ,- a + 2 ab -b 可 形 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯()(A ) b ) 2 ( B )- ( a b) 2 ( C )( a b) 2( D )( ab ) 2( a【提示】∵ a < 0, b < 0,∴ - a > 0,- b > 0.并且- a = (a )2 ,-b = ( b)2 ,ab = ( a)( b) .【答案】 C .【点 】本 考 逆向运用公式( a ) 2 = a ( a ≥ 0)和完全平方公式.注意( A )、( B )不正确是因为 a < 0, b < 0 时, a 、 b 都没有意义. (四)在实数范围内因式分解: (每小题 3 分,共 6 分)21.9x 2-5y 2;【提示】用平方差公式分解, 并注意到 5y 2= ( 5y) 2 .【答案】( 3x + 5 y ) ( 3x - 5 y ).22. 4x 4- 4x 2+1.【提示】先用完全平方公式,再用平方差公式分解. 【答案】 ( 2 x +1)2( 2 x - 1)2. 6 分,共 24 (五)计算题: (每小题 分)23.( 5 3 2 )( 5 3 2 );【提示】将53 看成一个整体,先用平方差公式,再用完全平方公式.【解】原式= ( 5 3 )2- ( 2) 2= 5 - 2 15 + - = - 15 .3 2 6 224. 5 - 4 - 2 ;【提示】先分别分母有理化,再合并同类二次根11 1177 43式.【解】原式=5( 411) - 4( 11 7) - 2(3 7 )= 4+ 11 -11 - 7 - 3+16 11 11 79 7 7 = 1.25.( a2n - ab mn +nm)÷ a 2b 2n ;mmm nm【提示】先将除法转化为乘法,再用乘法分配律展开,最后合并同类二次根式. 【解】原式=( a2n - ab mn +n m ) · 1 mm mmna 2b 2n= 1n m -1 mn m+ n m mb 2m nmab n ma 2b 2n n= 1 - 1 + 1= a 2ab 1 .b 22ba 2b 2ab a226.( a +bab)÷(a+ b - a b)(a ≠b ).abab b ab aab 【提示】本题应先将两个括号内的分式分别通分,然后分解因式并约分. 【解】原式=aab bab ÷ a a ( ab) b b ( a b ) (a b)( a b)==ab a b ÷a 2 a ab b ab a bab( a b )( a b · ab( a b )( a abab (a b)ab ( a b )( a b ) b 2 a 2 b 2a b )b ) =- ab .【点评】本题如果先分母有理化,那么计算较烦琐. (六)求值: (每小题 7 分,共 14 分)27.已知 x =32, y =3 2,求x 3 xy 2 x 2 y 3 的值.323 2x 4 y 2x 3 y 2 【提示】先将已知条件化简,再将分式化简最后将已知条件代入求值. 【解】∵x =32=(32) 2 = 5+ 2 6 ,32y =3 2= ( 32) 2 = 5- 2 6 .32∴ x + y =10, x - y =4 6 , xy = 52-(26 )2=1.x 3xy 2x 2 y 3 = x( x y)( x y) = x y = 46 = 26 .x 4 y 2x 3 y 2 x 2 y( x y) 2 xy( x y) 1 10 5【点评】 本题将 x 、y 化简后, 根据解题的需要, 先分别求出 “ x + y ”、“ x - y ”、“ xy ”.从而使求值的过程更简捷.28.当 x = 1-2 时,求x 2a 2x a 2 + 2xx 2 a 2 +1 的值.x x 2x 2x x 2 a 2 x 2 a 2【提示】注意: x 2+ a 2 = ( x 2 a 2 ) 2 ,∴ x 2+ a 2- x x 2 a 2 = x 2 a 2( x 2 a 2 - x ),x 2- x x 2 a 2 =- x ( x 2a 2- x ).【解】原式=x-2 xx 2 a 21x 2 a 2 ( x 2 a 2x( x2a 2+x 2 a 2x)x)= x 2x 2a 2 (2x x 2a 2 ) x( x 2a 2x)x x 2a 2 ( x 2a 2x)=x 2 2x x 2a 2 ( x 2 a 2 ) 2 x x 2 a 2 x 2=( x 2 a 2 )2 x x 2 a 2 =x x 2 a 2 ( x 2 a 2 x)x x 2a 2 ( x 2 a 2x)x 2 a 2 ( x 2 a 2x)x x 2a 2 ( x 2 a 2 x)= 1.当 x =1- 2 时,原式=1 1 =- 1-2 .【点评】本题如果将前两个“分式”x2分拆成 两个“分式” 之差,那 么化简会更简 便.即原 式=x-x 2 a 2 ( x 2 a 21x)2x x 2 a 2+22x( x 2 a 2 x)x a= (11 ) -( x 2 1 x1) +1 a2 = 1. x 2a 2 x x 2 a 2a 2 xx 2 x七、解答题: (每小题 8 分,共 16 分)29.计算( 2 5 + 1)( 1+1+1+ +1).23991 234100【提示】先将每个部分分母有理化后,再计算.【解】原式=( 25 + 1)( 2 1 + 3 2 + 43+ + 100 99 ) 2 1 3 2 4 3100 99= ( 2 5 + 1 ) [ ( 2 1 ) + ( 3 2 ) + ( 4 3 ) + + ( 10099 ) ]=( 2 5 + 1)( 100 1)= 9( 2 5 + 1).【点评】本题第二个括号内有 99 个不同分母,不可能通分.这里采用的是先分母有理 化,将分母化为整数,从而使每一项转化成两数之差,然后逐项相消. 这种方法也叫做裂项相消法.30.若 x ,y 为实数,且 y = 14x + 4x 1 + 1.求 x 2 y - x2 y 的2 y x y x值.1 4 x 0x14 ]【提示】要使 y 有意义,必须满足什么条件[] 你能求出 x ,y 的值吗 [4x 1 0.y 1 .21 4xx14 ∴ x = 1 .当 x = 1时, y = 1.【解】要使 y 有意义,必须 [,即4x 1 0x 1 . 4424又∵x 2y - x y =(xy 2 -xy2y x y2y)()xxy x = | xy| - | xy| ∵ x = 1, y = 1,∴x < y .yxyx42yx∴原式= xy - y x= 2 x 当 x = 1, y = 1时,yxxyy4 21原式= 2 4 =2 .【点评】解本题的关键是利用二次根式的意义求出x 的值,进12而求出 y 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【最新整理,下载后即可编辑】
二次根式化简练习
一、 化简下列二次根式
=
12 =
8 =18
20
=
=24 =
28 =32
=40
=45
=
48 =50
=54
60
= =
72 =80
=90 =84 =
88
=96
=98 =108
125
=
=128
=135 =
82
=453
2
=483
=325
2
=43
=3
2
=8
7
=6
12 =1251
=2
5
=7
4
=5
13
=32
32 =5
421 =3
443
=2
1465
二、 比较下列二次根式的大小
18
2_____123
242
1
____
273
1
1255
4
___
1693
2
403_____60
2
三、 化简
=38x
2
12x =
x 232532⨯⨯=
2
92ab =
a
c b 16332 =
2
312a c b =
=
-22513 =+22158
2
11-=
二选择题 1.若-1<x <0,则()221+-
x x 等于 A.2x +1 B.1 C.-1-2x
D.1-2x
2.下列等式成立的是 A.2
)2(2-=- B.
4
x =x 2 C.b -122++b b =-1
D.
36x x =
3.若
1
)3()2(22=-+-a a ,则a 的取值范围是
A.2≤a ≤3
B.a ≥3或a ≤2
C.a ≤2
D.a ≥3 4.化简a +2
)1(a -等于 A.2a -1 B.1 C.1或-1
D.2a -1或1 5.计算
2
2)21()12(a a -+-的值是
A.2-4a 或4a -2
B.0
C.2-4a
D.4a -2 6.当
3
323+-=+x x x x 时,x 的取值范围是
A.x ≤0
B.x ≤-3
C.x ≥-3
D.-3≤x ≤0
7当a >0时,化简3
ax -的结果是
A.x
ax
B.-x ax -
C.x ax -
D.-x
ax
8.实数a ,b 在数轴上对应点的位置如图所示,则化简
2
222a b ab a -+-的结果为
A.-b
B.2a -b
C.b -2a
D.b 9.计算22)53()52(-+-等于
A.5-2
5
B.1
C.25-5
D.25-1
10.下列二次根式中,是同类二次根式的是 A.b
c a bc a 3与 B.
2
3b a 与ab C.
a
2与
3
4a D.
b
a

2
3b a
三.填空题 1.代数式
x
x x -++
+213有意义的条件是 ; x x 263-+-有意
义的条件是 2.函数x
x x y -++
-=2132的自变量x 的取值范围是
3化简
12
=____. .2
)23(-= .
4.
|)1(1|,22
a a +--<化简时当得 .
5.若三角形的三边a 、b 、c 满足a 2-4a +4+3-b =0,则笫三边c 的取值范围是
_____________. 6.若m <0,则|m |+______332=+m m .已知:42<<x ,化简
()|5|12-+-x x =_________.
三解答题 1.计算
32764.044.14
1
2
--++-
335120004008
3
3169+⨯-
--
2
21--
2
2+
0)101(
+1)21(-
2
)52(80182
445-+-++
3.小明和小芳解答题目:"先化简下式,再求值:a +2
21a a +-,其中a =9"时,得
出了不同的答案.小明的解答是:原式=a +2
)1(a -=a +(1-a )=1;
小芳的解答是:原式=a +
2
)1(a -=a +(a -1)=2a -1=2×9-1=17.
(1)_________的解答是错误的.
(2)错误的解答错在未能正确运用二次根式的性质:________. 4.若│1995-a │
,求
a-19952的值.
(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值
5已知,化简求值
6、已知,先化简,再求值。

7.已知直角三角形斜边长为AB=(26+3)cm,一直角边长为AC=(6+23)cm,
求这个直角三角形的面积.7分
3
8.如图所示的Rt △ABC 中,∠B=90°,点P 从点B 开始沿BA 边以1厘米/•秒的速度向点A 移动;同时,点Q 也从点B 开始沿BC 边以2厘米/秒的速度向点C 移动.问:几秒后△PBQ 的面积为35平方厘米?PQ 的距离是多少厘米?(结果用最简二次根式表示)7分
B A C
Q
P。

相关文档
最新文档